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· Theoretical model to investigate shear buckling of Class 1 beams in fire. 

· Shear buckling occurs mainly in short beams.  

· For long beams, bottom flange buckling happens instead. 

· Shear resistance reaches its peak when plastic buckling starts.  

· In post-buckling shear resistance of the panel decreases. 
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Abstract 

Shear buckling of beam webs in the vicinity of beam-to-column connections has been 

observed in many full-scale fire tests. This phenomenon can lead to force redistribution 

within the adjacent connections, and even influence the performance-based analysis of full-

scale structures in fire. However, beam-web shear buckling for Class 1 beams at either 

ambient or elevated temperatures has not been well studied previously.  In this work an 

analytical model has been created to predict the shear buckling behaviour of Class 1 beams 

in the vicinity of beam-to-column connections at ambient and elevated temperatures. The 

model considers the reduction of resistance of the beam after web shear buckling has 

occurred. It is capable of predicting the shear resistance and transverse drift of the shear 

panel from its initial loading to final failure. Several 3D finite element models have been 

created using the ABAQUS software, in order to validate the analytical model over a range 

of geometries. Comparisons between the theoretical and FE models have shown that the 

proposed method provides sufficient accuracy to be implemented and used in performance-

based global modelling. 
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An Analytical Approach to Modelling Shear Panels at 

Elevated Temperatures 

Guan Quan, Shan-Shan Huang, Ian Burgess 

University of Sheffield, Department of Civil and Structural Engineering, UK  

Abstract 

Shear buckling of beam webs in the vicinity of beam-to-column connections has been 

observed in many full-scale fire tests. This phenomenon can lead to force redistribution 

within the adjacent connections, and even influence the performance-based analysis of full-

scale structures in fire. However, beam-web shear buckling for Class 1 beams at either 

ambient or elevated temperatures has not been well studied previously.  In this work an 

analytical model has been created to predict the shear buckling behaviour of Class 1 beams 

in the vicinity of beam-to-column connections at ambient and elevated temperatures. The 

model considers the reduction of resistance of the beam after web shear buckling has 

occurred. It is capable of predicting the shear resistance and transverse drift of the shear 

panel from its initial loading to final failure. Several 3D finite element models have been 

created using the ABAQUS software, in order to validate the analytical model over a range 

of geometries. Comparisons between the theoretical and FE models have shown that the 

proposed method provides sufficient accuracy to be implemented and used in performance-

based global modelling. 
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Notation: 
 

bf Flange width 

c Distance between plastic hinges along the bottom flange 

d Height of a beam web 

e Length of an arbitrary tensile strip 

E Young’s modulus at ambient temperature 

G Shear modulus at ambient temperature 

f Width of one strut in compression zone 

fp,θ Stress at the proportional limit 

fy,θ Yield strength of steel at elevated temperatures 

Fe Shear resistance of the beam at the end of elasticity 

Fp Shear resistance of the beam at the initiation of plastic shear buckling 

Fu Ultimate shear resistance of the beam 

hc Height of the area resisting axial force in a strut 

I Second moment of area of a cross-section 

kE,θ Reduction factor for Young’s modulus 

l Half length of the beam 

L Full length of a beam 

m Distance between the beam-end plastic hinge and an arbitrary tensile strip 

M0 Plastic bending moment capacity of one flange 

M1 Reduced plastic bending moment capacity of one flange 

Mp Bending moment resistance of one strut 

Mr Bending moment at the end of the beam 

n The distance between two end points of a tensile strip in Region B along the 

deformed flange 

Pc Axial force resistance of one strut 

q Uniformly distributed load on the top flange of the beam 

t Thickness of the beam web 

tf Thickness of the flange 

WAt The internal work of tensile strips in Region A 

WBt The internal work of tensile strips in Region B 

WC The internal work of the beam web caused by compression 

We The external work of the beam   

Wf The internal work of the plastic hinges on the beam flanges  

WT The internal work of the beam web caused by tension 

WW The internal work of the beam web  

α The angle between tensile strips and the deformed upper flange 

γ The angle between diagonal of the shear panel and deformed upper flange  

δe Elongation of an arbitrary tensile strip 

δtA Elongation of the tensile strip in Region A 

δtB Elongation of the tensile strip in Region B 

∆ Out-of-plane deflection of one strut 

∆e Mid-span deflection at the end of elasticity 

∆p Mid-span deflection at the initiation of plastic shear buckling 

∆rB The resultant movement of the right point of the representative strip in Region 

B 

∆rs The resultant movement of the right edge of the shear panel  

∆u Ultimate mid-span deflection 

∆vb Mid-span deflection caused by bending moment 
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∆vB The vertical movement of the right point of the representative strip in Region B  

∆vm The vertical movement of the mid span caused by shear force  

∆vs The vertical movement of the right edge of the shear panel  

εl,θ Limiting strain for yield strength  

εp,θ Strain at the proportional limit  

εt Tensile strain of a tensile strip  

εu,θ Ultimate strain of steel  

εy,θ Yield strain of steel  

θ The angle between deformed upper flange and horizontal line 

σc Compressive stress in the compressive strips 

σt Tensile stress in the tensile strips 

τ Average shear stress along the cross section 
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1. Introduction 

The official investigation [1] of the collapse of the ‘7 World Trade’ building in New York City 

has indicated that the collapse of the building was triggered by the failure of beam-to-

column joints after prolonged exposure to fires. Joint failure may initiate fire spread within a 

building, or even progressive collapse of the whole building.  Hence, the joints are among 

the most critical structural elements of a steel or composite framed building in fire 

conditions. A considerable body of research related to the modelling of joints in fire has 

been carried out during the last three decades [2-4]. The Cardington Fire Tests [5] indicated 

that the shear buckling of beams in the vicinity of beam-to-column joints, is very prevalent 

under fire conditions, as shown in Fig. 1, which shows shear buckling from the well-known 

Cardington full-scale tests. For a column-face joint, the effect of shear buckling of the beam 

web, which increases the transverse drift of the beam, can change the force distribution in 

the joint components themselves. Conversely, beam-web shear buckling, which leads to an 

increase of beam deflection, can be advantageous, as it may reduce the net tying force in 

the joint. Considering the same vertical force component, a lower local resultant shear force 

exists along the beam when it is acting essentially as a catenary cable.  However, nearly all 

the existing research on joints has neglected the contribution of the shear buckling 

behaviour in the vicinity of beam-ends. Therefore, it is useful to be able to predict beam-

web shear buckling behaviour in fire, and to include this effect in full-structure design 

modelling, which can be used with a view to preventing progressive collapse.  

In this paper, the shear buckling behaviour of the beam web has been studied. An analytical 

model has been developed to predict the behaviour of shear panels for Class 1 beams, at 
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both ambient temperature and elevated temperatures; in developments of the work this 

can be used to generate a component-based shear-panel element. The analytical model can 

initially evaluate the distance between plastic hinges on the flanges, and then reasonably 

predict shear capacity and vertical deflection of the shear panel. A range of 3-dimensional 

finite element models has been created using ABAQUS.  These models can be used to 

produce force-transverse deflection relationships which are necessary to validate the 

analytical model over a range of geometries. The results from the analytical model will be 

seen to agree well with the ABAQUS results. As the shear stiffness of the shear panel 

changes significantly due to beam-web shear buckling, a new component-based shear panel 

element, which considers the shear panel as a separate component, will be created based 

on the analytical model, as shown in Fig. 2. 

Since no practical research has been done on the post-local-buckling behaviour of Class 1 

beams at either ambient or elevated temperatures so far, the analytical model is based on 

the classic “tension field theory” of plate girders. This has been adapted to the structural 

response of Class 1 beams, which can form a plastic hinge with the rotation capacity 

required by plastic analysis, without reduction of its resistance according to Eurocode 3 Part 

1-1 [6]. A brief review of the development of tension field theory is presented in the next 

section. 

2. Brief review on the tension field theory of shear web panels 

As early as 1886, the possibility of utilizing the post-buckling strength of plate in bridges was 

considered by Wilson [7]. Later Wagner [8] presented a diagonal tension theory concerning 

buckling and post-buckling behaviour for aircraft structures in 1931. However, the post-

buckling behaviour of beam web panels was not considered as a design concept until the 
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1960s; until this time the elastic buckling load was used as the only design limit criterion. In 

the 1960s, Basler et al. [9-11] presented a method of calculating the post-buckling capacity 

of the webs of plate girders subject to shear; this work was later used as the basis of a 

design method [12] introduced by the American Institute of Steel Construction (AISC). 

However, in this theory, the flanges of plate girders were assumed to be too flexible to carry 

significant bending moments, which led to conservative results. Subsequently, Fujii [13] 

presented a modification of Basler’s theory, considering the contribution of flanges to the 

total post-buckling load capacity. In the 1970s, Rockey et al. [14-17] presented a systematic 

study of, and a design method for, plate girders subject both to pure shear and to combined 

shear and bending. Their theory further improved Basler’s theory by considering the 

strength of flanges. The theories above are all classified as ‘tension field theory’ or its 

derivatives, because the fundamental assumption is that, after elastic buckling, any 

additional load is carried by a tensile membrane field. Tension field theory only deals with 

web panels with aspect ratios less than 3 [18]. Hereafter, the term ‘aspect ratio’ refers to 

the ratio of the distance between adjacent transverse stiffeners to the depth of the web 

panel.  The theory was later shown, by Lee and Yoo [19], to be able to predict well the post-

buckling strength under pure shear of panels of aspect ratios smaller than 1.5, but to lose 

accuracy for higher aspect ratios. This indicates that tension field theory should only be used 

to represent plate girders with transverse stiffeners. Lee and Yoo [19-21] carried out a series 

of finite element studies to investigate the post-buckling behaviour. They modified the 

existing formulations to decrease the discrepancy between tension field theory and their 

finite element modelling.  They also proposed empirical amendments to classical tension 

field theory for web panels with aspect ratios higher than 3. Vimonsatit et al. [22, 23] 

extended the classical ambient-temperature tension field model for plate girders, to 
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account for elevated-temperature behaviour, by changing material properties and 

incorporating the effect of compressive forces due to axial restraint.  

3. Development of the analytical model  

Classical tension field theory can represent the post-buckling behaviour of plate girders very 

well [9-11, 14-17]. In these models, shear resistance involves three stages: pre-buckling, 

post-buckling and collapse. In the pre-buckling stage, no buckling appears in the panel, and 

the principal tensile and compressive stresses are identical until elastic buckling happens. 

The elastic buckling strengths of plates under various conditions are given by Timoshenko 

[24]. In the post-buckling stage, stress redistribution occurs, with increase occurring 

especially in the directions of the tensile principal stresses. Any additional compressive 

stress after web shear buckling can effectively be neglected. In the collapse stage, four 

plastic hinges appear on the flanges, and finally the plate girder fails in a “sway” mechanism. 

In the proposed analytical model, for Class 1 beams, the shear response once again consists 

of three stages, which differ from those of tension field theory.  These are the elastic, plastic 

and plastic post-buckling stages. The behaviour of the web panel of a Class 1 beam subject 

to shear and bending moment is compared with that of a plate girder in Fig. 3. 

The aim of the proposed model is to produce a tri-linear force-displacement relationship for 

any shear panel, from initial loading to failure. An example characteristic is shown 

schematically in Fig. 4.  

In this figure, Point 1 illustrates the end of the pre-buckling elastic stage. In the elastic stage, 

it is assumed that no buckling appears in the panel, and the principal tensile and 

compressive stresses are identical. The beam-end reaction force is calculated on the basis of 

the design elastic shear resistance according to Eurocode 3 Part 1-1 [6]. Up to Point 1, the 
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mid-span vertical deflection of a beam is assumed to be induced by both bending and shear. 

Therefore, Eurocode 3 can be used to calculate the shear resistance and deflection at this 

point. Point 2 refers to the initiation of buckling, and Point 3 represents failure. The failure 

here is only a defined point to put an end to the force-deflection curve of the analytical 

model with a strain too large to be reached by beams in a real fire scenario; it does not 

necessarily represent a real failure. In the analytical model, the strain 0.15, which is the end 

of plateau in the material stress-strain characteristic according to Eurocode 3 [25], has been 

used in the calculation of Point 3. As the object of the study is beam-web shear buckling, for 

all the beams analysed, resistance to shear is more critical than to bending moment. 

Therefore, the resistances below all refer to shear resistance. Bending moment is assumed 

to be solely resisted by the top and bottom flanges. The shear resistance and the mid-span 

vertical deflections at Points 2 and 3 are to be evaluated by the proposed analytical model.  

In the calculation procedure, several assumptions have been made for the post-buckling 

phase.  

(1) The four edges of the shear panel are assumed to be rigid. 

(2) The panel is composed of tensile strips aligned at 45
o 

to the horizontal and 

compressive strips perpendicular to these tensile strips (see Fig. 3(f)). The stresses 

within all the tensile strips are identical, as are the stresses within all the 

compressive strips.  

(3) The stress-strain relationship for structural steel at high temperatures is based on 

Eurocode 3 Part 1-2 [25], for which the model is shown in Fig. 5(b); however the 

curvilinear inelastic development phase of the Eurocode curve is replaced by a sharp 

transition from elasticity to plasticity, as only the two end points of the sharp 

transition (corresponding to proportional limit state and the initiation of yield state) 
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have been used in the analytical model; the path in between these two points does 

not affect the result of the key points in the analytical model.  The reduction factors 

for yield strength and Young’s modulus at high temperatures from this code have 

been used in the analytical model. At ambient temperature, the stress-strain 

relationship is based on the same general constitutive model.  To be consistent with 

the stress-strain relationships at high temperatures, the same limiting strain at yield 

,l θε  and the same ultimate strain
,u θε are applied to the stress-strain curve at ambient 

temperature. The stress-strain relationship for structural steel at ambient 

temperature is shown in Fig. 5(a). 

3.1 The deflection at mid-span 

It has been mentioned above that, at Point 1, the mid-span vertical deflection of a beam is 

assumed to be induced elastically by bending and shear. The mid-span deflections at Points 

2 and 3 both consist of a summation of the transverse drift of the shear panel due to shear 

force and the deflection caused by curvatures due to bending moment.  

The analytical model assumes that the mid-span deflection cause by bending moment from 

Point 1 to Point 3 can be calculated as Eq. (1).  

4

,384
vb

E

qL

k EIθ

D =  (1) 

While the deflection caused by shear force can be derived as Eq. (2) 

,

vm

E

l
k Gθ

τ
D = ×  (2) 

For the transverse drift caused by shear buckling, it is assumed that the tensile strains of the 

tensile strips within the whole panel are identical. Thus, only the tensile strain of one 

representative tensile strip AB is calculated, as shown in Fig. 6. 
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For tensile strips, 

e
t

e

δ
ε =  (3) 

2 2

cos( )

vsc
e

α θ

−D
=

+
,  

sin

cos
e vs

α
δ

θ
= D  (4) 

Substituting Eq. (4) into Eq. (3) gives 

2 2

sin cos( )

cos
t vs

vsc

α α θ
ε

θ

+
= D

−D
  (5) 

For Point 2, it is assumed that the principal tensile strain at an arbitrary point within the 

shear panel is 0.02, which is the yield strain in the material stress-strain relationship 

according to Eurocode 3 [25].  For Point 3, the strain at the arbitrary point is 0.15. Therefore, 

for any given distance c between plastic hinges on the flanges, the mid-span vertical 

deflection for Points 2 and 3 can be calculated. The key is to evaluate c.  

3.2 Shear resistance of the beam 

The calculation principle below is based on the equality of the internal plastic work and the 

external loss of potential energy of the load.  Following this calculation, the distance 

between the plastic hinges can be calculated in order to fulfil the work equilibrium and to 

correspond to the smallest uniformly distributed load q. The method of calculating the 

internal work of the beam and the external loss of potential of the applied force is shown 

below. 

3.2.1 Internal work of the beam web  

It is assumed that the shear panel is composed of tensile and compressive strips, as shown 

in Fig. 3. Although the directions of both the tensile and compressive strips are initially 

defined in the second assumption above, the locations of the plastic hinges on the flanges 
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are unknown. There are three possible cases, as shown in Fig. 7, which may affect the 

internal work done by the tensile and compressive strips.  

3.2.1.1 Case 1 

In Case 1, as shown in Fig. 8(a), the angle α is smaller than diagonal angle γ.  

In Region B, for an arbitrary strip EF, the relationship between the elongation tBδ  of the 

strip and the resultant movement rBD  of Point F (as shown in Fig. 8(b)), is  

sintB rBδ α= D  (6) 

The relationship between the vertical movement vBD  of Point F and rBD  is  

cosvB rB θD = D  (7) 

Substituting Eq. (6) into Eq. (7), the relationship between the tensile elongation tBδ  of a 

strip and the vertical movement of the right-hand edge of the shear panel can be derived as 

sin

cos

vs
tB

α
δ

θ

D
=  (8) 

The internal work done due to the tensile stresses in Region B is  

cos( ) sin

0

sin sin
dx = [ cos( ) sin ]

cos cos

d c

Bt vs t vs tW t t d c
α θ α α α

σ σ α θ α
θ θ

+ −

= D × D + − ×∫  (9) 

In Region A in Fig. 8(a), the orientation of the strips in Region A is identical to that of the 

strips in Region B, and so the relationship between the tensile elongation in Region A and 

that in Region B is  

tA tB

m

c
δ δ= ×  (10) 

To obtain the relationship between the tensile elongation tAδ  and the vertical edge 

movement vsD , substituting Eq. (10) into Eq. (8), gives 
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sin

cos
tA vs

m

c

α
δ

θ
= × ×D  (11) 

The internal work done by the tensile stresses in Region A is given as 

sin

0

sin
2

cos

c

At t vs

m
W t dx

c

α α
σ

θ
= × ×D∫  (12) 

In Region A  
sin

x
m

α
=  ,  and substituting this into Eq. (12) gives  

2
sin

0

2 sin

cos cos

c
t t

At vs vs

t c t
W xdx

c

ασ σ α

θ θ
= D × = ×D∫  (13) 

The overall internal work done by stretching the entire shear panel is given by summation of 

AtW  and BtW  

cos( )sin

cos

t
T At Bt vs

d t
W W W

σ α θ α

θ

+
= + = D  (14) 

3.2.1.2  Case 2 

In Case 2, the angle α  of the tensile stresses to the upper edge of the panel is equal to γ, as 

shown in Fig. 7(b).  

The internal work done by plastic stretching of the tensile strips can be determined similarly 

to that of Region A in Case 1.  Case 2 has no Region B, and the internal work AtW  done within 

Region A is still given by Eq. (13).  On the basis of the geometry of this case,  

sin cos( )c dα α θ= +  (15) 

The overall internal work done by stretching of the shear panel is in this case given as 

Eq. (14), which turns out to be identical to that of Case 1. 

3.2.1.3  Case 3 

In Case 3, the angle α is larger than γ, as shown in Fig. 7(c). Again, the panel is divided into 

two regions A and B, as shown in Fig. 9.  
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In Region B, for a sample tensile strip EF, the elongation of the strip can be related to the 

resultant movement of the right-hand edge of the shear panel: 

sintB rs

n

c
δ α= × ×D  (16) 

Based on the relationship, cosvs rs θD = D  

sin

cos
tB vs

n

c

α
δ

θ
= D × ×  (17) 

On the basis of geometry,   
cos( )

sin

d
n

α θ

α

+
=  

The relationship between the tensile elongation of a strip in Region B and the resultant 

movement of the right-hand edge of the panel ∆vs  is 

cos( )

sin sin

cos
tB vs

d

c

α θ
α αδ
θ

+

= D × ×  
(18) 

The internal work done by the tensile stresses in Region B is therefore 

sin cos( )

0

cos( )

sin sin

cos

c d

Bt vs t

d

W t dx
c

α α θ

α θ
α ασ
θ

− +

+

= D × ×∫  

2 2cos( )sin cos ( )
[ ]

cos cos

t t
vs

td td

c

σ α θ α σ α θ

θ θ

+ +
= D × −  

(19) 

The internal work of Region A is given as, 

cos( )

0

sin
2

cos

d

At t vs

m
W t dx

c

α θ α
σ

θ

+

= × ×D∫  
(20) 

In Region A,  
sin

x
m

α
=  ,  and substituting this into Eq. (20) gives  

2 2
cos( )

0

2 cos ( )

cos cos

d
t t

At vs vs

t td
W xdx

c c

α θσ σ α θ

θ θ

+ +
= D × = ×D∫  (21) 

Then adding AtW   and BtW  gives the total internal work done by plastic stretching of the 

shear panel in this case.  
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cos( )sin

cos

t
T vs

d t
W

σ α θ α

θ

+
= D  (22) 

It can be seen that the formulation of the internal work done by tension turns out to be the 

same for all the three cases.  This shows that the tensile resistance of a shear panel is not 

sensitive to the locations of plastic hinges. 

For compressive strips, there are also three cases depending on the locations of plastic 

hinges. Similarly to the tensile resistance, it can also be proved that the compressive 

capacity of a shear panel is not sensitive to the locations of the plastic hinges.  For all three 

cases, the formulation of the internal work of the compressive strips is identical, and is given 

as 

sin( )cos

cos

c
C vs

d t
W

σ α θ α

θ

+
= D  (23) 

Therefore, the internal work of the web in the post-buckling stage is 

cos( )sin sin( )cos

cos cos

t c
W T C vs vs

d t d t
W W W

σ α θ α σ α θ α

θ θ

+ +
= + = D + D  (24) 

3.2.2 Internal work of the top and bottom flanges 

The internal work of the flanges is the work done in deforming the four plastic hinges on the 

top and bottom flanges of the beam. The plastic moment resistance of each of the four 

hinges is 

2

0 ,

1

4
y f fM f b tθ=  (25) 

In this equation 0M does not account for the effect of the axial stresses in the flanges caused 

by bending of the overall beam cross-section, which reduces the flange moment capacity. 

The reduced moment capacity due to overall bending is given as 
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( ) 2 2 2

1 0 ,

, ,

1 1
( )

1 2 2[1 ( ) ] [1 ( ) ]
4

r f
t c

y f f

y y

M d t
M M f b t

f If
θ

θ θ

σ × +
= − = −     ( ) 

                                                                                              ( ) 

(26) 

The internal work done by the plastic hinges in the flanges is therefore 

2 2

1 ,

,

1 1
( )

2 24 [1 ( ) ]
r f

f y f f

y

M d t
W M f b t

If
θ

θ

θ θ
+

= = −  (27) 

3.2.3 Total internal work of the beam 

The analytical model can calculate the distance between the plastic hinges on the flanges. 

The calculated value indicates whether plastic hinges have been formed; positive values 

indicate the occurrence of plastic hinges, whereas negative or imaginary values mean the 

opposite.  If plastic hinges have been formed, the internal work done by the beam is given 

by summation of the work done in the beam web and flanges. Otherwise, the internal work 

is solely that of the beam web. 

As discussed is Section 3, there are three key points to decide the theoretical force-

deflection relationship. Point 1 is the end of elastic range, Point 2 refers to the initiation of 

buckling, and Point 3 represents failure. It is assumed that, at the initial buckling point (Point 

2), the compressive stresses in the beam web have not been decreased due to the effect of 

buckling. Therefore, the tensile and compressive stresses are equal: 

t cσ σ=  (28) 

Using the Huber-von Mises plasticity criterion [26], the relationship between the tensile and 

compressive stresses for a two-dimensional panel is 

2 2 2 2

,( ) 2c t t c yf θσ σ σ σ+ + − =  (29) 

Substituting Equations (28) and (29) into Eq. (24), the internal work of the web panel is 

1 0M ≥

1 0M = 1 0M <
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, sin(2 )

3cos

y

W vs

f dt
W

θ α θ

θ

+
= D  (30) 

If plastic hinges occur, the internal work of the flanges can be calculated according to          

Eq. (27). 

Beyond the buckling point, the shear panel enters the post-buckling stage. For Point 3 in Fig. 

4, the post-buckling strength reduction is accounted for by reduction of the compressive 

stresses in the compressive strips. In the post-buckling stage, the compressive strips are 

considered as struts with three plastic hinges, as shown in Fig. 10.  

It has been assumed that the central plastic hinge always forms at the mid-length of each 

strut, although this assumption may lead to an out-of-plane deflection shape, which is 

slightly different from reality. For each strut shown in Fig. 10, the rectangular cross section 

can be divided into two parts, as shown in Fig. 11. The axial compressive strength of the 

strut is resisted by Region A and its bending moment resistance is provided by Region B.  

Therefore,  

c c cP h fσ=   (31) 

2 21
( )

4
p c cM f t h σ= −  (32) 

Based on force equilibrium, the relationship between the compression force Pc of the strut 

and the plastic moment Mp at the plastic hinge is 

2c pP MD =  (33) 

Substituting Equations (31) and (32) into Eq. (33), the height hc of the compression zone can 

be calculated. The reduced compressive stress σc is proportional to hc, which gives 

,
c

c y

h
f

t
θσ =  (34) 
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Following Eq. (29), for any reduced σc, the tensile stress σt can be calculated.  Both σc and σt 

are proportional to the yield strength. A and B in Eq. (35) are the ratios of σc and σt to  fy,θ, 

respectively.  A and B have already been achieved from Eq. (29) and Eqs. (32)-(34). 

Therefore, the high-temperature yield strengths can be defined as 

,c yAf θσ =  and  
,t yBf θσ =  (35) 

Substituting Eq. (35) into Eq. (24) gives 

, ,

,

sin cos( ) sin( )cos

cos

sin cos( ) sin( )cos

cos

1 1
[ ( )sin(2 ) ( )sin ]

cos 2 2

t c
W T C vs

y y

vs

y

vs

td td
W W W

Af td Bf td

f td
A B B A

θ θ

θ

σ α α θ σ α θ α

θ
α α θ α θ α

θ

α θ θ
θ

+ + +
= + = D

+ + +
= D

= + + + − D

 (36) 

As has been presented in 3.1, for each c the transverse drift ∆vs of the shear panel can be 

calculated.  This can influence the reduction of compressive stress, which in return changes 

the calculated value of the distance between the plastic hinges. Therefore, an iterative 

process is used here to balance the value of c. 

3.3 External work 

If a beam is subjected to uniformly distributed load, the external work is given as 

1 1
( ) ( )

2 2
e vs vs vsW cq q l c q l c= D + − D = − D  (37) 

It has been explained above that internal work is only related to the distance c between 

plastic hinges, rather than the length of the shear buckling wave. This is also the case for the 

external work, as indicated by Eq. (37). 
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4. Validation against finite element modelling 

In this study, the S4R element of ABAQUS [27] was adopted. This is a four-noded shell 

element which is capable of simulating buckling behaviour with reasonable accuracy. A 

mesh sensitivity analysis was carried out, and a 20mm x 20mm element size was selected to 

achieve optimum accuracy and efficiency. Riks analysis was used to track the descending 

load path of the shear panel in the post-buckling stage. An initial imperfection of amplitude 

d/200 (complying with Eurocode 3 Part 1-5 [28]) was adopted. The shape of the initial 

imperfection was based on a first-buckling-mode analysis. Fig. 12(a) shows the finite 

element model of an isolated Class 1 beam. Six cases were analysed using different beam 

lengths with identical cross sections, at temperatures of 20
o
C, 500

o
C, 600

o
C and 700

o
C. The 

dimensions of the cross section are shown in Fig. 12(c). The same material properties used 

for the analytical model (illustrated in Fig. 5) were applied. The detailed material properties 

used in both the FE and analytical models are shown in Table 1. To save computing time, 

only half of a beam was modelled. The beam is fixed at one end. The other end of the FE 

model, which is the mid span of the beam, is allowed to move vertically without any 

rotation due to symmetry. As the effects of axial force caused by thermal expansion has not 

been considered in the analytical model, the mid span is allowed to move horizontally in the 

FE model.  Boundary conditions are shown in Fig. 12(b). 

The force-displacement relationships given by the analytical model and the ABAQUS analysis 

are compared in Fig. 13, at temperatures varying from 20
o
C to 700

o
C. The solid lines 

represent ABAQUS results, whereas the three round markers in each part of this figure show 

Points 1 to 3 given by the analytical model. As can be seen from Fig. 13, the beam-end 

reaction forces given by the analytical model generally compare well with those from the 
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ABAQUS model at all three stages. The theoretical results are always on the safe side for the 

cases analysed.  

The distances c between plastic hinges for different beam lengths, given by the analytical 

model, are shown in Fig. 14. The distance c does not change with temperature. Therefore, 

for a particular beam length only one distance between plastic hinges has been derived for 

any temperature. The solid line represents the variation of c with beam length at Point 2, 

and the dashed line is that for Point 3. The values of c for both Points 2 and 3 are positive 

definite for beams shorter than 5m. This means that the plastic hinges have been formed 

before beam web buckling occurs. For beams of lengths between 5-6m, the value of c at 

Point 2 doesn't exist, whereas that for Point 3 remains positive. This means that plastic 

hinges are formed on the flanges after the beam web buckles. These results can not be 

validated by FE modelling; even if plastic hinges occur on the flanges, the rotations across 

the hinges will be too small to be observed. For all beams shorter than 6m, failure is 

controlled by the shear buckling of the beam web. As the beam length increases, the 

distances between plastic hinges for both Points 2 and 3 are imaginary.  This means that 

plastic hinges do not form and shear buckling does not occur. This shift of failure mode is 

also observed from the ABAQUS model, as shown in Fig. 15 and 16. Fig. 15 is a contour plot 

of the out-of-plane deflection of a representative 3m beam. The formation of plastic hinges 

and beam-web shear buckling are obvious from this figure. The same phenomenon occurs 

to beams of lengths between 3.5m and 5.5m. Fig. 16 is a contour plot of out-of-plane 

deflection for a 6m beam, which fails by bottom-flange buckling rather than by shear 

buckling of the beam web. This may be caused by an increasing level of compressive stress, 

due to bending, in the bottom flanges as the beam length increases, which causes the 

bottom-flange buckling to occur prior to beam-web shear buckling. The bottom-flange 
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buckling causes rotation of the beam about its ends, which can lead to large mid-span 

vertical deflection for a long beam. Although the tendency for bottom-flange buckling to 

occur increases as beam length increases, it has not been included in the current analytical 

model. This explains the reason for the relatively larger discrepancies in vertical deflection 

of the longer beams between the theoretical and ABAQUS models, as shown in Fig. 13.   

5. Conclusions 

A brief review of tension field theory [9-11, 14-16] in terms of web shear buckling in plate 

girders has been presented. The primary goal has been to create a simplified analytical 

model for shear buckling behaviour of Class 1 beams based on tension field theory. 

An analytical model has been created to predict the shear capacity and vertical deflection of 

shear panels at both ambient and elevated temperatures. The analytical model is capable of 

predicting the formation of plastic hinges on flanges, the initiation of beam-web shear 

buckling and the failure point for Class 1 beams. A tri-linear curve can be created by linking 

these three points, in order to track the load-deflection route of the shear panel. A new 

component-based shear panel element, which considers the shear panel as a separate 

component, will be created based on the analytical model. 

The theoretical results have been validated against finite element modelling using ABAQUS 

over a range of geometries.  For beams for which beam-web shear bucking is the main 

‘failure’ mode, the comparisons between the theoretical and FE models have shown that 

the proposed method provides satisfactory accuracy in terms of both shear capacity and 

mid-span vertical deflection. However, as beam length increases, the ‘failure’ mode 

switches to bottom-flange buckling.  This phenomenon can be observed from the ABAQUS 
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models.  As bottom-flange buckling has not been involved in the analytical model so far, the 

discrepancies between the two models tend to become larger as beam length increases.  

In future work, axial forces caused by restraint to thermal expansion of the beam will be 

added to the component-based analytical model of the shear panel. An analytical model of 

bottom-flange buckling at high temperatures will then be created. Together with the beam-

web shear buckling model, the analytical models will at that stage work well over a large 

range of beam lengths. The analytical models will be implemented in the software Vulcan, 

and in due course will be used in global modelling of composite structures in fire.   
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