The
University
o Of

= -n,‘-_“ u}:_.'!?- Bhe&i{“:ld.

This is a repository copy of Time and Frequency Domain Identification and Analysis of a
Gas Turbine Engine.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/84270/

Monograph:

Boaghe, O.M., Billings, S.A., Li, L.M. et al. (2 more authors) (2000) Time and Frequency
Domain Identification and Analysis of a Gas Turbine Engine. Research Report. ACSE
Research Report 778 . Department of Automatic Control and Systems Engineering

Reuse

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White
Rose Research Online record for this item. Where records identify the publisher as the copyright holder,
users can verify any specific terms of use on the publisher’s website.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

\ White Rose o
| university consortium eprints@whiterose.ac.uk
WA Universiies of Leeds, Sheffield & York https://eprints.whiterose.ac.uk/



mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Time and Frequency Domain Identification and
Analysis of a Gas Turbine Engine

O.M. Boaghe, S.A. Billings, L.M. Li, P.J. Fleming, J. Liu

Department of Automatic Control and Systems Engineering
University of Sheffield
Mappin Street, Sheffield S1 3JD
United Kingdom

* Research Report No.778

September, 2000

4
CoenoscER®

University of Sheffield




Time and Frequency Domain Identification and
Analysis of a Gas Turbine Engine

O.M. Boaghe. S5.A. Billings, L.M. Li, P.J. Fleming, J. Liu

Department of Automatic Control and Systems Engineering, University of

Sheffield. PO.Box-600. Mappin Street. S1 3JD. Uk

Abstract

The NARMAX (Nonlinear AutoRegressive Moving Average model with eX-
ogenous inputs) approach is used to analyse the dynamics of a gas turbine
engine. The fuel flow - shaft speed relationship is analysed by identifying
both time and frequency domain models of the system. The frequency do-
main analysis is studied by mapping the discrete-time NARMAX models into
the Generalised Frequency Response Functions (GFRF’s) to reveal the non-
linear coupling between the various input spectral components and the energy
transfer mechanisms in the system. A continuous-time nonlinear differential
equation model is also estimated using the Generalised Frequency Response

Functions.

1 Introduction

(Gas turbine engines are employed in aircraft and ship propulsion systems and as a
consequence engine design 1s a critical issue in aircraft and ship performance. While
designs based on linear models are adequate in certain circumstances. new techniques
for the analysis and design of gas turbine engines have recently been employed
[Godfrey and Moore, 1974] to accommodate nonlinear effects. As a consequence gas
turbine engine modelling has received special attention in the last few vears in the

literature devoted to nonlinear system identification and analysis.

The first nonlinear models to be proposed were based on physical principles
applied in the time domain. These models are also known as thermodynamic mod-
els. The continuous-time models, which are complex and nonlinear, were usually
numerically linearised about a set of operating points [Jackson, 1988]. Following

the increasing computer power and advances in systems theory, a new approach was

considered more recently based on system identification procedures W&and
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The identification methods which were emploved in the frequency domain

were often based on the identification of linear s-domain models. Such models were
extracted based on multisine testing. introduced and developed by Evans et al [1995,
1998, 1999] in which the linear Frequency Response Functions (FRF) were derived
and used to compare and validate the models. The methods emploved in the time
domain were usually based on black-box discrete-time input-output identification
methods. Time-varving models were estimated using extended least squares and
optimal smoothing in Norton [1975] and Evans et al [2000]. Multi-objective genetic
programming was also applied and discrete-time NARMAX models were identified
in Rodriguez-Vasquez and Fleming [1998], Evans et al [2000] and Chiras et al, [2000].

While the previous approaches concentrate on either time-domain or frequency-
domain techniques for identification, modelling and interpretation, the present paper
is based on a combined approach and uses both the time and frequency domain. It is
shown that new insights into the gas turbine dynamics can be obtained from study-
ing both time and frequency domain properties of the system. While time-domain
discrete NARMAX modelling has been adopted before in Rodriguez-Vasquez and
Fleming [1998] and Chiras et al [2000], the frequency-domain approach based on
Generalised Frequency Response Functions is entirely new in gas turbine engine
analysis. The nonlinear Generalised Frequency Response Functions (GFRF), which
are generalisations of the linear Frequency Response Functions (FRF) are shown to
be crucial in system interpretation and modelling. This approach also enables the

construction of a continuous time, nonlinear differential equation model.

The paper concentrates on the fuel flow - high pressure (HP) shaft speed rela-
tionship, measured on a Spey engine at DERA Pyestock. After a brief presentation
of the NARMAX approach and frequency domain concepts, the paper presents the
identification and analysis of gas turbine models in both the time and the frequency

domain. Finally conclusions are drawn about the application of this approach.

2 Time and frequency domain identification tech-

niques

NARMAX (Nonlinear AutoRegressive Moving Average model with eXogenous in-
puts) is a well known methodology used in nonlinear system modelling and iden-
tification. NARMANX procedures which have been developed over the past twenty

vears have a wide area of application, from real system identification to the analysis
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of nonlinear differential equations with strong nonlinearities. The NARMAX model,

proposed by Leontaritis and Billings [1985a,b], is given as

y(k) = Fly(k—=1)..... y(k—mny). wlk—1),... ulb—=mn,). E(k—1)..... k—ne)]+E(k)

(1)
where F[-] denotes a nonlinear function, u« and y are the discrete-time input and
output signals with corresponding maximum lagged values of n, and n,. The quan-
tity £(k) accounts for possible noise and uncertainties. n; represents the maximum
noise lag. The nonlinear function F can be a polynomial, rational function, radial
basis functions, wavelet decomposition or any other function subject to some mild

constraints.

The identification of the NARMAX model structure and parameters can be
performed using an orthogonal least-squares algorithm, where the candidate model
terms are quantified according to the contribution that they make to the variance
of the system output. The best model is then selected as the model which explains
the total output variance and for which the number of terms is a minimum. This
means that the model terms are selected according to their significance to the output
variance. The model is then further validated both statistically and dynamically.
The statistical validation involves higher order correlations which test if the residuals
are unpredictable from all past values of the input and output [Billings and Zhu,

1994]. The dynamical validation is based on model predictions.

The time domain NARMAX model can also be mapped into the frequency-
domain where Generalised Frequency Response Functions (GFRF). which are gener-
alisations of the linear Frequency Response Function (FRF), are used to describe the
system. The translation into the frequency domain is based on an algorithm devel-
oped by Pevton-Jones and Billings [1989]. The linear Frequency Response Function
is defined as the Fourier transform of the impulse response function hy(7) in the

convolution integral
y(t) = fh Ju(t — 7)dr

Analogous to the linear case, the Generahsed Frequency Response Functions are
multi-dimensional Fourier transforms of the nonlinear impulse response functions

hyn(T1,.... ™) in the nonlinear convolution integral, known as the Volterra series
o 20
z / ..... Ju(t — 1) .. cult — m)dmy ... d7; (2)
=

It is straightforward to note that the first order frequency response function
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H,(w) explains the linear effects. while the nonlinear functions H,(w;.... swn) give

a measure of the nonlinear coupling of the input spectral components and reveal

energy transfer mechanisms to new spectral components in the output.

In the present work the discrete-time NARMAX approach was used to identify
features of the nonlinear dynamics of a gas turbine engine. In the next section
discrete-time NARMAX models are first identified for the fuel flow and the high-
pressure (HP) shaft speed data sets. The discrete-time models are then mapped into
the frequency domain, where the Generalised Frequency Response Functions reveal
in a new way energy transfer phenomena. This approach also allows a continuous-
time nonlinear differential equation model to be reconstructed from the frequency

domain GFRF’s. based on an algorithm developed by Li and Billings [1998].

3 Time domain analysis

The input data analysed in this paper, representing the fuel flow, is given as
an IRMLBS (Inverse Repeat Maximum-Length Binary Sequence) signal imposed on
a rectangular wave and sampled at 20 msec or 50Hz. The input signal varies within
a 10% range of the steady-state fuel low W;. The output signal considered is the
high pressure H P shaft speed. at three operating point values of 70%, 75% and 80%
of the maximum value of the shaft speed NH. Both input and output signals are

illustrated in Figure 1.

A delay of 2 samples was detected using an input-output cross-correlation
test [Marmarelis and Marmarelis, 1978], corresponding to a 40 msec time delay for
the original 20 msec sampling time. This is in good agreement with the time delays
detected in Evans et al [1998] of 35 msec and in Evans et al [1999] of 21 msec. For
sampling times higher than the one available of 20 msec an even more precise time
delay would be expected. The data was decimated 4 times, to a sampling frequency
of 12.5 Hz. Normally, the output bandwidth taken into account for the linear FRF
is [0; 1Hz] [Evans et al, 1998, 2000], therefore the 12.5 Hz frequency limit considered

here should cover all possible nonlinear effects.

In practice nonlinear thermodynamic models of the engine are given as lin-
earised versions around a series of single operating points. The time and frequency
domain identification is also usually performed at single operating point modes in
order to allow comparison with the linearised thermodynamic models [Evans et al,

1998, 1999} and also because it is usually considered that different operating points
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Figure 1: Input (10% range of the steady-state fuel flow W) and output (high
pressure H P shaft speed) data sets

cannot be represented by a single model. especially for shaft speeds higher than 30%
of the maximum value [Evans et al. 1999]. In order to test this final assertion the
model identification in this paper was performed both on a single operating point

at 75% NH. and also on multiple operating points at 70%-75%-80%.

It has been concluded in the literature, based on multisine testing and analysis
that only weak second order nonlinearities are encountered in the gas turbine engine
speed response under the influence of not more than 10% of steady-state fuel flow
W; [Evans et al. 1995]. Third order nonlinearities were identified in the case of 25%
steady-state fuel flow 1, in Rodriguez-Vasquez and Fleming [1988]. For the case
studied in this paper the fuel flow does not exceed 10% of the steady-state value,
however the analysis is not restricted to second order nonlinearities, and higher order

nonlinear model terms are considered.

A previous nonlinear NARMAX model which satisfied statistical and dynam-
ical validation tests was identified using a multiobjective genetic algorithm by Evans
et al [2000] and using an orthogonal least-squares algorithm by Chiras et al [2000],
for the case of a small perturbation of 10% around the steady-state fuel flow W;.
The model terms reported by both Evans et al [2000] and Chiras et al [2000] in-
cluded only [y(k — 1): y(k — 2):y(k — L)?1w(k — 1);u(k — 2)]. This structure was

tested in our analysis and was also compared with new model structures identified
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for higher order nonlinearities.

For the discrete-time varying model estimated by Evans et al [2000] using
extended least-squares with optimal smoothing the sample means were removed
to avold the need for an offset term. The sample means were also removed for the
identification procedure presented in Chiras et al [2000]. In order to test the effect of
mean levels. in this paper the model identification was carried out with and without

removing the means.

Table 1: Models identified for 10% steady-state fuel flow and 75% or 70%-75%-80%
HP shaft speed

Model term Model 1 | Model 2 | Model 3 | Model 4 | Model 5 | Model 6
const -0.0247 -070267 -0.0314 | -1.4748 0 -0.0325
y(k—1) +1.1145 | 4+1.0310 | +1.0246 | +1.1895 | +0.6335 | +0.8728
ylk —2) -0.1842 | -0.1062 | -0.0935 | -0.1496 | 4+0.3187 | +0.0504
u(k —1) +0.0008 | +0.0009 | +0.0008 | +0.0007 0 +0.0007
u(k —2) +0.0039 | +0.0089 | +-0.0086 | +0.0086 | +0.0228 | +0.0085
y(k—1)2 -0.0016 0 -0.0008 | -0.0007 0 -0.0014
u(k —3) 0 +0.0010 0 0 +0.0056 | 4+0.0024
y(k — 2)? 0 20.0015 0 0 0 0
y(k — 2)u(k — 2) 0 +0.0001 0 0 0 0
y(k —1)° 0 0 0 0 0 -0.0002
y(k — Du(k — 2) 0 0 0 0 -0.0002 0
u(k — Du(k —2) 0 0 0 0 4 wil® 0

Six different models given in Table 1 were identified for different constraints
relating to the number of terms, structure and identification data set. For all models
the statistical correlation tests [Billings and Zhu, 1994] were inside the 95% confi-
dence bands. The dynamical validation was based on model predictions. The model
predicted output for these models over the entire data set, and on the test signals
represented in Figure 2, was quantified with the Normalised Mean Square Error
(NMSE) and the results are presented in Table 2.

NMSE = J 29(k) = y(k) 1 (3)

2(y(k) — y(k))?

where g(k) is the model predicted shaft speed computed by simulating one of the
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models presented in Table 1, y(A) is the measured shaft speed and (k) is the mean

value of the measured shaft speed.
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Figure 2: Test signals for the discrete-time models

The identification constraints applied to identify the six models are sum-
marised in Table 2. The first two models Model 1 and Model 2 were identified for a
single operating point at 75% HP shaft speed, after removing the means from both
the input and the output data sets. In model 1 the structure was constrained to be
identical with the model identified in Evans et al [2000]. The structure in Model
2 was not constrained and the term selection algorithm was used to determine the
most significant model terms. The remaining models were all identified on the entire
data set, for a T0%-75%-80% HP shaft speed. Models 3 and 4 were constrained to
a structure identical with the one identified in Evans et al [2000]. For Model 3 the
means were removed, while for Model 4 the means were preserved. A new structure
was obtained for the same data set for Models 5 and 6 by searching for the signifi-
cant model terms, identified for a data set without removing the means in the case

of Model 5 and removing the means for Model 6.

If Model 1 and Model 2 are compared in terms of the NMSE values listed in
Table 3, Model 2 which does not have a constrained structure performs better for all
the tests considered. Note the presence in Model 2 of a few extra-terms added by the
unconstrained selection [u(k — 3); y*(k —2); y(k — 2)u(k — 2)]. The NMSE values for
the entire data set with 70%-75%-80% shaft speed are the highest for Model 1 and

=1




Table 2: Constraints imposed on the identified models given in Table 1

Property Model 1 | Mode] 2 | Model 3 | Model 4 | Model 5 | Model 6

estimation set 5% 5% entire entire entire entire

mean level | removed | removed | removed | preserved | preserved | removed

structure type | imposed free imposed | imposed free free

Table 3: NMSE values for the models given in Table 1

Test Type Model 1 | Model 2 | Model 3 | Model 4 | Model 5 | Model 6
75% HP 0.0456 | 0.0447 | 0.1656 0.1772 | 0.1494 | 0.1825
70%-75%-80% HP | 0.0977 0.0825 0.0645 0.0642 | 0.0670 0.0662
Test Signal 1 0.0960 0.0600 | 0.0483 0.0505 0.0451 0.0533
Test Signal 2 0.3768 0.2837 | 0.2356 0.2457 | 0.2375 0.1948

Model 2, identified on 75% shaft speed data set. The rest of the models have better
NMSE values for the overall data set, however the performance of these models on
the 75% shaft speed data set is poorer than in the case of the first two models.
The test signals in Figure 2 cover the entire 70%-75%-80% data set, therefore better
NMSE values are obtained by the global Models 3,4,5.6. One of the best models in

terms of NMSE values is Model 3 which will be further analysed in the next section.

4 Frequency domain analysis

The Generalised Frequency Response Functions can be derived directly from
the NARMAX models in Table 1 using the algorithm given in Peyton-Jones and
Billings [1989]. The true first order generalised frequency response functions are
illustrated in Figure 3 for all six models. The linear GFRF is almost identical for
all models, showing a high amplification for low frequency. between -20 dB and -15
dB. Only Models 4 and 5 are both outside these limits, probably as a result of the
data mean, which for these two cases was not removed from the estimation set.
Both the linear magnitude and phase have been non-parametrically estimated in

the literature, using multisine testing. The results from the models 1 to 6 presented




here are in very good agreement with linear FRF's estimated for similar sets of data
in Evans et al [1998. 1999. 2000] and Chiras et al [2000].
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Figure 3: Linear GFRF H;(w,) for all six models given in Table 1 (note the difference

in scale for Model 4 and 3)

All six models also have nonlinear GFRF’s, which are generated by the non-
linear terms in the discrete-time models. The second order GFRF’s are derived here
for the first time and represented in Figure 4. These functions show the same type
of low-pass filter characteristic seen for the first order GFRF in Figure 3. The mag-
nitude of the second order Ha(w,ws) also shows a high magnitude along two lines of
frequency, defined by f; =0, f; = 0. fi+ f2 = 0. This shows that among all possible
frequency combinations caused by second order nonlinearities, this particular sys-
tem will only generate new frequency components for input frequency components

satisfying the conditions listed above.

The frequency line f;+ f; = 0 can be seen as a storage of energy phenomenon,
where energy at the input frequencies f, and f», which satisfv f, + fo = 0 are
transferred to very low. close to zero frequencies. In other words. short time events

are transfered to long time events. In contrast. the lines f; = 0 and f; = 0 can be

9
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Figure 4: Second order GFRF Hj(wy,ws) for all six models given in Table 1
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seen as a release of energy phenomena. in which input frequency components close
to zero are amplified by the system and transfered to frequency components in the
output other than zero. The low frequency components correspond in this case to
long time events, which are transferred in this case by nonlinear effects to higher

frequency or longer time events.

A similar phenomenon including the storage and release of energy has been
recently observed in the GFRF’s corresponding to the geomagnetic activity in the
earth atmosphere [Boaghe et al, 1999], where the effects of solar wind are related
to the geomagnetic field dynamics and space weather predictions. The nonlinear
GFREF’s are excellent tools of analysis, they reveal the energy transfer mechanisms
of nonlinear systems, and aid the understanding of phenomena evolving in the dy-

namics of nonlinear systems.

The third order transfer functions Hs(w;,ws,ws) illustrated in Figure 5 show
similar tyvpes of amplification. The low frequencies are amplified, particularly on
the lines of frequency fi =0, f =0, f3=0, fi + fo + f3 = 0. All the models have
almost identical Hs(wi,ws,ws), only Model 4 and 5 seem to have small differences,
again due to the data mean. The interpretation of Hz(w;,w;.ws) is similar to that
for Ha(w;.ws), because the frequency lines listed above correspond to the same type

of dynamic effects.

It 1s important to note that even though the six models analysed are different
in terms of model structure (especially Model 1 and Model 2), all the models gen-
erated almost identical GFRF’s. This observation confirms previous studies carried
out in relation to GFRI’s, in which the frequency domain response functions are
seen as invariants of a nonlinear system. Based on this observation, algorithms for
extracting the continuous-time model from the GFRF’s were developed by Li and
Billings [1998]. The continuous-time model corresponding to discrete Model 3 above
was identified by using the method of Li and Billings [1998] to give:

y(t) = —0.5 + 0.1355u(t) — 2.41174(¢) — 0.46615(¢) — 0.0209%(¢) — 0.0109y(¢) (4)

This model was simulated and the NMSE values recorded. The difference over
the measured shaft speed for the discrete-time model at 70%-75%-80% was NMSE
=0.0890. The test signals Test 1 and 2 from Figure 2 were reproduced with NMSE
values of 0.0874 and 0.2325 respectively, showing an overall good performance. The
advantage of the continuous-time model is that this can be easily compared with

the thermodynamic models. and the differences can he investigated.
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Figure 5: Third order GFRF Hj(w).ws,ws) for all six models given in Table 1




5 Discussion and Conclusions

A combined time and frequency domain identification approach was con-
sidered in this paper to analyse data from a gas turbine engine. The NARMAX
methodology has been applied to identifv the system with fuel flow as input and
HP shaft velocity as output. It has been shown that this syvstem, which is known
to be nonlinear for the operating points and fuel level considered, can be modelled
with a series of discrete-time NARMAX models. derived for various conditions and

constraints.

Although applying the NARMAX approach to this type of system is not new,
the novelty of the present results relates to the nonlinear frequency domain analysis
performed using the Generalised Frequency Response Functions. The Generalised
Frequency Response Functions reveal, for the gas turbine engine application, nonlin-
ear couplings between input harmonic components taking place at low frequency and
also on particular lines of frequency. Energy release and energy storage phenomena

were detected from the Generalised Frequency Response Functions plots.

As expected the removal of the mean from estimation data set affected the
shape of the GFRF’s, especially for the linear and the third order GFRF. In order
to compare these models with other models derived in the literature the same data
pre-processing 1s required. Indeed it was possible to obtain similar absolute values
for the linear FRE’s to those published in the literature using the models derived
with the mean removed in this paper. Note that only the absolute value of the

GFRF magnitude was considered in this paper, and not the phase information.

It can be argued that the level of the fuel flow was too low to excite the
nonlinearities. Indeed for a level of 10% of the steady-state fuel flow W}, multisine
testing revealed only weak second order nonlinearities [Evans et al, 2000]. The
second order nonlinearity quantified in Figure 4 using GFRF’s shows a very small
contribution to the syvstem output, almost 100 dB lower than the linear effects.
Moreover, the type of input used in the form of an IRMLBS signal was found
to reduce the influence of the nonlinearity on the estimated model [Godfrey and
Moore, 1974]. However linear models do not satisfy the statistical correlation tests
[Rodriguez-Vasquez and Fleming, 1988] on this type of turbine engine, and in this
paper a nonlinear model was the only one found to satisfy both the statistical and
the dynamical tests. For an increased level of fuel flow, the effect of the nonlinearities
on the system would be expected to be stronger [Rodriguez-Vasquez and Fleming,
1988].
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The advantage of the continuous-time model (4) is that this can be compared
with the continuous-time thermodynamic models. While the thermodynamic models
are based on physical principles the discrete-time models are derived from the real
system measurements. Therefore a comparison between these models could be very
revealing and may lead to a final more representative and more accurate model of

the gas turbine engine. Such an analysis is intended in a future work.
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