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ABSTRACT. We study the archetypal functional equation of the form y(z) =
JJz2 y(a(z — b)) p(da,db) (z € R), where y is a probability measure on R?;
equivalently, y(z) = E{y(a(x — B))}, where E is expectation with respect
to the distribution p of random coefficients («, 3). Existence of non-trivial
(i.e. non-constant) bounded continuous solutions is governed by the value
K := [[z>In|a|pu(da,db) = E{ln|al}; namely, under mild technical condi-
tions no such solutions exist whenever K < 0, whereas if K > 0 (and a > 0)
then there is a non-trivial solution constructed as the distribution function
of a certain random series representing a self-similar measure associated with
(a, B). Further results are obtained in the supercritical case K > 0, including
existence, uniqueness and a maximum principle. The case with P(a < 0) > 0
is drastically different from that with a > 0; in particular, we prove that a
bounded solution y(-) possessing limits at +0o must be constant. The proofs
employ martingale techniques applied to the martingale y(Xy), where (X)) is
an associated Markov chain with jumps of the form z ~ a(x — 3).

1. Introduction.

1.1. The archetypal equation and main results. This paper concerns the ar-
chetypal functional equation with rescaled argument [2, 8] of the form

va) = [[ sale—w)pda.dn,  zer (1

where p(da,db) is a probability measure on R?. Due to the normalization of the
measure p to unity, such an equation is balanced in that the total weighted con-
tribution of the (scaled) solution y(-) on the right-hand side of (1) is matched by
the non-scaled input on the left-hand side. The integral in (1) has the meaning
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of expectation with respect to a random vector (o, 8) with distribution P{(«, 3) €
da x db} = p(da, dd); thus, equation (1) can be represented in the compact form

y(z) =E{y(a(z - B))}, zeR (2)

The equation (1)—(2) is a rich source of various equations specified by a suitable
choice of the measure p, which has motivated its name “archetypal” [2]. Examples
include many well-known classes of equations with rescaling, such as: equations in
convolutions, e.g. the Choquet-Deny equation y = y * o [5]; equations for Hutchin-
son’s self-similar measures [13], e.g. y(z) = Sy(a(z + 1)) + Ly(a(z — 1)) (a > 1)
arising in the Bernoulli convolutions problem [21]; two-scale (refinement) equations'
of the form z(z) = aZle piz(a(x —b;)) with z(x) := ¢/(x) [7, 9], exemplified by
Schilling’s equation z(z) = a(1z(az—1)+3z(az)+1z(az+1)) describing spatially
chaotic structures in amorphous materials [11, 19]; etc. Furthermore, as was ob-
served by Derfel [8], the archetypal equation (1)—(2) also contains some important
functional-differential classes, including the (balanced) pantograph equation? [1, 2, 8]

y'(z) +y(x) = Zipiy(az‘x)’ ai, pi > 0, Zipz‘ =1, (3)

and Rvachev’s equation® 2'(z) = 2(z(2x + 1) — z(2z — 1)) [18]. See an extensive
review of examples and applications of the archetypal equation (1)—(2) in Bogachev
et al. 2], together with further references therein.

Observing that any function y(x) = const satisfies equations (1)—(2), it is nat-
ural to investigate if there are any non-trivial (i.e. non-constant) bounded con-
tinuous solutions. Such a question naturally arises in the context of functional
and functional-differential equations with rescaling, where the possible existence of
bounded solutions (e.g. periodic, almost periodic, compactly supported, etc.) is of
major interest in physical and other applications (see e.g. [4, 18, 19, 23]).

Investigation of the archetypal equation (1)—(2), with a focus on bounded con-
tinuous solutions (abbreviated below as b.c.-solutions), was initiated by Derfel [8]
(in the case o > 0) who showed that the problem crucially depends on the value

K= //R2 In|a| p(da, db) = E{ln|«|}. (4)

More precisely, if K < 0 (subcritical case) then, under some mild technical condi-
tions on the measure j, there are no b.c.-solutions other than constants,® whereas
if K > 0 (supercritical case) then a non-trivial b.c.-solution does exist.

However, the critical case K = 0 was left open in [8]. Some recent progress was
due to Bogachev et al. [1] who settled the problem for the balanced pantograph
equation (3) by showing that if K = ), p;lna; = 0 then there are no non-trivial
b.c.-solutions of (3). Recently (see [2]) we proved the same result for a general
equation (1)—(2) in the critical case subject to an a priori condition of uniform
continuity of y(+), which is satisfied for a large class of examples including (3).

LCompactly supported continuous solutions of such equations play a crucial role in wavelet
theory [6, 23], and also in subdivision schemes and curve design [4, 9].

2Pantograph equation y'(x) = coy(z) + c1y(ax) dating back to Ockendon and Tayler [16]
arises in diverse areas, e.g. number theory, astrophysics, radioactive decay, queues and risk theory,
population dynamics, medicine, quantum theory, stochastic games, etc.; for general results and
further bibliography on the pantograph equation, see [1, 2, 3, 10, 14, 15].

3Its compactly supported solutions are instrumental in approximation theory [18].

4A similar result was obtained earlier (via a different method) by Steinmetz and Volkmann [22]
for a special case of equation (2), y(z) = py(px — 1) + qy(qz +1) (p,g>0,p+qg=1).
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The focus of the present work is on the non-critical case K # 0, especially when
K > 0 with « possibly taking negative values, aiming to obtain further results
including existence, uniqueness and a maximum principle. Under a slightly weaker
moment condition on S as compared to [8] we establish the dichotomy of non-
existence vs. existence of non-trivial b.c.-solutions in the subcritical (K < 0) and
supercritical (K > 0) regimes, respectively.

Let us stress though that in contrast to the subcritical case which is insensitive to
the sign of a, for K > 0 we are only able to produce a non-trivial solution under the
assumption that oz > 0 almost surely (a.s.). Such a solution is constructed, with the
help of results by Grintsevichyus [12], as the distribution function Fy(z) = P(Y < z)
of the random series T = >,
associated with (a, 8), where {(a, 8n)}n>1 are independent identically distributed
(i.i.d.) random pairs with distribution g each. This solution is unique (up to linear
transformations) in the class of functions with finite limits at 00 (Theorem 4.3(a)),
but the uniqueness in the class of b.c.-solutions may fail to be true: we will present
an example of such a solution y(-) oscillating at +oo (see Remark 4.2).

In the case K > 0 with P(o < 0) > 0, the function Fy(-) (which is still well
defined) is no longer a solution to the equation (1)-(2); e.g. if & < 0 a.s. then
y = Fy(z) satisfies another functional equation, y(x) = 1 —E{y(a(z—p))} (cf. [12,
Eq. (5)]). Thus, the problem of existence remains largely open here. More to the
point, this case is completely different from the purely positive case, a > 0 (a.s.); for
instance, a b.c.-solution y(-) with limits at 00 must be constant (Theorem 4.3(b)).
This follows from Theorem 4.2 stating that the limits superior at oo coincide (the
same is true for the limits inferior). Heuristically, this is a manifestation of “mixing”
in (2) for (large) positive and negative arguments of y(-) due to possible negative
values of a. Note that Theorem 4.2 is proved with the help of the maximum principle
of Theorem 4.1, which is of interest in its own right.

This analysis is complemented by uniqueness results in the class of absolutely
continuous (a.c.) solutions (using the Fourier transform methods); here, bounded-
ness is not assumed a priori. Again, we demonstrate a striking difference between
the cases a > 0 (a.s.) and P(aw < 0) > 0 (see Theorems 4.4 and 4.5, respectively).

Throughout the paper, it is assumed that

() Pla#0)=1; (i) P(jo| #£1) >0; (i) VceR, Pla(c—B)=c)<1. (5)

Note that the remaining degenerate cases are treated in full detail in [2].

The rest of the paper is organized as follows. We start in §2 by introducing
an associated Markov chain (X,,) with jumps of the form x ~» a(z — ), and also
extend the iterated equation y(x) = E,{y(X,)} to its “optional stopping” analog
y(x) = E{y(X;)}, where 7 is a (random) stopping time and E, stands for the
expectation subject to the initial condition Xy = x. Suitable iterations of such
a kind will be instrumental. In §3 we prove a stronger version of the dichotomy
between the cases K < 0 and K > 0 (the latter subject to « > 0). Finally, §4
contains further discussion of the supercritical case, as briefly indicated above.

/Bn Hi:] a; representlng a self-similar measure

2. Preliminaries.

2.1. Associated Markov chain and harmonic functions. The archetypal
equation (2) admits an important interpretation via an associated Markov chain
(X,,) on R determined by the recursion

X, = o, (anl — ,B»n> (7’L S N), Xo=x R, (6)
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where {(ap, Bn)}n>1 are ii.d. random pairs with the same distribution as a generic
copy (a, ). Transition operator T' of the Markov chain (6) is given by

Tf(z) = Eo{f(X1)} = E{f(a(z - B))}, (7)

where the index z indicates the initial condition Xy = . A function f(-) is called
T-harmonic (or simply harmonic) if Tf = f (cf. [17, p. 40]); hence, according to
(7) solutions of equation (2) are equivalently described as harmonic functions.

2.2. Tterations and stopping times. Equation (2) can be expressed as y(z) =
E.{y(X1)}, and by iteration y(x) = E, {y(X,)} (n € N). Explicitly,

X, =A,x—D,, n>0, (8)
An = HO@‘ (AO = 1), Dn = ZBZ Haj (DO = 0) (9)
i=1 i=1 Jj=t

For n € Ny := {0} UN, let F,, := 0{X;, i < n} be the o-algebra generated by
events {X; € B} (with Borel sets B € B(R)); the increasing sequence (Fy)n>0 is
referred to as the (natural) filtration of (X,,). A random variable 7 with values in
NU {400} is called a stopping time with respect to filtration (F,) if it is adapted
to (Fn) (le. {T =n} € F,, n € Ny) and 7 < oo a.s. We shall systematically use
the following simple fact. (Note that the continuity of y(-) is not required.)

Lemma 2.1. Let T be a stopping time with respect to filtration F& := o{ay,...,an}
C Fu, n € Ng. If y(+) is a bounded T-harmonic function then
y(.’L‘) = Em{y(XT)}7 z €R. (10)

Proof. Clearly, 7 is adapted to the filtration F&# = o{(ay, 8i), i < n} = Fp.
Using (6) it is easy to check that E{y(X,)|Fn-1} = y(Xn—1) (a.s.), and hence
(y(Xn)) is a martingale [17, p. 43, Proposition 1.8]. Since y(+) is bounded, formula
(10) now readily follows by Doob’s Optional Stopping Theorem [20, pp. 485-486,
Theorem 1 and Corollary]. O

3. The subcritical (K < 0) and supercritical (K > 0) cases. In the case
a # 0 a.s., formula (8) can be rewritten in the form (cf. (8), (9))

X, =A,(z—B,), n>0, (11)
Ap =[] (Ao:=1), By=DyA;'=> BiA7 (Bo:=0). (12)
i=1 i=1

The following important result is due to Grintsevichyus [12, pp. 164-165].

Lemma 3.1. Let assumption (5) be in force, and also assume that
0 < E{ln|a|} < oo, E{lnmax(|8],1)} < cc. (13)

Then the random series
Y =B+ Baart + Baar oyt =) BaALY (14)
n=1

converges a.s., and its distribution function Fy(x) := P(T < z) is continuous on R.

Remark 3.1. The results in [12] entail that Fy(-) is either a.c. or singularly con-
tinuous; a purely discrete case (with a single atom!) arises if a(c — ) = ¢ (a.s.).
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Recall that the parameter K is defined in (4). The next two results (for K < 0
and K > 0, respectively) were obtained by Derfel [8] in the case a > 0 (a.s.) under
a more stringent condition E{|8|} < oo; but his proofs essentially remain valid in a
more general situation as described below.

3.1. The subcritical case.

Theorem 3.2 (K < 0). Assume that the second integrability condition in (13) is
fulfilled, but the first one is replaced by —oo < E{In|a|} < 0. Then any b.c.-solution
of the archetypal equation (2) is constant.

Proof. Applying Lemma 2.1 with 7 = n € N, we obtain (see (8), (9))
y(z) =E{y(A,z — D,)}, zeR. (15)

Setting Dy, := Y 1" Bidi = au(B1 + Paca + -+ + Bnaz- - ay) (cf. (9)), observe
that the pair (A,,D,) has the same distribution as (4,, D), which is evident

by reversing the numbering («;, 8;) — (@n—it+1,Bn—i+1) (¢ = 1,...,n). Hence,
equation (15) can be rewritten as
y(@) =E{y(Auz— D)},  weR. (16)

Due to Lemma 3.1 (with ai_l in place of a;), DS converges a.s. as n — 00, say
D — Y° (cf. (14)). On the other hand, A, — 0 a.s., since E{ln|a|} < 0 and, by
the strong low of large numbers, In|A4,,| = > In|a;| = —oo (a.s.). As a result, for
each x € R we have A,,x — D2 — —7T° (a.s.). Since y(-) is bounded and continuous,
one can apply Lebesgue’s dominated convergence theorem [20, p. 187, Theorem 3]
and pass to the limit in (16), yielding y(x) = E{y(—Y°)}; since the right-hand side
does not depend on z, it follows that y(z) = const. O

3.2. Canonical solution in the supercritical case with o > 0. The next
theorem provides a non-trivial b.c.-solution to the archetypal equation (2) in the case
of positive . Recall that Y is the random series (14) and Fy(x) is its distribution
function (see Lemma 3.1).

Theorem 3.3 (K > 0). Suppose that assumption (5) is satisfied, along with con-
ditions (13), and also assume that o > 0 a.s. Then y = Fy(x) is a b.c.-solution of
the archetypal equation (2).

Proof. Thanks to Lemma 3.1 we only have to verify that Fx(z) satisfies (2). Observe
from (14) that T = B; + a; 'Y, where Y is independent of (ay, ;) and has the
same distribution as T. Hence, we obtain (using that oy > 0 a.s.)

Pr(z) =P+ o' T <) =P(T < oy (z — B1))
= E{P(T <ai(z—B)|a1,Br)} =E{Fr(aa(z — B1))},
that is, the function y = Fy(z) satisfies equation (2). O
We will refer to y = Fy(x) as the canonical solution of equation (2).

Remark 3.2. For some concrete equations with o = const > 1, b.c.-solutions
different from the canonical one may be constructed (see Remark 4.2).

Remark 3.3. To the best of our knowledge, no non-trivial b.c.-solutions of equation
(2) are known if P(ac < 0) > 0 except in the special case |a] = 1 (see [2, Theorem
2.2(b-ii))).
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4. Further results in the supercritical case.

4.1. Bounds coming from infinity. The next result is akin to the maximum
principle for the usual harmonic functions. The continuity of y(-) is not presumed.

Theorem 4.1 (Maximum Principle). Suppose that assumption (5) is satisfied,
along with conditions (13). Let y(-) be a bounded solution of (2), and denote

m* := liminf y(z), M* = limsupy(z), (17)

T—doo r—+oo

where the same + or — sign should be chosen on both sides of each equality. Then
m < y(x) < M, z €R, (18)

where m := min{m™*,m~}, M :=max{M*, M~}.

Proof. Applying Lemma 2.1 with 7 =n € N, for any € R we obtain

y(x) = E{y(An(z — Bn))}, (19)
where A, = [[I_, oy and B,, = 3. | BiA;Y) (see (11), (12)). By Lemma 3.1, the
limiting random variable T = lim,,_,o, By, is continuous, hence lim,,_, . (x — By,) =
x— 7T # 0 (as.). Combined with |A,| — oo a.s. (which follows by the strong
law of large numbers due to the first moment condition in (13), cf. the proof of
Theorem 3.2), this implies that |A,(x — B,)| — oo (a.s.). Hence, Fatou’s lemma
[20, p. 187, Theorem 2] applied to equation (19) yields

y(x) < E{limsupy(An(x — Bn))} <max{Mt, M~} =M,
n—oo
which proves the upper bound in (18). The lower bound follows similarly. O

The case where o may take on negative values has an interesting general property
as follows (note that conditions (13) are not needed here).

Theorem 4.2. Suppose that ¢ := P(a < 0) > 0, and let y(x) be a bounded solution
of (2). Then, in the notation (17), we have
m-=m", M- =M"T. (20)
Proof. By Fatou’s lemma applied to equation (2) we get
M™ = limsup y(r) < ]E{limsup y(a(z — ﬁ))} <MY(1-q)+M g (21)
T——+00 T——+00
Since g > 0, (21) implies that M < M~. By symmetry, the opposite inequality is
also true, hence M~ = M™. The first equality in (20) is proved similarly. O
4.2. Uniqueness for solutions with limits at infinity. We can now prove the

following uniqueness result (again, the continuity of solutions is not presumed).
Note that the cases a > 0 (a.s.) and P(a < 0) > 0 are drastically different.

Theorem 4.3. Let assumption (5) be in force, along with conditions (13). Let y(-)
be a bounded solution of (2) such that the limits LT := lim, 1o y(x) exist.
(a) Suppose that P(a > 0) = 1. Then y(-) coincides, up to an affine transforma-
tion, with the canonical solution Fxy(-) (see Theorem 3.3); specifically,
y(z) = (LT — L") Fy(z) + L™, z eR. (22)
In particular, y(-) must be everywhere continuous.
(b) If P(a < 0) > 0 then y(x) = const.
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Proof. (a) Denote the right-hand side of (22) by y.(x). By linearity of (2) and
according to Theorem 3.3, y.(z) satisfies equation (2), and it has the same limits
L* at oo as the solution y(x). Hence, y(x) — y.(z) is also a solution, with zero
limits at £o00. But Theorem 4.1 then implies that y(x) — y.(x) = 0.

(b) Theorem 4.2 implies that L~ = L+ =: L, hence by the bound (18) of Theorem
4.1 we have L < y(x) < L, i.e. y(x) = L = const. O

Remark 4.1. In the case P(ac < 0) > 0, Theorem 4.3(b) holds true if just one of
the limits L* is assumed (due to (20), the other limit exists automatically).

Remark 4.2. Kato and McLeod [15, p. 923, Theorem 9(iii)] showed inter alia that
the pantograph equation y'(x) 4+ y(z) = y(ax) with @ = const > 1 has a family of
C*>-solutions on the half-line € [0, 00) such that y(z) = g(lnz/Ina) + O(x~%) as
& — 400, where g(+) is any 1-periodic function, Holder continuous with exponent
0 < 6 < 1. Noting from the equation that y'(0) = 0, such solutions can be extended
to the entire line R by defining y(z) := y(0) for all < 0. It is known (see [2, 8]) that
y(-) automatically satisfies the archetypal equation (2) (with the same a > 1 and
exponentially distributed ), thus furnishing an example of (a family of) bounded
continuous (even smooth) solutions that do not have limit at +oo.

4.3. Uniqueness via Fourier transform. Here, we obtain uniqueness results in
the class of a.c. solutions with integrable derivative. In what follows, abbreviation
“a.e.” stands for “almost everywhere” (with respect to Lebesgue measure on R).
Note that boundedness of solutions is not presumed. It is convenient to state and
prove these results separately for positive and negative a (see Theorems 4.4 and
4.5, respectively). Recall that T is the random series (14).

Theorem 4.4. Let assumption (5) be satisfied, together with conditions (13).

(a) Let o >0 a.s., and assume that a solution y(-) of equation (2) is a.e. differ-
entiable, with z(z) := y'(z) € L*(R). Then z(-) is determined uniquely (a.e.)
up to a multiplicative factor, with Fourier transform given by

i(s) = B{e"T} (s€R), ¢ :=2(0)€R. (23)

(b) If y(-) is also a.c. then it coincides, up to an affine transformation, with the

canonical solution Fy(-) (see Theorem 3.3), i.e. there are ¢, c1 € R such that
y(z) = co + c1 Fy(x), z eR. (24)
Proof. (a) Differentiation of (2) shows that z(x) := y/(z) satisfies a.e. the equation

z(z) = Efaz(a(z - §))}- (25)
Let £(s) := [, €'*"z(z) da be the Fourier transform of the function z € L' (R), hence
Z(+) is bounded and continuous on R, with the sup-norm [|2]| < [, |z(2)|dz < oco.
Multiplying (25) by e!** and integrating over z € R, we see, using Fubini’s theorem
and the substitution ¢ = a(x — 8), that Z(-) satisfies the equation

2(s) = E{e™*P2(a"1s)}, seR. (26)
Iterating (26) n > 1 times we get (see the notation (12))
2(s) =E{e*P2(4,'s)}, sER. (27)

Note that E{In|a~!|} € (—00,0), hence A,* — 0 a.s. (see the proof of Theorem
3.2); besides, B,, - T a.s. by Lemma 3.1. Thus, passing to the limit in (27) (by
dominated convergence) and recalling that Z(-) is continuous, we obtain (23).
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(b) To identify z(-) from its Fourier transform (23), it is convenient to integrate
both parts of equation (23) against a suitable class of test functions. Consider
the Schwartz space S(R) of smooth functions (z) with finite support and such
that their Fourier transform @(s) = [; e @(x) dx is integrable; by the inversion
formula, (z) = (2m) 7! [ €7 @(s) ds. With this at hand, we can write

/]R 5(s) Bs) ds = /R ( /R e 5(s) ds) 2(z) do = 27 /R o(—2)2(x)dz.  (28)

Similarly,

[y as- [ ( [ dFT<x>) B(s) ds

_ /R ( /R €157 3(s) ds) dF(z) = 27 /R (=) dPr(z).  (29)

Thus, thanks to equation (23), from (28) and (29) we obtain

/ p(~2) 2(z) dz = &1 / o(-2)dFr(z), e S(R). (30)
R

R

Since S(R) is dense in both L}(R; z(x)dz) and L'(R;dFxy(x)), equation (30) ex-
tends to indicator functions of any intervals, yielding (by the continuity of Fy(-))

yw)=y(0) = [ ) du=cr{Fr(e) - Fe0)), s eE,
0
which is reduced to (24) by setting co := y(0) — ¢1 Fy(0). O

Remark 4.3. The result of Theorem 4.4 was obtained by Daubechies and Lagarias
[7, p. 1392, Theorem 2.1(b)] in a particular case with o = const > 1 and discrete .

Remark 4.4. Uniqueness (up to a multiplicative factor) of b.c.-solutions of equa-
tion (26) was proved by Grintsevichyus [12, p. 165, Proposition 1].

Example 4.1. De Rham’s function (see [7, pp. 1403-1405] is a continuous (but
nowhere differentiable) even solution of the difference equation

o(z) = ¢(3z) + :(6(3z + 1) + ¢(3z — 1)) + 2(8(3z + 2) + #(3z — 2)).
Then y(z) := [, ¢(u)du is an odd function of class C'(R) satisfying

y(z) = 3y(3) + 5 (y(Br +1) +y(Br — 1) + §(y(3z +2) + y(32 - 2)),

which is an archetypal equation with @ = 3 and S taking values 0, —%, %, —%,%
with probabilities %, %, é, %, %, respectively. Now, according to Theorem 4.4 the

solution y(-) is an affine version of the distribution function Fxy(-), the latter thus
being automatically a.c. and, moreover, in C*(R); in turn, it follows that de Rham’s
function ¢(-) is proportional to the probability density of T (see (14)).

A counterpart of Theorem 4.4 for a with possible negative values is strikingly
different (cf. Theorem 4.3).

Theorem 4.5. Let ¢ :=P(a < 0) > 0, and let a solution y(-) be a.e. differentiable,
with y' € LY(R). Then y' =0 a.e. If in addition y(-) is a.c. then y = const.
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Proof. The random time 7_ := inf{n > 1: A,, < 0} is adapted to the filtration F5
and has geometric distribution, P(_ = n) = (1 — ¢)" ¢ (n > 1). Hence, 7_ < oo
a.s. and E{7_} = ¢~! < oo. Applying Lemma 2.1, we obtain the equation

y(z) =E{y(a(z - P)}, z€R, (31)
where & := A, <0, f:= B, (cf. (11), (12)).
Let us first verify that &, 3 satisfy the moment conditions (13). Indeed, noting
that In|&| = Y-, In|e;| and E{r_} = ¢~! < oo, by Wald’s identity [20, p. 488,
Theorem 3] we obtain, using the first condition in (13),

E{ln|a|} =E{r_} -E{ln|a|} € (0, o). (32)
Recalling (12) and denoting a V b := max{a, b}, a A b:=min{a,b}, we have

|BZ T_ | . T 1 T_ | . T 1
18l < Z| RV (CIRDR B B (CINDES | Srvyes

The right-hand side is not less than 1, hence the same bound holds for || V 1 and

In(|3] Vv 1) <Zln |Bi| V1) +1In(r Zln ] A 1). (33)

Again applying Wald’s 1dent1ty and using conditions (13)7 we get from (33)
E{ln(|5|v1)} <Efr}- (E{ln(|ﬁ| V1}+1—E{ln(ja|A 1)}) < oo.

Now we can apply to (31) the method used in the proof of Theorem 4.4. More
specifically, a differentiated version of (31), for z(z) := y'(x), reads (cf. (25))

2(z) = E{az(a(z — B))} (a.e.).
However, here & < 0 (a.s.), so the Fourier transform 2(s) now satisfies (cf. (26))
3(s) = —E{e'*P2(a"1s)}, seR
Iterating as before, we obtain for each n € N
2(s) = (~1)"E{e*Tn 5(A-1s)},  seR, (34)
where due to (32) we have as. A;' =[], a ' =0, T, = S", A7 — T.

Hence, the expectation in (34) converges to 2(0) E{e!*Y}; however, due to the sign
alternation the limit of (34) does not exist unless 2(0) = 0, in which case 2(s) =0
for all s € R. By the uniqueness theorem for the Fourier transform, this implies that
z(z) = ¢/'(x) = 0 a.e. Finally, if y(-) is a.c. then it follows that y(z) = const. O

Remark 4.5. The last statement (i.e. under the a.c.-condition) of each of Theorems
4.4 and 4.5 can be easily deduced by Theorem 4.3. Indeed, since the derivative 3/’ (-)
is a.c. and in L'(R), by the Newton—Leibniz formula we have

T +oo
y(z) = y(0) +/() y'(u) du — y(0) —l—/o y'(u) du (r — +00).

Thus, the limits of y(z) at £oo exist, and the rest immediately follows from Theo-
rem 4.3. However, the uniqueness results for the derivative y’, contained in Theo-
rems 4.4 and 4.5, cannot be obtained along these lines.

Acknowledgments. The authors are grateful to John Ockendon and Anatoly Ver-
shik for stimulating discussions.
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