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ABSTRACT

Populations of the endangered white-clawed crayfish (Austropotamo-
bius pallipes) have rapidly declined in distribution and density in recent
decades as a result of invasive crayfish, disease and habitat degradation.
The species is thought to be particularly sensitive to water chemistry, and
has been proposed as a bio-indicator of water quality. Here we detail the
results of a systematic review of the literature regarding the chemistry of
waterbodies inhabited by white-clawed crayfish, along with a wide-scale
field study of the chemistry of crayfish-inhabited waterbodies in the UK.
We use these data to examine potentially significant variables influenc-
ing crayfish distribution. Several variables appear to have thresholds that
affect crayfish distribution; crayfish presence was associated with high
dissolved oxygen, low conductivity, ammonium, sodium, and phosphate,
and to a lesser extent low sulphate, nitrate, and total suspended solids.
Some variables (magnesium, potassium, sodium, sulphate, nitrate, and to-
tal suspended solids) may be tolerated at moderate to high concentrations
in isolation (indicated by the presence of some populations in high levels
of these variables), but suites of chemical conditions may act synergisti-
cally in situ and must be considered together. Recent efforts to conserve
white-clawed crayfish have included relocations to Ark Sites; novel pro-
tected habitats with reduced risk of the introduction of disease, invasive
crayfish and habitat degradation. We use our findings to propose the first
detailed guidelines for common water chemistry variables of potential Ark
Sites for the conservation of the species throughout its European range.

RESUME

Chimie de 'eau et écrevisse a pattes blanches en voie de disparition : une revue de la
littérature et une étude sur le terrain de la chimie de I'eau associée a Austropotamobius

pallipes

Mots-clés :
eau douce,
aquatique,

Les populations de I’écrevisse a pattes blanches (Austropotamobius pallipes) en
voie de disparition, ont rapidement décliné dans leur distribution et leur densité au
cours des derniéres décennies a cause d’écrevisses invasives, de maladie et de la
dégradation de I’habitat. L’'espéce est supposée étre particulierement sensible a
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conservation, la chimie de I'eau, et a été proposée comme un bio-indicateur de la qualité de
qualité de I'eau,  I'eau. Ici, nous détaillons les résultats d’une revue systématique de la littérature
besoins concernant la chimie des masses d’eau habitées par des écrevisses a pattes
en habitat blanches, avec une étude de terrain a grande échelle de la chimie des masses

d’eau abritant des écrevisses au Royaume-Uni. Nous utilisons ces données pour
identifier les variables potentiellement importantes qui influent sur la distribution
des écrevisses. Plusieurs variables semblent avoir des seuils qui affectent la dis-
tribution des écrevisses; la présence d’écrevisses a été associée a de I'oxygéne
dissous élevé, une faible conductivité, une faible concentration d’ammonium, de
sodium et de phosphate, et dans une moindre mesure a une faible concentra-
tion en sulfate, nitrate, et matieres en suspension. Certaines variables (le magné-
sium, le potassium, le sodium, le sulfate, le nitrate, et les matiéres en suspension)
peuvent étre tolérées a des concentrations modérées a élevées quand il n’y en a
qu’une seule en concentration forte (indiqué par la présence de certaines popula-
tions a des niveaux élevés de ces variables), mais les conséquences de conditions
chimiques peuvent agir en synergie in situ et ’ensemble de ces conséquences doit
étre considéré. Les récents efforts pour conserver I'écrevisse a pattes blanches
comprennent les délocalisations vers des sites Ark ; nouveaux habitats protégés
avec un risque réduit d’introduction de maladie et d’écrevisses invasives et de
dégradation de I’habitat. Nous utilisons nos résultats pour proposer les premieres
lignes directrices détaillées pour les variables de chimie de 'eau communes de
sites Ark potentiels pour la conservation de I’espece dans son aire européenne.

INTRODUCTION

The white-clawed crayfish (Austropotamobius pallipes) has a widespread distribution
throughout Western Europe, with significant numbers found in Britain (Holdich et al., 1999;
Kouba et al., 2014). Despite its wide range, many populations have been lost or dramatically
reduced in size in recent decades as a result of crayfish plague, competitive exclusion by in-
vasive non-native crayfish, and habitat degradation (e.g. Gherardi and Holdich, 1999; Holdich
et al., 2009). Whilst some populations of A. pallipes have been found in relatively low qual-
ity water bodies (Holdich et al., 1999), presence of the species is generally reported to be
associated with water of ‘good’ quality; typically, moderately alkaline, low in pollutants, and
non-eutrophic waters (e.g. Holdich and Reeve, 1991). The use of A. pallipes as a bioindica-
tor species, however, has been debated, since some tolerance to pollutants may exist (see
Flreder et al., 2003; Fureder and Reynolds, 2003; Talley and Dagget, 2006).

A. pallipes has been included in the IUCN Red Data List, and is currently listed as endan-
gered (IUCN, 2011). It is also included in Annexes Il and V of the European Habitats Directive
(Council Directive 92/43/EEC on the Conservation of natural habitats and of wild fauna and
flora), with an implicit requirement for the establishment of protected areas for their protection
(Special Areas of Conservation), and Appendix 2 of the Bern Convention. Various forms of En-
vironment Agency and Natural England licensing exist in the UK to protect the species from
detriment. Conservation efforts to maintain populations of A. pallipes in the wild in Britain
have recently focussed on relocation of threatened populations. The species is threatened
from crayfish plague (Aphanomyces astaci), which has caused the loss of numerous popula-
tions, and also from habitat degradation and competition with invasive, non-native crayfish.
Animals are removed from areas where risk of infection by crayfish plague, competitive ex-
clusion by invasive non-native crayfish, and population decline due to habitat degradation
are high, and placed into habitats that are assessed to have minimal risks from these fac-
tors. Such relocation has been termed Ark Site conservation and has undergone substantial
public review to produce management guidelines for Ark Site conservation in the UK (Kemp
et al., 2000; Peay, 2003, 2009; Whitehouse et al., 2009). However, water chemistry guidelines
would be strengthened considerably by a detailed examination of typical water chemistry
conditions for the species in its European and British ranges. This has yet to be undertaken
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beyond a regional scale (e.g. Smith et al., 1996; Favaro et al., 2010). Such analysis would
allow conservation managers to assess the suitability of potential Ark Sites by relating their
water chemistry to the known range of variables from the species’ natural range. A degree
of suitability can then be attached to these Ark Site water chemistry variables based on their
frequency of occurrence in the wild.

Until recently, Austropotamobius pallipes was referred to as a species complex, consisteing
of several subspecies in Western Europe. It has now, however, been reclassified as two dis-
tinct species (Grandjean et al., 2002); A. pallipes in the British Isles and France, and several
subspecies of A. italicus in the rest of its range (including Spain and Italy). Since the species
are similar in their morphology and habitat requirements and only genetic analysis has shown
them to be separate, we include A. italicus in this review (clearly stated as a different species
where referenced) to make the best use of limited evidence.

Other recent work has been published which aims to link crayfish distributions to the macroin-
vertebrates on which they feed (e.g. Grandjean et al., 2011; Trouilhé et al., 2012; Jandy et al.,
2014). We have chosen to focus instead on water chemistry variables due to the ease with
which water samples can be taken and the high level of measurement accuracy attainable.
We recognise the merits of studies examining macroinvertebrate prey species distributions
with respect to crayfish presence, however.

Herein, we present the findings of an analysis of the evidence regarding water chemistry in
sites inhabited by A. pallipes in Europe. We also present results of an observational field study
of water chemistry in 18 sites inhabited by the species in Britain. We identify variables that
may be affecting the distribution of A. pallipes and suggest guidelines for the selection of
potential Ark Sites for conservation of the species in Britain.

METHODS

Literature searches were carried out using Web of Science (including Web of Science Core
Collections, Biosis Previews, MEDLINE, SciELO Citation Index, and Zoological Record)
on 13/09/14 for water chemistry associations of A. pallipes.

The following search string was used for A. pallipes water chemistry associations: (“aus-
tropotamobius pallipes” OR white-claw* OR “white claw™” OR whiteclaw*) AND (chemistry
OR conductivity OR ammoni* OR nitrate OR nitrite OR phosphate OR chloride OR magne-
sium OR calcium OR conduct” OR potassium OR sodium OR sulphate OR "dissolved oxygen"
OR pH OR TSS OR "total suspended solid"). These water chemistry variables were chosen
from an initial assessment of commonly examined variables in the literature. Search results
were assessed for relevance in a three-tier approach; title, abstract, and full text. Potentially
relevant references were also assessed from within identified articles. Additional relevant ar-
ticles not found through searches were added using a “snowballing” technique (Jalali and
Wohlin, 2012), whereby the reference lists of relevant articles were scanned for further rele-
vant studies.

In order to produce values with which to compare waters inhabited by A. pallipes, mean
values reported for major global and European rivers were collated from the literature. The
following water chemistry variables for global and European rivers were obtained from Berner
and Berner (1996); calcium, magnesium, sodium, potassium, chloride, and sulphate. Values
for conductivity, dissolved oxygen, ammonium, nitrate, total dissolved solids, pH, and phos-
phate were obtained from an independent review of the literature on 24/08/2012. Twenty-two
additional articles (see Appendix 1 for details) were identified from a search of the litera-
ture on global and European rivers using Web of Science. These articles were reviewed and
data on the water chemistry variables described above were extracted to generate means
and ranges. In addition, representative values for rivers in the United Kingdom were obtained
from the Harmonised Monitoring Scheme, a Defra and CEH initiative to monitor water chem-
istry. 15 regions across England and Wales were chosen as representative regions also cur-
rently/previously inhabited by A. pallipes (see Appendix 2 for details of data and their sources).
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Table |
Sites inhabited by white-clawed crayfish (A. pallipes) that were sampled for water chemistry.
Adel Beck Leeds, West Yorkshire 52°42'33.47”N 2°27'58.01”"W Lotic
Brasside Pond Durham, County Durham 54°48'29.10”N 1°33’00.91”W | Lentic
Broomlee Lough Hexham, Northumberland 55°01/18.48”N 2°19'49.34”W | Lentic
Coppice Pond Bingley, West Yorkshire 53°50'47.06”N | 1°51'54.77"W | Lentic
Cound Brook Condover, Shropshire 52°39'24.17"N | 2°43'00.22”"W Lotic
Crook Burn Hexham, Northumberland 55°02'06.98”N 2°17'53.71"W Lotic
Dean Brook Huddersfield, West Yorkshire | 53°37'04.53”N 1°47'55.76"W Lotic
Halleypike Lough Hexham, Northumberland 55°02’28.66”N | 2°17'50.49”W | Lentic
Meanwood Beck Leeds, West Yorkshire 53°52’18.71”N 1°37'21.75"W Lotic
Pinfold Dam Huddersfield, West Yorkshire 53°38’18.09”N 1°49'02.92”W | Lentic
River Derwent Scarborough, North Yorkshire | 54°11’50.63”N | 0°30'08.29”"W | Lotic
River Kent Kendal, Cumbria 54°19'46.69”N 2°45’09.32”"W Lotic
River Redlake New Invention, Shropshire 52°23'07.86”N 3°02’56.20"W Lotic
River Wansbeck Rothley, Northumberland 55°08’54.89”N 1°56’53.18”"W Lotic
Robsheugh Burn Milbourne, Northumberland 55°03'46.96”N | 1° 50’59.05”W | Lotic
Simpson’s Pool Horsehay, Shropshire 52°39'48.06”N | 2°29'26.74”"W | Lentic
Trench Pool Telford, Shropshire 52°42'33.47”N 2°27'58.01”W | Lentic
Wyke Beck Leeds, West Yorkshire 53°46’58.85”N 1°29'19.45”"W Lotic

Reported water chemistry variables have been converted to mg-L~", with the exception of
conductivity (uS-cm~'). Most authors have provided a mean, and a maximum and mini-
mum (range) for the rivers examined, whilst some have presented only means or ranges.
Graphed global, European and UK values are presented as ranges of means (mean mean,
minimum mean, and maximum mean), rather than ranges in absolute values. This method
allows discriminatory ability between these values and those for crayfish-inhabited waters.
Since global and European values presented are ranges of means, some concentrations for
crayfish-inhabited waters may therefore exceed these ranges.

Water chemistry was recorded at 18 sites known to be inhabited by A. pallipes (see Table )
throughout the Midlands and North England between May and October 2009. Potassium,
magnesium, calcium, sodium, chloride, nitrate, sulphate, and phosphate were measured from
water samples analysed at the University of Leeds. Dissolved oxygen was measured on-site.
Samples of filtered (0.45 um) water were frozen and run through a Dionex ion chromato-
graph (ICS-90 machine) and gas diffusion flow injection analysis on FIA (ammonium only).
Integration was then examined for each sample, and peaks adjusted if necessary to increase
accuracy.

Without detailed long-term study, it is impossible to identify whether the absence of A. pallipes
from a water body is due to local extinction or to historical absence. For this reason, pres-
ence/absence comparisons were not carried out in this study. Descriptive statistics (means
and ranges) were produced and used to compare with European and global means in order
to identify potential patterns in A. pallipes-inhabited waters.

RESULTS

Searches in Web of Science using the crayfish and water chemistry search string resulted
in 155 hits. Thirty-two results remained after title- and abstract- level screening, and 23 fol-
lowing full text screening. A total of 23 articles were found to present water chemistry data

for at least one variable in waters inhabited by A. pallipes across Europe (Wales, England,
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Figure 1

a-f. Cited levels (mean and range) of major water chemistry variables in waters inhabited by A. pallipes,
along with means for European (ER) and worldwide (WR) rivers obtained from Berner and Berner (1996)
and an independent review of the literature. See Figure 1m for author codes.

Ireland, France, Germany, Spain, Italy, Bosnia and Herzegovina and Croatia). Three studies
referred to the species Austropotamobius italicus, which was reclassified from Austropotamo-
bius pallipes italicus (Grandjean et al., 2002). These studies have been included here because
of the species’ significant phylogenetic similarities (Grandjean et al., 2002). One article mod-
elled water chemistry variables in waters inhabited by A. pallipes but did not present the
data or summary statistics and could therefore not be included (Favaro et al., 2011). Means
and/or maxima and minima were extracted from sources and are presented in Figure 1 (see
Appendix 3 for summary data used in these figures).
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Figure 1

Continued. g-I. Cited levels (mean and range) of major water chemistry variables in waters inhabited by

A. pallipes, along with means for European (ER) and worldwide (WR) rivers obtained from Berner and

Berner (1996) and an independent review of the literature. See Figure 1m for author codes.

The data from the review of water chemistry for waters inhabited by A. pallipes are presented
in Figure 1 and results of the water chemistry analysis of UK waters are presented in Table II.

>CONDUCTIVITY

All populations of A. pallipes reported in the literature lie in the lower range of conductiv-
ity reported for UK, global and European rivers (Figure 1a). Waters with conductivity above
700 uS-cm™" are typically polluted or brackish/saline. Two studies reported levels in excess of
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Code Author Year Country Notes
1 Jay and Holdich 1981 Wales
500 2 Foster 1995  Wales
3 Lilley et al. 1979  England
450 4 Smith et al. 1996 England
5  Demers and Reynolds 2002 lIreland
400, 6  Lyons and Kelly-Quinn 2003 Ireland
450 7  Arrignon and Roché 1983  France
8  Arrignon et al. 1993  France
300 + 9  Broquet et al. 2002  France
- 10  Reyjol and Roquelpo 2002  France
€m0 11 Trouilhé et al. 2003  France
E 12 Trouilhé et al. 2007  France
200 13 Troschel 1997  Germany
Standard deviations
150 14  Garcia-Arberas and Rallo 2000  Spain instead of min/max
15 Rallo and Garcia-Arberas 2002  Spain
100 16  Nardi et al. 2005 Italy Austropotamobius italicus
- 17 Scalici and Gibertini 2005  Italy
l >l< 18 Renaiet al. 2006 Italy
o X 19  Barbaresi et al. 2007  Italy
: ! " ® o = cem 20  Brusconi et al. 2008  ltaly Austropotamobius italicus
m) Total Suspended Solids (TSS) 21 Favaroetal. 2010 'E:a'y.
osnia and
22  Trozic -Borovac 2011 Herzegovina
23 Gottstein 1999 Croatia Austropotamobius italicus
NRH  This study 2009  England

Figure 1

Continued. m. Cited levels (mean and range) of major total suspended solids (TSS) in waters inhabited
by A. pallipes, along with means for European (ER) and worldwide (WR) rivers obtained from Berner and
Berner (1996) and an independent review of the literature. Author codes, years, and locations presented
for preceding graphs.

this threshold; Demers and Reynolds (2002) in Ireland, and Nardi et al. (2005) in Italy (although,
this was A. italicus).

The wide range of values of magnesium concentration in rivers inhabited by the white-clawed
crayfish suggests little association with waters of specific magnesium concentration (i.e. high
or low) (Figure 1b). For example, Broquet et al. (2002), Smith et al. (1996), and Favaro et al.
(2010) found populations in waters of higher magnesium concentration than the ranges re-
ported for European river means. These higher values lie within the range of global means for
magnesium concentration, however. The results from our field survey concur with this lack of
association, with minimum and mean values falling well within cited levels and major Euro-
pean river ranges. One site, Trench Pool, had extremely high magnesium (28.8 mg-L™"). This
site is known to suffer from urban pollution, despite possessing a substantial population of A.
pallipes (pers. obs.). The site is an actively used fishing reservoir in an urban area of Trench,
Shropshire. An old noticeboard at the entrance to the site warns users of the risks of blue-
green algal blooms, but it is unknown whether this is a current or historic concern. However,
other sites did not exceed 12 mg-L~".

A. pallipes populations have been found across the range of European means of calcium
concentration. Some authors suggested that the species is associated with concentrations in
the lower range of European means (Rallo and Garcia-Arberas, 2002; Reyjol and Roqueplo,
2002). Others, for example Broquet et al. (2002), noted crayfish in higher concentrations than
the range of European means, but with values that fell within the range of global means.

It has been suggested that a lower limit of 5 mg-L~" calcium concentration restricts the pres-
ence of A. pallipes (Greenaway, 1974), as supported by observations of Jay and Holdich
(1981) and Smith et al. (1996) in the British Isles, and Trouilhé et al. (2007) in France. Further-
more, laboratory manipulations involving Astacus astacus by Rukke (2002) showed stunted
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growth and reduced survival below 5 mg-L~" calcium compared to that at 10 mg:-L~". However,
one study found populations inhabiting rivers with calcium concentrations below 2.5 mg-L™"
(Reyjol and Roqueplo, 2002) and one as low as 1 mg-L~" (Trouilhé et al., 2003). Crayfish can,
therefore, evidently survive below the proposed 5 mg-L~" threshold. However, the majority of
populations have been found at calcium concentrations greater than 5 mg-L~" (Figure 1c¢) and
lie close to the range of cited means for European rivers. Our results also show little evidence
of association, being similar to major European rivers and many of the cited studies. The
minimum calcium concentration found in the UK A. pallipes-inhabited sites in our study was
7.4 mg-L™", in accord with a lower limit of 5 mg-L~".

Populations of A. pallipes have been found in water with potassium concentrations similar
to those of mean global and European waters (Figure 1d) with two studies finding popu-
lations associated with concentrations in the lower ranges of global and European means
(Rallo and Garcia-Arberas, 2002; Trouilhé et al., 2007). Given the wide range of potassium
concentrations found in waters inhabited by A. pallipes, no association for specific potassium
concentrations can be identified. Similarly, our field results found no evidence for an associa-
tion of A. pallipes with specific potassium concentration, and resemble both major European
and global rivers.

A. pallipes populations have all been found in rivers containing low concentrations of ammo-
nium relative to cited means for UK, European and global rivers (Figure 1e), although three
studies reported much higher ranges than the others (Foster, 1995; Rallo and Garcia-Arberas,
2002; Favaro et al., 2010). This may indicate an intolerance to high ammonium levels in ac-
cordance with known toxicity of the ion to aquatic organisms. However, the toxicity study of
Meade and Watts (1995) suggests that crayfish may not be so sensitive to ammonium alone,
but to the combined effects of ammonium and nitrate or nitrite. Our field study also found am-
monium concentrations in crayfish-inhabited waters to lie in the lower range of UK, European
and global rivers. Our mean ammonium concentration was highly influenced by one site,
the River Derwent, with relatively elevated ammonium. However, this site was suffering from
seasonal flooding, with rotting leaf litter the likely cause of raised ammonium concentrations
(Baldy et al., 2007).

Populations of A. pallipes reported in the literate have only been found in the lower range
values for European and global river means for sodium, as shown in Figure 1f. This may
indicate a low tolerance for elevated sodium concentrations. However, UK river sodium levels
reported by the Harmonised Monitoring Scheme are very similar to those reported for crayfish
in the literature. Surprisingly, our field study found levels of sodium at 5/18 of the sites to be
higher than previously cited levels for A. pallipes, and one site, Trench Pool, had levels well
above the mean values for major European and global rivers.

Figure 1g shows that reported chloride concentrations of waters inhabited by A. pallipes in the
literature lie around the average cited European and global river means, with no populations
found in higher concentrations than 60 mg-L~". No clear patterns in association are obvious,
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other than a lack of populations in high chloride concentrations typical of polluted water. Our
field results concur with this finding despite some populations occurring in concentrations
above other published studies. Nevertheless, we found crayfish populations in waters with
low chloride concentration relative to UK, European and global rivers.

>SULPHATE [SO37]

The majority of A. pallipes populations have been found inhabiting waters with sulphate con-
centrations lower than those reported for major European rivers (Figure 1h), with two notable
exceptions; in ltaly (Favaro et al., 2010) and Spain (Rallo and Garcia-Arberas, 2002). Other
studies appear to have found an association of the species with low concentrations of sul-
phate relative to European and global rivers, however (but similar to values reported in the
Harmonised Monitoring Scheme). This suggests an association with low levels, but tolerance
to moderately elevated sulphate concentrations. Our study found extremely high levels of
sulphate in one site, Trench Pool, which has been shown to suffer from significant urban pol-
lution. Another site, Pinfold Dam, also showed very high concentrations of sulphate (maximum
of 113.9 mg-L").

> OXYGEN (DO)

Some populations of A. pallipes are found in waters of high oxygen levels (Figure 1i). However,
several studies (e.g. Trouilhé et al., 2007) also found populations to persist at concentrations
lower than the means cited for European rivers. It appears that there may be a lower threshold
for dissolved oxygen concentration below which crayfish are not found (i.e. c. 3-3.5 mg-L™").
Some sites within our study might suggest that A. pallipes is associated with elevated dis-
solved oxygen, but we also recorded low DO in some sites (e.g. 4.5 mg-L~" in the River
Derwent, which was flooded at the time, suggesting that low DO may have been temporary).

> NITRATE [NO3]

The majority of A. pallipes populations have been found in waters below or close to the
average UK, European and global river means for nitrate (Figure 1j). Three notable exceptions
relative to European rivers have been documented, however. Broquet et al. (2002), Trouilhé
et al. (2003) and Trouilhé et al. (2007) have reported some French populations of A. pallipes
to inhabit waters with substantially higher nitrate concentrations than other authors. Our field
survey found a range of nitrate concentrations in waters inhabited by A. pallipes very similar
to those of European rivers. Five sites had nitrate concentrations greater than 10 mg-L~", with
three of these exceeding 15 mg-L™".

>PHOSPHATE [PO3"]

Figure 1k displays phosphate concentrations of waters inhabited by A. pallipes. Most popu-
lations have been found at low phosphate concentrations relative to UK and European rivers,
but one study has found the species in concentrations at the higher end of UK and European
river means in ltaly (Favaro et al. , 2010). Our study found English populations in water with
low phosphate concentration. Populations were found in a narrow range that lies below those
found in some published studies.
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>PH

A. pallipes populations are found in the literature across a range of pH values (e.g. pH 6.0
to 9.2 in Britain; Jay and Holdich, 1981) (Figure 1l). These values lie around the range of cited
means for UK and European rivers, but lie in the higher range of means for global rivers.
Populations were not found to occur in water of pH below 6.0.

>TOTAL SUSPENDED SOLIDS (TSS) AND SILTATION

Only four studies have investigated total suspended solids (TSS) levels in waters inhabited
by A. pallipes (Figure 1m). Whilst three of these reported populations in levels lower than
the average of European and global river means (Foster, 1995; Broquet et al., 2002; Trouilhé
et al., 2003), one study found populations persisting in water with concentrations of TSS
up to 489.3 mg-L~" (Trouilhé et al., 2007), far higher than the means found in a review of
European and global river chemistry. This maximum refers to one site inhabited by crayfish.
No information exists regarding the long term status of this population, and this level of TSS
may be a result of habitat degradation. A laboratory study by Rosewarne et al. (2014) found
that levels above 500 mg-L~" resulted in gill fouling in all exposed crayfish (A. pallipes), whilst
250 mg-L~" was associated with fouling in 92% of exposed individuals. However, the same
study did not find any reduction in survival over 45 days in concentrations up to 1000 mg-L~",
indicative of at least short-term tolerance for extremely high levels. The other six sites in the
study lie well within the range of European river means. It therefore seems apparent that
crayfish can persist in waters with a range of TSS. No conclusions, however, can be made
about the adverse effects of siltation on A. pallipes distribution. Elevated TSS levels in waters
inhabited by crayfish populations in France (Trouilhé et al. , 2007) are associated with elevated
nitrate and potassium concentrations, and a lower range of pH values. This is indicative of
more polluted waters, and lends support for some populations of A. pallipes persisting in
lower water quality for certain variables.

DISCUSSION

A summary of the conclusions from the review and water chemistry analysis is shown in
Table Ill. A. pallipes appears to be fairly tolerant to a range of conditions for of a number
of water chemistry variables. Rallo and Garcia-Arberas (2002) carried out multivariate analy-
ses of a variety of variables for waters inhabited and uninhabited by crayfish in Spain. From
their analysis sulphate and magnesium ions were the only factors that discriminated between
crayfish presence/absence. In contrast, the current study indicates that the magnesium con-
centration of waters inhabited by crayfish is similar to the range of European means, and is
unlikely to influence the distribution of crayfish populations. Similarly, A. pallipes does appear
to associate with lower sulphate values than those reported for major European rivers. From
our review of the literature and our field study, some factors that may be associated with cray-
fish presence relative to European and global means are: low conductivity; low ammonium;
low sodium; low sulphate; low nitrate; low phosphate; and high dissolved oxygen. These vari-
ables can be grouped into those relating to anthropogenic inputs and those important for
ecdysis and the production of the crustacean exoskeleton.

>HUMAN-INFLUENCED WATER CHEMISTRY

Conductivity is a correlate for nutrient load, and can indicate geology, watershed size, and
the presence of mine waste or waste water (Goldenberg et al., 1984; Garcia-Criado et al.,
1999; Gucht et al., 2005). A. pallipes populations appear to be associated with low values of

conductivity relative to European and global means. It is likely that the observed association
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Table Il
Summary of conclusions from review of literature regarding waters inhabited by A. pallipes and analysis
of water samples from UK populations of the species.

Conductivity Association with low levels (<500 uS-cm~'). Upper threshold of 945 uS-cm~".
Magnesium No clear association. Tolerance of high concentration (28.8 mg-L™").
Calcium No clear association. Populations present at low levels (1.0 mg-L™").
Potassium No clear association. Tolerance of high concentration (12.2 mg-L™").
Ammonium Association with low levels (<0.15 mg-L~"). Upper threshold of 0.74 mg-L~".
. Association with low levels (<18 mg-L™"). Tolerance of high concentration

Sodium .

(50.3 mg-L™).
Chloride No clear association. Upper threshold of 85.2 mg-L~".

Possible association with low levels (<25 mg-L~"). Tolerance of high
Sulphate

concentration (266.8 mg-L™").

Dissolved Oxygen | Association with high levels. Lower threshold of 3.4 mg-L™" plausible.
Possible association with low levels (<9 mg-L~"). Tolerance of high
concentration (57.2 mg-L™).

Association with low levels (<0.22 mg-L~"). Tolerance of moderate
concentration (0.39 mg-L™").

pH No clear association. Only found between pH 6.0 and 9.2.

Possible association with low levels (<34 mg-L~"). Tolerance of high
concentration (489 mg-L™").

Nitrate

Phosphate

TSS

patterns reflect pollution, and that crayfish presence is also associated with low levels of other
pollution-indicators.

Ammonium, a waste product of animal metabolism, is indicative of agricultural pollution re-
sulting from fertiliser runoff and sewage and is toxic in high concentrations (Berner and Berner,
1996). A. pallipes is associated in general with low ammonium concentrations: 8 of 10 studies
found populations restricted to concentrations below 0.15 mg-L~'.

The primary source of nitrate in freshwater ecosystems is surface runoff; from the applica-
tion of fertilisers in agriculture, and runoff from waste disposal sites and industrial practices
(Camargo et al., 2005). Between one third (Meybeck, 1982) and two thirds (Wollast, 1993) of
all riverine total dissolved nitrogen (NO3 and NH**) results from pollution. It is also generated
in situ via the nitrification of ammonia in sewage (Abeliovich, 1985). Toxicity of nitrate ions
has been shown to occur via the conversion of oxygen carrying pigments (haemoglobin and
haemocyanin) to forms that are unable to carry oxygen (methaemoglobin and methaemo-
cyanin) (Camargo et al. , 2005). Nitrate is less toxic to aquatic organisms than ammonia or
nitrite (Romano and Zeng, 2007). Nevertheless, nitrate concentrations of 10 mg-L~" are detri-
mental to some freshwater invertebrates, fish, and amphibians (reviewed by Camargo et al.,
2005). Laboratory studies of tolerance demonstrate the ability of crayfish to withstand short-
term exposure to nitrate levels as high as 1000 mg-L~' (Meade and Watts, 1995), but these
findings to not directly relate to long term tolerance in the wild. Whilst some studies have
found A. pallipes to be associated with low concentrations of nitrate in the wild, three pub-
lished studies along with the results herein show that populations can persist in very high
nitrate levels.

Phosphorus, in the form of the inorganic phosphate ion, plays a vital role in the structure
of DNA/RNA, the structure of cells (as phospholipids), and in energy transfer (as adenosine
triphosphate or ATP), and is often a limiting nutrient in rivers and lakes (Elser et al., 2007). On
the other hand, elevated phosphorous as a result of fertilisers, industrial pollution, and defor-
estation may lead to eutrophication, particularly in lentic waters (Schindler, 1971). A. pallipes
populations are generally found in waters of low phosphate concentration relative to European
river means and our field survey data concur with the majority of the literature to suggest that
white-clawed crayfish are associated with low phosphate concentrations.
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Chloride is linked with ammonium and sodium; elevated levels of all three variables are as-
sociated with polluted waters. Sodium is a vital component of all animal cells, being the
primary cation of extracellular fluids. High sodium concentration, however, can cause ele-
vated mortality and limit growth (Hamilton et al., 1975; Heath, 1977). Sodium enters rivers via
the weathering of halite (NaCl) and plagioclase (NaAlSizOg) rocks, from cyclic (sea) salt, and
a substantial amount from pollution, such as domestic and industrial sewage and road salt
(Meybeck, 1979). Elevated sodium concentrations are associated with elevated chloride and
ammonium levels, and are typical of polluted or saline waters. Chloride originates from a range
of sources; (i) sea salt; (ii) halite (NaCl) weathering and subsequent dissolution; (iii) volcanic
springs; (iv) saline crust dissolution in deserts; (v) pollution. It has been estimated that around
30% of chloride in the world’s rivers is the result of pollution (Meybeck, 1979). Populations
of A. pallipes appear to be correlated with low concentrations of both sodium and chloride;
these observations are in accord with work suggesting that the species may be sensitive to
pollution from sewage or industrial effluent (e.g. Reynolds et al., 2002).

Sulphate is a common ion in freshwater environments, but is generally found at low con-
centrations. There are two major sources of sulphate in rivers; weathering of rocks produces
approximately 33 percent (Berner and Berner, 1996) and pollution produces approximately 54
percent (Meybeck, 1979) of global sulphate. Sources of sulphate pollution include acid rain,
dry fallout, and fertilisers, particularly in European rivers (Oden and Ahl, 1978). The majority of
A. pallipes populations in Europe are found in waters with relatively low sulphate concentra-
tion relative to European and global means. Rallo and Garcia-Arberas (2002), however, found
populations associated with a wider range of sulphate concentrations, similar to those of Eu-
ropean river means. Similarly, our field study found populations of A. pallipes in urban areas in
relatively high concentrations of sodium, suggesting that the species is not particularly sensi-
tive to sodium pollution alone. However, the species is associated with lower sulphate levels,
and hence lower pollution, but does not indicate intolerance for levels typically observed in
rivers throughout Europe.

A number of crayfish species (for example, Parastacus defossus and Procambarus clarkii)
have been observed living in the very low or anoxic conditions associated with muddy habi-
tats and are, to an extent, physiologically adapted to low dissolved oxygen (DO) conditions
(reviewed by McMahon, 2002). Relatively few studies have examined dissolved oxygen levels
in waters inhabited by A. pallipes. Three studies found the species associated with high lev-
els relative to European and global means, whilst Trouilhé et al. (2007) found crayfish across
a wide range of DO concentrations. Our field results similarly demonstrate a wide range,
but also support an association with elevated DO. The results of our review, however, may
challenge the theoretical minimum dissolved oxygen tolerance of around 5 mg-L~" (Trouilhé
et al., 2007). This suggests that whilst an association with raised DO may exist, the species
is tolerant, to a certain degree, of lower values.

Elevated hydrogen ion concentration (i.e. low pH) is toxic to many freshwater invertebrates
(e.g. Bell, 1970). Low pH is believed to result in reduced growth by impairing the conversion
efficiency of food energy for use in growth (Lee et al., 1983), and Seiler and Turner (2004)
found growth rates of the North American crayfish Cambarus bartonii to be higher in neutral
than in acidic waters. In laboratory studies, C. bartonii adults were found to have an LD50
at pH 2.43 (Distefano et al., 1991). A. pallipes were shown in laboratory studies to suffer
high mortality at pH less than 6.0 in long-term studies (Jay and Holdich, 1977). The studies
reviewed herein indicate that A. pallipes is tolerant of pH from 6 to 9.2, although populations
are generally associated with pH from 7.5 to 8.5.

In nature, higher levels of individual variables may be associated with other variables that
together result in toxicity and elevated mortality. For example, crayfish may be tolerant of high
concentrations of ammonium alone, but in rivers, elevated ammonium may be associated
with raised levels of other pollutants such as heavy metals, nitrate, sulphate, sodium, and
chloride, and with low levels of dissolved oxygen. Therefore, whilst some studies have found
an association of A. pallipes with low values of certain water chemistry variables, it may be a
combination of several pollution-indicating variables that limit the distribution of the species.
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Magnesium is an essential element required in crustacean integuments, and is required for
successful ecdysis (moulting) (Jussila et al., 1995). The crustacean exoskeleton is composed
of chitin encrusted with calcium carbonate, making calcium another important metal ion in
crayfish development (Roer and Dillaman, 1984). Potassium is also used in animal physiology,
including action potentials of neurons and membrane polarisation (Roer and Dillaman, 1984).
Comparing magnesium values for waters inhabited by A. pallipes with those for European
and global means suggests no discernable pattern. Whilst crustaceans have a requirement
for magnesium, it is unlikely to be limiting in these environments. This is particularly indicated
by the presence of crayfish in water with very low magnesium concentration.

Various authors have suggested a lower limit of 5 mg-L~" calcium concentration (Greenaway,
1974), as supported by observations of Jay and Holdich (1981) in the British Isles, and Trouilhé
et al. (2007) in France. Furthermore, laboratory manipulations involving Astacus astacus by
Rukke (2002) showed stunted growth and reduced survival below 5 mg-L~' calcium com-
pared to that at 10 mg-L~". Survival of the Parastacid crayfish Paranephrops zealandicus was
increased as the concentration of calcium in laboratory investigations exceeded 10 mg-L™"
(Hammond et al. , 2006). However, survival of crayfish has been observed in waters with cal-
cium concentrations as low as 2 mg-L~" for Orconectes virilis (France, 1987), and A. astacus
(e.g. Jussila et al., 1995). These observations suggest that calcium is not limiting crayfish
distribution. Crayfish are found over a wide range of potassium concentrations and their dis-
tribution is therefore unlikely to be affected by potassium concentration within the rivers ex-
amined. However, extreme levels of potassium caused by pollution may still adversely affect
crayfish. Further research is needed to rule this possibility out.

In general our results suggest that A. pallipes populations are restricted to habitats that do
not receive significant sewage effluent or contamination: typically, waters low in conductivity,
sodium, chloride, nitrate, ammonium, to a lesser extent sulphate, and high dissolved oxygen
concentration. The water chemistry data reviewed and analysed in this study form only a
snapshot of the chemical conditions. Whilst these data are likely to give an indication of long
term conditions, water chemistry will vary over time. Caution must therefore be exercised
when making conclusions from single time point measurements of both water chemistry and
crayfish presence. Long term studies of chemical conditions and crayfish abundance are nec-
essary to allow for conclusions to be made regarding suitable conditions for the maintenance
of wild populations. Such studies have not been well documented in the literature, but they
are of great importance. We strongly recommend that these records be established and made
available for the wider conservation audience. Water chemistry is not the only factor affecting
the distribution of A. pallipes populations, which has also become restricted in because of
invasive crayfish and crayfish plague. An understanding of the association of white-clawed
crayfish with specific water chemistry variables, however, can assist in locating suitable Ark
Sites for the relocation of threatened populations.

At present, the conservation of endangered populations of A. pallipes in the UK is believed
to heavily depend upon the success of relocation to Ark Sites (e.g. Kemp et al., 2000;
Whitehouse et al., 2009; Haddaway, 2010). Based on the analysis of the papers reviewed
here, we propose guidelines for suitable water chemistry of Ark Sites (Figure 3). Ideally, these
recommendations should be supported by manipulation studies to investigate the impact of
different water chemistry on crayfish survival, growth, and reproduction. This may not be easy,
however, since the toxicity of single water chemistry variables may not relate to habitat as-
sociations in practice. For example, Figure 2 demonstrates how concentrations of variables
are often linked in rivers, in this case in the River Wharfe. Sources of agricultural (site 3) and
industrial/urban runoff (sites 14 and 15) are evidenced in all three variables shown. Further-
more, the need to identify suitable Ark Sites is pressing due to the rapid migration of invasive
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Figure 2
Concentration of chloride, sulphate, and nitrate in the River Wharfe from upstream (site 1) to 676 down-
stream (site 15) (E. Imhoff, R. Mortimer, and A. Dunn unpublished data).

crayfish and Chinese mitten crab, which has also recently been suggested as a possible vec-
tor for crayfish plague (Aphanomyces astaci) (Svoboda et al., 2014), and on-going habitat
degradation. In practice, it is often necessary to relocate threatened populations over short
timescales.

In order to make recommendations to identify Ark Sites where water chemistry is suitable,
data in this review and the results of field measurements were used to plot ranges of variables
where crayfish occur and provide baselines that may form guidelines for water quality. Figure 3
displays these guidelines for water quality of Ark Sites by presenting variable ranges, grand
means (means of study means), and the minima and maxima for study means (minimum
mean and maximum mean). In order to be certain that water chemistry of an Ark Site is
suitable, water chemistry should be measured and variables should fall within the narrower
buffer zone, corresponding to the range of study means for variables measured within the
literature. We believe that this represents a reliable buffer zone for acceptable water quality,
since populations of A. pallipes have been recorded within these values.

CONCLUSIONS

This review and empirical study highlights several variables that may have thresholds dictating
crayfish distribution. These variables are; conductivity, ammonium, sodium, dissolved oxygen
and phosphate, and to a lesser extent sulphate, nitrate, and total suspended solids. There is
substantial variability in many variables between studies and between sites in the same study.
The presence of populations in the extremes of some variables may demonstrate a tolerance
for certain types of pollution, for example urban pollution, but further investigation of these
populations is paramount. Investigations of the water chemistry associations of A. pallipes
populations have successfully characterised many waters containing the species. However,
such studies are now highly unlikely to find water chemistry as a causative factor discrimi-
nating the presence and absence of crayfish. Population losses due to crayfish plague and
competition with invasive non-native crayfish will overshadow all but drastic pollution events.
Whilst some populations of A. pallipes may persist over a wide range of certain variables,
recommendations can be made for habitat restoration and relocation programs allowing the
identification of habitats that are likely to be within acceptable ranges for threatened pop-
ulations of white-clawed crayfish. The recommendations included herein are intended as a
starting point for the selection of Ark Sites for relocation conservation.
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Figure 3

Recommended water quality guidelines for A. pallipes within the literature and from the study herein.
The extremities (upper left and upper right numbers) represent the absolute ranges, the black bar (upper
middle number) represent the mean mean values, and the intermediate values (lower left and lower right
numbers) represent the mean minimum and mean maximum values respectively. All values are in mg-L™
with the exception of conductivity (uS-cm=') and pH.
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Appendix 2.

N.R. Haddaway et al.: Knowl. Managt. Aquatic Ecosyst. (2015) 416, 01

Annual average concentrations of selected determinands of river water quality, by river location: 1980, 1990 and 1995 - 2005

Great Britain

Average levels 1980, 1990, and 1995-2005

Region pH Cond  TSS D.O. Amm__ Nitrate Chloride Sodium Magnesi Potassit Phosphz Calcium Sulphate
North West; Mersey, Howle 73 6023 19.3 8.0 25 214 74.4 available from; http:/maps.environment-agency.gov.ut
North West; Ribble, Samle 8.1 490.8 19.4 1.1 0.1 243 61.5 See Sheet 2 for details
North East; Tees, Low Wo 7.8 3595 10.4 9.7 0.1 14.8 30.0
North East; Tyne, Wylam 78 2140 9.2 11.1 0.2 3.8 18.4
North East; Aire, Beal Wei 75 8137 19.0 9.1 11 273 1151
North East; Don, Doncaste 76 9537 201 9.5 13 338 1250
Midlands; Trent, Yoxall 8.0 929.2 15.7 10.0 0.2 40.3 105.8
Midlands; Severn, Haw Bri 80 5731 49.3 10.3 0.1 284 57.0
Anglian; Bedford Ouse, Ec 8.3 896.7 17.0 10.7 0.1 35.2 74.0
Thames; Thames, Tedding 8.0 597.6 16.8 10.3 0.2 31.6 50.4
Southern; Medway, Upstre 7.8 4773 21.2 9.5 0.1 23.2 45.7
South West; Tamar, Gunni 76 1884 191 10.5 0.1 12.6 23.0
South West; Exe, Thorvert( 7.7 1603 9.9 10.9 0.0 1.4 15.9
Welsh; Dee, Iron Bridge 76 259.2 9.8 10.3 0.1 9.4 30.3
Welsh; Taff, Llandaff North 79 303.6 14.2 11.1 0.1 6.4 20.5

pH Cond TSS D.O. Amm__ Nitrate Chloride Sodium Magnesi Potassit Phosphz Calcium Sulphate

Mean 7.79| 515.74| 18.03 10.13 042 2157 5449 5.25 0.99 0.46 0.20 4.32 4.33
7.09 142.83 272 6.01 0.02 268 13.35 2.38 0.32 0.11 0.01 0.44 041

max 8.38/1289.04| 8570 1220 514 4764 18533 1279 220 1.25 0.72 1548 17.13

Source: Harmonised Monitoringoh DEFRA DEFRA | DEFRA 1 DEFRA DEFRA 1 DEFRA) DEFRA from CE from CE from CE from En from CE from CEH

1 Annual mean concentrations. Values below the limit of detection have been equated to one half the detection limit.

Table nomencla Full name of determinanc  Units
Temp Temperature Degrees C
pH pH pH Units
Cond Conductivity US/cm
S.S. Suspended solids mg/l
Ash (from suspended solids) mg/l
D.O. Dissolved oxygen mg/l O
BOD Biochemical Oxygen Dema mg/l O

(Allythiourea)

Source publication: e-Digest of Environmental Statistics, Published January 2007
Department for Environment, Food and Rural Affairs
http://www.defra.gov.uk/environment/statistics/index.htm

Full name of determinand
Ammoniacal nitrogen

Nitrite
Nitrate

Chloride

Total alkalinity
Chlorophyll alpha
Orthophosphate
Anionic detergent as
manoxol OT
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Appendix 2. Continued.

SIMENAME SDATE pH 1SS Conductivity DO Ammonium  Nitrste Chloride Fhosphste  Sulohsts Sodium Potassium  Cslcium MMagnss ivm
Esthwsite  2004-01-01 7.58 10.78 0.02 0.48 0.01

Windermers 2001-01-01 T a2 65.08 1063 001 040 658 000 <08 048 531 087
Liyn Lisgi 2002-01-01 £.80 2665 0.08 £.20 0.00 208 0.14 0.21 0.51
Esthwsite  2002-01-01 7.5 28 50 1024 002 043 1003 o001 058 097 10.38 1.35
Windermere 2002-01-01 7.70 10.97 0.01 0.29 €60 0.00 0.44 452 0.50 625 1.01
Llyn Lisgi 2002-01-01 572 27.00 0.06 748 000 1.93) 400 018 088 0%
Windermere |1997-01-01 7.45 70.28 10.10 0.02 0.47 7.98 0.02 490 4.36 072 558 0.89
Windermere 1296-01-01 727 7225 10.59 005 0.61 7.67 0032 532 471 056 €08 0.3
Esthwsits  1998-01-01 7.2 112,42 10.61 0.08 0.79 11.27 0.00 .24 7.13) 1.11 10.78 1.4
Liyn Lisgi 1884.01-01 523 p<X: <} 0.0 483 001 265 293 0.38: 0.77 00
Bush 1984-01-01 8.08 £.01 22924 10.27 0.08 1.79. 273 0.02 1424

Cld Lodgs  2002-01-01 5.05 88 50 0.27 17.87 001 e7s 937 0.79 270 148
Bush 1996-01-01 . 7.16 3243 11.18 0.1 283 24.51 0.09 17.10

OldLodge  1998-01-01 483 90.42 0.1 18.62 0.00 8.79 2.82 0.ee 253 1.4
Nant Teyrn  1998-01-01 49 2.6 0.02 0.14 5.36 0.00 0.78 317 0.12 0.e2 0.41
Trout Beck  2002-01-01 6.9 283 2. 0.04 0.08 2.48 0.00 1.25) 288 022 11.35 0.s2
Trout Beck  2002-01-01 894 1.43 94,98 0.08 0.11 4.12 0.00 217 202 0.40 16.48 1.28
Scost Tarn  2000-01-01 508 2925 0.2 5.55 0.00 238 220 0.23, 0.47 0.4
Liyn Lisgi 2001-01-01 .08 14.50 0.08 2.80 0.00 1.83) 280 0.13 0.78 0.0
Windermere |1288-01-01 7.20 £8.84 10.42 0.05 0.51 7.25 0.02 428 475 0.57. 548 0.9
Esthwsite  1988-01-01 7.8 107.58 10.25 0.02 0.es 10.20 0.01 .33 6.25 082 10.18 1.38
Liyn Llsgi 1887-01-01 5.52 2525 0.08 593 000 255 243 012 0.94 0.5
Scost Tarn  1989-01-01 .01 R.75 0.2¢ 6.58) 0.00 278 278 028 0.8¢ 0.28
Scost Tarn  1991-01-01 4.85 .22 0.41 8.10 0.00 323 4.53) 0. 0.85 0.68
Scost Tern  2001-01-01

Scost Twn 2002-01-01 5.08 £.20 0.00 238 285 0.24 0.47 0.47
Esthwsite  2001-01-01 7.68 10.50 .02 9.21 co1 576 568 024 9.38 124
Wingermers 2000-01-01 7.5 11.01 0.14 7.20 0.02 292 43 045 5.46 0.2t
Scost Tarn  2004-01-01 5.15 482 0.00 240 263 0.20 0.4 02
Windermere | 1289-01-01 7.22 10.82 0.05 | 0.04 476 445 0.52 553 0.9
Liyn Lisgi 1998-01-01 5.53| 5.75 coo 228 353 0.12 1.1 .58
Scost Taan  1996-01-01 £.04 £.10 0.00 232 325 028 0.e2 0.52
Liyn Lisgi 2004-01-01 586 £.48 oo1 178 285 0.11 0.82 0.as
Esthweite  1986-01-01 7.2 9.91 0.08 0.6 11.32 0.00 7.10 €.02 084 10.12 1.2
Liyn Lisgi 1988-01-01 582 0.12 6.95 0.00 238 265 0.13. 0.50 0.53
Liyn Lisgi 1998-01-01 562 0.12 7.45 0.00 238 408 0.18 0.93 0.58
Scost Tarn  1992-01-01 501 0.19 5.90 0.00 210 248 0.23 0.57 0.53.
Scost Tan  1982-01-01 5.02 0.27 8.13) 0.00 282 250 028 0.e2 0.58
Scost Tern  1898-01-01 502 0.26 6.18 000 238 243 027 0.57 050
Liyn Lisgi 2008-01-01 5.81 0.1 5.53 0.01 1.98 210 0.13. 0.88 0.4
Llyn Lisgi 2005-01-01 5.75 0.06 €40 001 1.93 240 0.11 0.88 043
Windermeare 1994-01-01 7.12 10.67 0.00 0.50 7.57 0.04 528 451 0.53 5.74 0.1
Scost Tarn | 1985-01-01 5.02 0.26 6.28 000 278 270 0.22 0.64 0.60
Liyn Lisgi 1990-01-01 520 0.18 10.72 0.02 218 6.55 028 1.48 0.78
Scost Tarn  1984-01-01 5.0 0.21 563 000 200 333 035 0.5 0.%0
Windermere 2004-01-01 7.4 10.68 0.01 0.40 0.00

Esth 2002-01-01 7.58 101.25 10.71 0.02 0.38 9.62 0.01 067 =t 0.98 11.12 148
Esth 2000-01-01 7.5 .28 10.72 0.04 0.32 10.09 0.05 568 578 088 9.70 120
Scost Tan  2002-01-01 522 250 0.22 4.78 000 248 283 024 0.54 0.48
Esthwsite  1994-01-01 7.7 112.63 10.28 0.08 0.42 10.21 0.00 €38 5.83 0.82 9.34 1.20
Scost Tarn  1988-01-01 5.07 75 0.25 802 000 253, 238 022 0.52 0.%0
Scost Tarn  1990-01-01 49 44.08 0.27 9.45 0.00 220 £.0% 0.28 0.82 0.72
Llyn Lisgi 1992-01-01 5.17 2008 0.18 8.43 001 230 270 0.15 0.6 0.53
Llyn Liagi 1888-01-01 5.4 36.75 0.1¢ 7.20. 0.02 292 408 0.47 1.08 0.€0
Liyn Lisgi 1882-01-01 528 2820 011 568 ooz 315 242 015 100 053
Soost Tarn  1987-01-01 £.07 225 0.28 €.18 0.00 288 353 025 0.45 0.60
Scost Tarn  2008-01-01 5. 16| 2700 0.19: 470 000 237 286 020 0 e 0e2
Windermere 2002-01-01 7.44 82.26 10.68 0.01 0.27 6.55 0.00 0.41 420 0.47 573 0.2
Scost Tn 2005-01-01 512 22.00 0.20 8.35 0.00 223 2.40 0.2z 0.2 0.22
Llyn Liagi 2000-01-01 £.69 2.00 0.08 5.10 0.00 198 202 0.12 0.75 0.50
Esthwsite  1992-01-01 7.63| 10412 10.23 002 0.44 1084 001 €13, 40 087, 10.19 1.37)
Windermers |1986-01-01 7.18 €9.91 8.8 0.02 0.2¢ 8.10 0.02 5.10 475 080 £.88 0.9
Liyn Lisgi 1986-01-01 580 22.00 0.11 723 000 280 410 0.15 1.08 058
Liyn Lisgi 1991-01-01 5.16 2.2 0.11 8.65 001 335 482 0.19. 215 0.65
Cld Lodgs  2002-01-01 5.13| ®°75 0.11 1844 001 978 10.47 0.1 207 1.65
OldLodgs  1991-01-01 &5 116.68 0.08 21.50 0.00 1429 10.77 0.79. 226 1.84
Nsnt Teyrn  2002-01-01 £33 2443 0.07 0.10 6.08 000 070 247 0.18. 0.67 045
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Appendix 2. Continued.

SITENAME
Nant Teyrn
Bimie Burn
Bimie Burn
Bimie Burn
Old Lodge
Trout Beck
Nant Teyrn
Trout Beck
Nant Teyrn
Nant Teyrn
Nant Teyrn
Bimie Burn
Bimie Burn
Trout Beck
Nant Teyrn
Old Lodge
Old Lodge
Old Lodge
Old Lodge
Bush

Old Lodge
Bimie Burn
Trout Beck
Nant Teyrn
Trout Beck
Bimie Burn
Trout Beck
Bimie Burn
Bush

Old Lodge
Bimie Burn
Bimie Burn
Bush

Old Lodge
Bimie Burn
Old Lodge
0ld Lodge
Trout Beck
Bimie Burn
Bimie Burn
Trout Beck
Bimie Burn
Old Lodge
Old Lodge
Trout Beck
Trout Beck
Old Lodge
Old Lodge
Old Lodge
Nant Teyrn
Trout Beck
Trout Beck
Trout Beck
Bimie Burn
Esthwaite

SDATE

2007-01-01
1994-01-01
1997-01-01
2001-01-01
1999-01-01
2005-01-01
2001-01-01
1995-01-01
2003-01-01
2004-01-01
2005-01-01
2006-01-01
2007-01-01
1994-01-01
1999-01-01
2005-01-01
1988-01-01
1993-01-01
1994-01-01
1995-01-01
1996-01-01
2005-01-01
2000-01-01
2006-01-01
2006-01-01
1008-01-01
199301-01
1999-01-01
1998-01-01
1997-01-01
1933-01-01
2003-01-01
1997-01-01
2006-01-01
2004-01-01
1992-01-01
2001-01-01
2007-01-01
1996-01-01
2000-01-01
1996-01-01
2002-01-01
1990-01-01
1995-01-01
2004-01-01
2001-01-01
2000-01-01
2004-01-01
1989-01-01
2000-01-01
1997-01-01
1999-01-01
1998-01-01
1995-01-01
1997-01-01

1988-2007 mean
Nland Sco min
9 lakes andmax

o

oH

5.41
6.69
6.87
6.80
4.83

5.55

TSS
1.69

281

7.40

1.94
1.50
1.63

8.71

373
238

2.29
1.83
1.61

3.46
143
7.40

Conductivity |DO
270

63.07
60.68
70.92
90.75
80.13
19.51
86.63
26.63
23.94
25.80
66.52
63.13
75.57
2097
92.00
17
91.83
87.50
309.25
108.33
66.89
69.44
2249
76.22
46.00
4448
51.65
314.12
10217
65.71
76.98
318.28
11355
63.04
102.42
8418
74.84
5812
53.36
89.21
58.83
12851
112.67
64.69
78.65
84.25
97.08
104.35
19.79
84.07
75.42
61.33
60.61
108.33

Conductivity DO

7162
1450
32924

11.22

10.85

10.49

11.59

11.60

10.41
10.65

3.9
11.60

Ammeonium

0.02
0.03
001

0.03
0.03
0.02
0.04
0.03
0.04
0.02
0.02
0.01
0.02

0.02
0.01

0.02
0.04
0.00
0.02
0.10

0.02
0.01
0.07

0.02
0.01
0.02
0.03
0.01

0.03
0.03

0.02
0.02
0.02
0.02
0.02
0.05

003
0.00
014

Nitrate

Ammonium  Nitrate

0.10
0.14
014
0.02
0.10
0.12
0.15
0.10
0.09
0.10

0.19
011
0.15
0.10

0.10
0.06
1.93
0.14
0.17
0.08

0.09
0.18
0.13
0.15
319
0.12
0.11
0.17

0.1
0.14
0.10
0.10

0.16
0.11
024
0.12

0.09
0.07

0.1
011

0.12
0.18
0.09
0.11
0.10
0.66

0.31
0.05
319
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Chicride

7.99
8.63
729
18.50
398
418
4.18
5.08
4.68
519
6.85
6.37
434
517
19.52
2017
17.40
17.39
2499
19.51
6.80
3.50

3.60
8.45
4.93
8.07
25.82
19.43
7.85
7.59
27.05
26.33
7.12
19.74
17.08
4.27
833
725
453
6.73
2385
20.52
344
3.30
17.87
19.80
24.08
428
4.17
444
4.13
7.69
11.40
Chloride
9.52
3.30
27.05

Phos phate
0.01

0.01
0.01
0.01
0.00
0.00
0.00
0.00
0.01
0.02
0.01
0.01
0.01
0.00
0.00
0.00
0.01
0.00
0.00
0.09
0.00
0.01
0.00
0.01
0.00
0.03
0.00
0.00
0.10
0.00
0.01
0.01
0.10
0.00
0.00
0.00
0.01
0.00
0.00
0.00
0.00
0.01
0.01
0.00
0.00
0.00
0.00
0.00
0.01
0.00
0.00
0.00
0.00
0.01
0.01
Phosphate
001
000
010

Sulphsts
200

21
1.82
179
8.58
131
0.67
1.98
071
0.68
0.69
1.88
152

1210
161
1.07
1.87
133
177
1.65
1.78

14.57

10.05
185
1.97

7.1
820
175

11.29
6.88
1.05
203
161
1.79
1.85

17.13

11.64
1.07
125
8.07
975

15.00
0.67
1.40
121
114
207
725

Sulphate
433
041
17.13

Sodium

6.89
6.81
6.20
9.67
260
259
287
286
264
283
6.38
6.67
249
285
10.23
10.43
9.45
9.23

10.68
6.22
274
245
8.27
280
6.56

9.85
8.10
6.67

1222
6.15
9.93
9.45
283
6.75
5.95
3.06
5.68

1279
11.38

Sodium

Potassium

068
0.48
047
0.60
0.34
0.18
0.37
021
0.17
0.19
0.48
0.44
0.34
0.20
0.88
0.48
0.74
0.68

1.02
0.41
0.28

0.30
0.49
0.35
0.49

0.85
0.70
0.45

1.04
0.35
0.78
0.78
0.29
047
0.45
038
035
073
0.75
0.30
0.33
0.80
0.80
0.78
018
0.34
0.35
0.27
0.53
1.25
Potas sium

Calcium

5.08
459
432
276
12.16
0.59
13.29
0.63
0.56
0.57
435
4.28
10.89
0.58
285
276
27
244

3.00
422
10.20

11.40
3.65
10.65
423

265
394
512

287
3.89
284
266
10.97
436
381
12.34
391
394
3.10
10.268
11.76
280
295
3.76
0.52
12.38
10.88
9.07
458
9.90
Calcium
4.32
0.44
15.48

Magnasium

1.56
1.44
1.36;
1.54
0.98
0.34
1.13
038
0.35
0.37
1.38
1.34
0.83
0.37
1.57
1.68
1.49
1.34

1.78
1.34
0.85

0.91
1.25
0.94
1.37

1.55
1.29
1.51

1.63
1.25
1.58
1.35
0.87
1.47
1.25
11
1.20
220
1.78
0.80
0.98
1.75
1.59
214
0.32
1.05
0.93
0.79
1.45
1.32
Magnesium
0.99
0.32

220
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Appendix 3.

Conductivity UK Javand Foster | Lillev¢ Smith Demers Lvonsa Arrien Arrien Broau Reviol a Trouilh Trouil Troschel ( Garcia- Rallo Nardie Scalici Renai etal. Barba Bruscc Favarc Trozic Gottste Thisstu n
Minimum 142.83 93 60 93 37 310 6 110 101 225 245 144 197 141 271 2454 180

Mean 515.74 427 160 335 618 40 1385 233 272 372 376 5408 350 424 3733 225 2254

Maximum ~ 1289.04 507 390 507 772 385 66 161 59 345 499 607 945 514 552 466 310

Potassium UK 1 2 3 4 5 3 7 8 9 10 112 13 14 15 6 17 18 19 20 21 22 23 NRH
Minimum 0.1 03 08 08 2 01 0 001 0.067
Mean 0.46 29 28 244 17 2.062
Maximum 1.25 25 39 25 42 96 54 122 5.784
Magnesium UK 1 2 3 4 5 6 7 8 9 10 1no1 13 1 15 6 17 18 19 20 2 22 23 NRH
Minimum 0.32 16 18 3 5 0.9 0 431 23 1.381
Mean 0.99 8 85 127 12 43 6.84 6 127 6.976
Maximum 2.20 105 123 105 115 23 6.9 9.37 114 28.779
Ammonium UK 1 2 3 4 5 6 7 8 9 10 1n o1 13 1815 6 17 18 19 20 2 22 23 NRH
Minimum 0.02 0.01 0.01 0 0 0 0028 0.002 0.001 0 0 0 0.01 0.001
Mean 0.42 0 006 006 0055 0.039 003 017 0 0.25 0.427 0.12 0.04 0058
Maximum 5.14 0.74 0.05 0004 0 0 01 0148 0.114 007 036 0 0.7 073 0.305
Calcium UK 1 2 3 4 5 3 7 8 9 10 1 12 13 14 15 6 17 18 19 20 21 22 23 NRH
Minimum 0.44 65 61 79 52 12 40 1 2979 15 283 430 471 7.437
Mean 4.32 40 66 125 7.67 60.75 27.2 4202 40 635 717 69 284 24.557
Maximum 15.48 947 668 94.7 78 85 100 99.3 54.25 66 945 100.8 922 58.306
Sodium UK 1 2 3 4 5 3 7 8 9 10 1mo1 13 1“1 16 17 18 19 20 21 22 23 NRH
Minimum 2.38 5.6 7 57 67 25 6.81 43 3.103
Mean 5.25 9.95 691 1034 94 15.779
Maximum 12.79 13 121 13 148 17 1387 17.5 50.300
Chloride UK 1 2 3 4 5 3 7 8 9 10 1no1 13 115 6 17 18 19 20 2 22 23 NRH
Minimum 13.35 0.6 8 14 72 113 57 10 8.9 5 2.951
Mean 54.49 g 18 7.67 1606 17.7 33 143 13 11.2 27.363
Maximum 185.33 37.3 23 24 81 276 427 60 197 25 85.218
Nitrate UK 1 2 3 4 5 6 7 8 9 10 1n 1 13 18 15 6 17 18 19 20 21 22 23 NRH
Minimum 268 06 0.6 0.6 0 98 37 005 06 001 0.01 o o0 17 0.107
Mean 21.57 16 06 258 367 1601 17.7 28 312 27 0.11 43 094 3578 7.7 7.362
Maximum 47.64 4.2 4.2 0.8 45 27.47 57.2 5 564 91 0.78 8 25 5 20.897
Sulphate UK 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15 6 17 18 19 20 21 22 23 NRH
Minimum 0.41 88 8.4 6 0 52 17 17.1 7 0.881
Mean 4.33 2 7 0 808 933 308 29 76.6 42411
Maximum 17.13 236 236 8 0 1151 262 445 87 it
Phosphate UK 1 2 3 4 5 6 7 8 9 10 1no1 13 1“1 16 17 18 19 20 21 22 23 NRH
Minimum 0.01 0.01 0 0 0.01 0.01 0.01 0
Mean 0.20 0 0 01 002 0.07 0.05 0.56 0.02 0.029
Maximum 0.72 0.236 0.22 0 0.03 039 0.1 0.11
DO UK 1 2 3 4 5 6 7 8 9 10 1no1 13 115 6 17 18 19 20 2 22 23 NRH
Minimum 6.01 9.5 4.4 81 732 493 45 34 657 52 66 9.7 4.490
Mean 10.13 858 10.67 8115 7.84 856 4.67 9.16 7.43 7.778 830 11.29 10.275
Maximum 12.20 116 122 1035 125 157 6.1 1221 87 88 13.1 19.400
pH UK 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15 6 17 18 19 20 21 22 23 NRH
Minimum 7.09 6 727 68 71 724 84 65 651 6.23 68 795 76 76 7 756 7.6 7.7

Mean 7.79 7.84 76 84 745 733 7.025 7.3 74 82 81 822 82 808 8089 7.9

Maximum 838 92 864 85 86 854 84 76 748 869 79 845 86 88 8 873 83 86

TSS UK 1 2 3 4 5 6 7 8 9 10 1no1 13 1“1 16 17 18 19 20 21 22 23 NRH
Minimum 272 75 28 02

Mean 18.03 7 1145 16.9

Maximum 85.70 336 28 489
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Appendix 3. Continued.

Mean  Range  Min mear Max mean Mean  Range  Min mear Max mean Conductivity Min ranee Mean mir Min mear Mean me Max meai Mean ma: Max range
153.65 6 0.162593 0 Minimum 0 0.162593 0.042328 0.337901 0.653439 0.504101 1
319.3162 40 617.5 0.337901 0.042328 0.653439 Mean
476.375 945 0.504101 1 Maximum
1
Potassium
0.509625 0 0.041773 [ Minimum 0 0.041773 0.139344 0.1956 0.237705 0.472173 1
2.386318 17 2.9 0.1956 0.139344 0.237705 Mean
5.760513 12.2 0.472173 1 Maximum

Magnesium

2.254511 0 0.07834 [ Minimum 0 0.07834 0.040655 0.259398 0.441299 0.399789 1
7.465149 117 12.7 0.259398 0.040655 0.441299 Mean
11.50541 28.7787 0.399789 1 Maximum

Ammonium

0.004379 0 0.005917 0 Minimum 0 0.005917 0 0.136391 0.577027 0.320499 1
0.100929 0 0.427 0.136391 0 0.577027 Mean
0.237169 0.74 0.320499 1 Maximum

Calcium
21.94823 1 0.21774 0 Minimum 0 0.21774 0.076091 0.508316 1.243353 0.769274 1
51.23824 7.67 125.33 0.508316 0.076091 1.243353 Mean
77.54278 100.8 0.769274 1 Maximum

Sodium
5.214113 2.5 0.103661 0 Minimum 0 0.103661 0.137377 0.208268 0.313702 0.376667 1
10.47583 6.91 15.77914 0.208268 0.137377 0.313702 Mean
18.94621 50.2997 0.376667 1 Maximum

Chloride

7.36505 0.6 0.086426 0 Minimum 0 0.086426 0.090004 0.195109 0.387242 0.413783 1
16.6268 7.67 33 0.195109 0.090004 0.387242 Mean
35.2618  85.218 0.413783 1 Maximum
Nitrate
1.2758 0 0.022304 0 Minimum 0 0.022304 0.001993 0.114105 0.450175 0.193915 1
6.526785 0.114 25.75 0.114105 0.001993 0.450175 Mean
11.09193 57.2 0.193915 1 Maximum
Sulphate
6.120144 0 0.022937 0 Minimum 0 0.022937 0 0.085455 0.287046 0.204561 1
22.80122 0 76.59 0.085455 0 0.287046 Mean
54.58122  266.821 0.204561 1 Maximum
Phosphate
0.005857 0 0.015018 0 Minimum 0 0.015018 0 0.242735 1.435897 0.397802 1
0.094667 0 0.56 0.242735 0 1.435897 Mean
0.155143 0.39 0.397802 1 Maximum
Do
6.225833 3.4 0.320919 0 Minimum 0 0.320919 0.240722 0.441032 0.582188 0.612371 1
8.556019 4.67 11.29444 0.441032 0.240722 0.582188 Mean
11.88 19.4 0.612371 1 Maximum
pH
7.168235 6 0.779156 0 Minimum 0 0.779156 0.763587 0.848796 0.913043 0.914514 1
7.808926 7.025 8.4 0.848796 0.763587 0.913043 Mean
8.413529 9.2 0.914514 1 Maximum
TSS
35 0.2 0.007153 0 Minimum 0 0.007153 0.014306 0.024082 0.034539 0.375298 1
11.78333 7 16.9 0.024082 0.014306 0.034539 Mean
183.6333 489.3 0.375298 1 Maximum
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