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R Xia, J F Dawson, I D Flintoft, A C Marvin, S J Porter
Department of Electronics

University of York
York, UK

jfd1@ohm.york.ac.uk

Abstract—In this paper, a Genetic Algorithm (GA) is used to
build macro models of small structures, such as joints and
apertures, for use in large-scale computer simulations for aircraft
electromagnetic compatibility (EMC) testing and certification.
The field penetrating the structure is approximated by radiated
fields of electric and magnetic dipole moment array. A GA is
applied to determine the dipole moment array that produces the
same effect as the structure that is to be built into the model. A
scanning frame and a magnetic field probe have been constructed
to measure the fields in the vicinity of the small structure, to
provide field data for the fitting process.

Keywords-EMC testing; macro model; genetic algorithm; near-
field measurement;

I. INTRODUCTION

The HIRF-SE project is an EU Framework 7 project that
aims to provide a computational framework which can be used
for aircraft EMC prediction to provide data for EMC
certification and testing. Macro models of small structures,
such as panel joints, that are too small to be built into a detailed
aircraft model without excessive computational requirements
are being considered by the University of York.

Our previous paper [1] investigates the method of field
transformations, while in this paper the application of a GA is
discussed as another approach. The GA is an ‘evolutionary’
computational method that is widely used as an optimization
tool. Like evolution in nature, there are parameters that affect
the process such as ‘crossover’, ‘mutation’ and ‘migration’
which makes the GA tunable to fit a particular optimization
problem.

The modeling work here uses a GA to search for an optimal
source that can reproduce the same effect as the field that
penetrates in the structure being modeled. The source can be
included in numerical electromagnetic modelling techniques to
simulate the effect of field coupling through small structures if
the source is coupled to the fields incident on the opposite side
of the structure, via a frequency-dependent transfer function.

II. COMPUTATIONAL METHOD

A. Dipole Moment Approach
Figure 1 shows how the electric field penetrates an aperture

in a conductive sheet. Providing the slot is electrically small,
the penetrating field can be approximated by the fields of
electric or magnetic dipoles placed on the surface of the
conductive sheet [2].

Figure 1 Representation of penetrating fields by dipole moments, reproduced
based on Figure 4.31 in [2]

The equivalent dipole moments are infinitesimal in size,
and the polarization current can be calculated from aperture
size, incident field and polarisability of the aperture, where for
the equivalent electric dipole moment:

     0000 ˆ zzyyxxEnP nee   (1)

The αe term is the polarisability and varies with the size
and shape of the aperture. McDonald [3] and [4] gives
approximations to the electric and magnetic polarisabilities of
apertures of a number of shapes. The structure being modeled
here is an electrically small slot being illuminated by an
electric field polarized across its width. It can be replaced by
the dipole moments of the three dominant fields as shown in
Figure 2.
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Figure 2 Replacement of slot by three dominant dipole moments

B. Use of a GA to find the equivalent Dipole Moment
The GA provided by MATLAB [7] is used in our approach.

A population size of 50 is used with a search bounded by limits
given below. 300 generations are run, and the mutation
function is set as “adaptive feasible”, which ensures that
mutated members of the population lie within the bounded
search volume.

The design variable for the GA is the equivalent current
flows on the dipole moment. The dipole moment can be written
as a function of current as

j
dlI

p e for electric dipole moment,

and
j
dlI

m m for magnetic dipole moment. Where Ie and Im are

equivalent electric and magnetic currents respectively, dl is the
size of the dipole, and ω is the angular frequency of the current.

For the GA to operate efficiently, it is important to set the
search bound accurately. A simple estimation of the
polarization current magnitude is used to set the search bound.
The estimation here is based on the radiated electric field of an
electric dipole [5]:
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where the symbols have their usual meanings. Taking the
magnitude of the complex terms, the expression can be reduced
to
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From a measured electric field, mE , an upper bound on the
dipole current Imax can be estimated as
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To estimate maximum possible dipole current, the Eθm here
is the maximum electric field in the measurement surface and r
is the distance of the furthest observation point. Furthermore, a
scaling factor D is used to expand the search bound in order to
compensate errors of the above estimation. In the following test
cases, D is set to 2.

To test the operation of GA with the parameters defined
above, the GA is used to find the polarization current on two
identical dipoles of 3mm in size, placed 15cm apart. The
radiated field is calculated using a full-field expression given in
[6] with the dipole currents being in phase and set at 7.96μA at
2GHz. The cost function is the sum of the mean decibel errors
of the three field components between the calculated radiated
field and that calculated from the polarization currents found
by the GA.
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Figure 3 Simulation result of fitting polarization current on dipoles using GA
(a): H-plane cut, (b): E-plane cut

The error in the x-oriented field component is:
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The overall error is therefore:

zyx CCCC  (6)

Where Nx and Ny are the number of points along x and y-
axis on the observation surface. EGA and Emea represent the
radiated electric fields produced by the dipole moment from
GA and that (measured or) calculated. The decibel value is
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taken to ensure that the curve fit is good for small field values
as well as large ones.

The radiated field is taken on a planar surface 30cm from
the dipole pair. Figure 3 shows the calculated electric field and
that reproduced using the excitation found by GA. Two plane
cuts are shown here, where x is perpendicular to the direction
of polarization, and y is parallel to the polarization direction

III. MEASUREMENT METHOD

A. Magnetic Field Probe

Figure 4 Loop antenna built as magnetic field probe

A magnetic field probe loop was fabricated on a microwave
PCB laminate (Fig. 4). An outer loop with a gap acts as a
shield against electric field pickup. Two rectangular copper
plates are placed to provide further shielding against electric
field on the loop side whilst a slotted ground-plane is used
below the loop. The probe is terminated through two semi-rigid
cables. One of those is mounted to an SMA connector, and
another terminated by a 50 ohms load, which is formed by two
100 ohms surface-mount resistors, connected in parallel to
reduce stray inductance.
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Figure 5 Co-polar and cross-polar measurement of the loop in an anechoic
chamber

Figure 5 shows the co-polar and cross-polar measurement
of the loop in an anechoic chamber. 0 degrees is defined as the
direction of polarization of the incident electric field and is

parallel to the loop. It can be seen that the co-polar response is
at least 10dB higher than that of the cross-polar response
between 2GHz and 8.5GHz.

Since the loop is used to measure magnetic field, the
antenna factor of the loop is defined as the ratio of incident
magnetic field to load voltage. In the far-field
region, 0 HE , where 0 is the impedance of free space.
The antenna factor of the loop can then be written as:
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Figure 6 Antenna factor of the loop

B. Measurement Using Scaning Frame

Figure 7 Scanning fields penetrating the slot panel

The loop antenna was then used to measure the field
penetrating an array of slots. The slot array consists of six 2cm
long x 1cm wide slots separated by 5mm, cut into a 2mm thick
aluminum sheet. The loop was mounted to a scanner, which
used stepper motors to drive the loop to scan a plane above the
structure.



Figure 8 Geometry of absorber box

An absorber box [8] was used to produce an environment
close to frees-pace by illuminating the sample being measured
through a hole cut in absorbers. It saves time and cost on the
edge treatment compared to a dual anechoic chamber
measurement, and reduces the space required by the
measurement facility.

Figure 9 TLM simulation of the slot array

A TLM model of the slot structure was constructed to
provide comparison with the measurement. The longitudinal
magnetic field was recorded 13mm from the slot, which is the
same as the measurement height in Figure 7.

Figure 11 shows measurement result compared to that from
the TLM simulation. The excitation in TLM was a plane wave
of 1V/m z-polarized electric field, while that in the
measurement was a horn antenna placed in a cavity surrounded

by absorber. The absolute magnetic fields cannot be compared,
as the excitations are different.
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Figure 10 Ratio of penetrating magnetic field to incident field in measurement
and TLM simulation

IV. RESULTS

A. Use of the GA to fit measured near-field dipole moments
In this section, the GA is used to reproduce the source

using measurement data. The measurement was taken on the
same slot array structure described Section III(b), which was
also presented in a previous paper on this project [1].

Figure 11 Equivalent magnetic dipoles of the slot array

Since only y-polarized electric field was measured, the
cost function is modified so that the GA fits only Ey in the
measurement. The source is then constructed as 6 electric
dipole moments, placed at the centers of the slots as shown in
Figure12.

The GA is set to run for 1000 generations, each with a
population size of 50. ‘Adaptive feasible’ is used as the
mutation function. The results are plotted in Figures 13 and 14
below.
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Figure 12 X-axis cut of electric field produced by GA and measurement
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Figure 13 Y-axis cut of electric field produced by GA and measurement

Figure 13 and 14 shows the dipole moments that the GA
found can produce electric field follows the shape of that from
measurement. In the measurement, the slots are so close that
there is mutual coupling between them, which is not
accounted in the field produced by the dipole moments. In
addition, the measured field is averaged across the reception
aperture of the measurement probe, while the field produced
by the dipole moments is calculated at the exact location of the
measuring point. It is considered the results can be improved

by increasing the density of the dipole moments and properly
considering the averaging of the field produced by antenna
physical size.

V. SUMMARY

In this paper, a GA has been shown to be capable of
finding the magnitude of an equivalent radiating source based
on simulation or measurement data. The specific goal of our
modeling work is to reproduce the radiated field, so it is
necessary to create an equivalent source that can produce a
similar effect to the original source, rather than exactly re-
creating the original source itself..
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