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ABSTRACT

Non-native species can profoundly affect native ecosystems through
trophic interactions with native species. Native prey may respond dif-
ferently to non-native versus native predators since they lack prior
experience. Here we investigate antipredator responses of two com-
mon freshwater macroinvertebrates, Gammarus pulex and Potamopyr-
gus jenkinsi, to olfactory cues from three predators; sympatric native fish
(Gasterosteus aculeatus), sympatric native crayfish (Austropotamobius
pallipes), and novel invasive crayfish (Pacifastacus leniusculus). G. pulex
responded differently to fish and crayfish; showing enhanced locomotion
in response to fish, but a preference for the dark over the light in response
to the crayfish. P. jenkinsi showed increased vertical migration in response
to all three predator cues relative to controls. These different responses
to fish and crayfish are hypothesised to reflect the predators’ differing
predation types; benthic for crayfish and pelagic for fish. However, we
found no difference in response to native versus invasive crayfish, indicat-
ing that prey naiveté is unlikely to drive the impacts of invasive crayfish.
The Predator Recognition Continuum Hypothesis proposes that benefits
of generalisable predator recognition outweigh costs when predators are
diverse. Generalised responses of prey as observed here will be adaptive
in the presence of an invader, and may reduce novel predators’ potential
impacts.

RESUME

Réponses de macro-invertébrés aquatiques aux prédateurs indigénes et non indigenes

Mots-clés :
comportement
antiprédateur,
non-native,
invasive,

Les especes non indigénes peuvent affecter profondément les écosystémes par
des interactions trophiques avec des espéces indigenes. Les proies indigénes
peuvent réagir différemment aux prédateurs indigénes ou non indigénes, car
elles manquent d’expérience préalable. Nous étudions ici les réponses antipré-
datrices de deux macro-invertébrés d’eau douce communs, Gammarus pulex et
Potamopyrgus jenkinsi, aux signaux olfactifs de trois prédateurs; poisson sympa-
trique natif (Gasterosteus aculeatus), I'écrevisse indigene sympatrique (Austropo-
tamobius pallipes), et une nouvelle écrevisse invasive (Pacifastacus leniusculus).
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Austropotamobius G. pulex ont réagi différemment aux poissons et aux écrevisses; montrant une

pallipes, locomotion accrue en réponse aux poissons, mais une préférence pour le noir
Pacifastacus sur la lumiere en réponse a I'écrevisse. P. jenkinsi ont montré une augmentation
leniusculus, des migrations verticales en réponse a tous les trois signaux des prédateurs par
alien, rapport aux témoins. Ces différentes réponses aux poissons et écrevisses sont
écologie des supposeées refléter les différents types de prédation des prédateurs; benthique
communautés pour les écrevisses et pélagiques pour les poissons. Cependant, nous n’avons

trouvé aucune différence en réponse aux écrevisses invasives ou natives, ce qui
indique que la naiveté de la proie n’intervient pas dans les impacts de I’écrevisse
invasive. L’hypothése du Continuum de Reconnaissance du Prédateur propose
que les avantages de la reconnaissance générique du prédateur I’emportent sur
les colits lorsque les prédateurs sont divers. Les réponses des proies comme
observées ici seront adaptatives en présence d’un envahisseur, et peuvent réduire
les impacts potentiels de nouveaux prédateurs.

INTRODUCTION

Adaptive changes in life history, morphology, and behaviour in response to predator pressure
(e.g. DeWitt and Scheiner, 2004) are generally costly in terms of a reduction in growth, sur-
vival and reproduction (Auld et al., 2010; Trussell and Nicklin, 2002). ‘Inducible defences’ are
adaptive as they allow prey to employ potentially costly predator avoidance strategies only
in the presence of a predator (Turner, 2008). The reliability of environmental cues is important
for the evolution of stable inducible defences (Harvell and Tollrian, 1999; Reed et al., 2010).
Environmental cues experienced during development may be important for antipredator
responses (Dalesman et al., 2009), particularly in freshwater systems (see Bronmark and
Hansson, 2007), but in some instances, antipredator responses may be innate (reviewed
by Mery and Burns, 2010). Ferrari et al. (2007) refer to this continuum between innate re-
sponses and generalised learnt responses as the Predator Recognition Continuum Hypothe-
sis. The Predator Recognition Continuum Hypothesis suggests that generalising antipredator
responses to novel potential predators is beneficial when the number of different predator
species is high, and that innate, fixed responses are preferential when the number of preda-
tors is low (Ferrari et al., 2007). This results from a high degree of predictability in prey re-
sponses where only a small number of predator species are encountered. Alternatively, where
a large number of different predators may be encountered, flexibility in responses is preferable
to innate antipredator behaviours.

Invasive, non-native species are major drivers of biodiversity loss and changes in community
structure in freshwater ecosystems (Vitousek et al., 1996; McGeoch et al., 2010). Many prob-
lems associated with animal invasive alien species arise from their predatory/consumptive
impacts on native species (e.g. Albins and Hixon, 2013). Predatory invaders may affect prey
densities and may also drive altered behaviour, life history, and morphology, with potential
ramifications throughout the ecosystem (reviewed in Simberloff, 2011). In many cases, inva-
sive predators have greater impact on prey than do native predator species (Haddaway et al.,
2012). The predatory impact of non-native invasive species may be a result of novel predation
strategies of non-native species that differ from those of native predators, or may be because
native species of prey cannot recognise non-native species nor respond to them with ap-
propriate predator-avoidance mechanisms (reviewed in Sih and McCarthy, 2002). Indigenous
species possess a repertoire of adaptive defences to local pathogens, parasites, competitors,
predators and/or herbivores as a result of ecological interactions over the course of evolu-
tion, but depending on the specificity of the defensive trait, such defences may not be useful
against newly introduced species.

Invasion by the American signal crayfish, Pacifastacus leniusculus, in Europe is associated
with environmental changes, including habitat degradation (Harvey et al., 2011) and reduc-
tions in native macroinvertebrate diversity (e.g. Jackson et al., 2014). The invasive crayfish has
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stronger predatory impact than the native species Austropotamobiu pallipes on several na-
tive prey species that has been shown to result from differences in prey choice and predatory
functional response (Haddaway et al., 2012), leading to the prediction that native prey show
lower antipredator defences to the invasive crayfish predator. Here we examine the antipreda-
tor responses of two highly abundant macroinvertebrates (the amphipod Gammarus pulex
and the gastropod Potamopyrgus jenkinsi) in UK rivers to three predators: a native fish (the
stickleback Gasterosteus aculeatus), a native crayfish (the white-clawed crayfish A. pallipes),
and an invasive non-native crayfish (the North American crayfish Pacifastacus leniusculus).
We test the hypothesis that prey should show a greater response to the native crayfish than
to the invader. We also compare prey responses to crayfish and fish predators with differ-
ent predatory strategies; crayfish are nocturnal sit-and-wait predators (Gherardi et al., 2001);
whereas the stickleback is a diurnal visual forager (Svenster et al., 1995).

METHODS
>PREY COLLECTION AND STORAGE

G. pulex were collected by kick-sampling from Meanwood Beck (NGR: SE279372, Lat/Long:
53.830319/1.577584) and P. jenkinsi were collected from Wyke Beck, UK (NGR: SE341363,
Lat/Long: 53.821861/1.483487) in March 2010. Both sites are inhabited by the native crayfish
(A. pallipes) and the native fish predator (G. aculeatus). Animals were naive to the invasive
crayfish (P. leniusculus). All animals were maintained at the University of Leeds at 17 degrees
C on a fixed light:dark cycle of 17L:7D and were fed ab libitum on rotting birch leaves. Exper-
iments were all undertaken in March 2010 during daylight. Prey animals were used as natural
food for crayfish following the experiments.

>PREDATOR COLLECTION AND STORAGE

Predators were collected using a combination of stone-turning and trap-setting for cray-
fish, and a D-net for fish from the following sites under relevant licenses (Environ-
ment Agency/Natural England/CEFAS); G. aculeatus from/to Saltfleet in Lincolnshire (NGR:
TF453939, Lat/Long: 53.421887/0.185085), A. pallipes from/to Wkye Beck (described
above), and P. leniusculus from Baylis Pools in Shropshire (NGR: SJ733088, Lat/Long:
52.676239/2.396330). Predators were maintained in constant environmental conditions (as
for prey, above) at the University of Leeds for two weeks prior to cue production. Predators
were fed daily on a mixture of frozen bloodworm and specialist crustacean dried pellets pro-
duced from white fish meal (Hikari Tropical Crab Cuisine®). All predators were fed the same
food, with excess removed regularly to avoid fouling of the water. Predators were returned to
their respective sources immediately following the experiments (with the exception of P. le-
niusculus). P. leniusculus were not released but held for further study, in agreement with UK
legislation regarding invasive species.

> EXPERIMENTAL DESIGN
Cues

Aquatic macroinvertebrates show antipredator responses to various cues (Dicke and Grostal,
2001). However, aquatic environments are often characterised by reduced visibility and
chemoreception is the major method of environmental sensing (Nystrém and /°-\bjé'>rnsson,
2000). Olfactory cues detected by prey may arise from predator kairomones (that benefit the
receiver but not the transmitter) or alarm signals (transmitted between conspecifics) (reviewed
by Chivers and Smith, 1998). In order to focus on differences in prey response between preda-
tors we used only predator kairomones and not alarm signals. Previous research has shown
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that prey can respond to olfactory cues from feeding fish irrespective of diet (conspecific ver-
sus other prey) (Paterson et al., 2013), and so feeding cues may conflate alarm signals with
kairomones. Future research may benefit from including feeding predator olfactory cues to
investigate these collective impacts of kairomones and alarm signals.

Olfactory predator cues were produced using water taken from tanks containing one of three
predator species (each observed to predate all prey species in preliminary trials); native fish
(the three-spined stickleback G. aculeatus), invasive crayfish (the North American signal cray-
fish P. leniusculus), and native crayfish (the white-clawed crayfish A. pallipes). Individual size-
matched (c. 80 mm total length) predators were maintained, unfed, in separate plastic tanks
filled with 1.6 | of dechlorinated tap water with one 5 cm pipe for shelter for a period of 24 h.
Cues were produced from a total of three individual predators of each species, and indi-
viduals’ cues were randomised across replicates throughout the experiment. Predators were
exchanged every three days during trials. A control cue was produced using dechlorinated
tap water.

Experimental procedure

For G. pulex, we investigated light/dark preferences (e.g. Bethel and Holmes, 1973) and de-
veloped a new protocol for an experiment to measure locomotory responses to predator cues.
For P. jenkinsi we measured vertical migration in response to predator cues (e.g. Turner, 1996).

Experiment 1 - Locomotory response in G. pulex

In this experiment G. pulex were tested for antipredator responses in the form of changes in
locomotion pattern. In order to track movement, a silt suspension was made using filtered
(0.1 mm mesh) mud from the field site. The suspension (c. 500 ml) was added to a white
tray (417 x 315 mm) along with 30 ml of predator or control cue, mixed thoroughly and
then allowed to settle for 2 min. Individual G. pulex were placed in the centre of the tray
and the path of the test animal was followed by photographing the trail it produced in the
silt over 180 s. Thirty individual prey were used, with each individual being used a total of
four times, once for each predator cue, with individuals assigned to random predator cue
sequences. Whilst this is not as preferable as using different individuals, they were exposed
to cues on four separate days with two rest days between cues to allow baseline behaviours
to re-establish between treatments , and treatments were assigned randomly across time to
each prey. Individual animals were maintained in dechlorinated tap water. Shelter and food
was provided in the form of washed rotting sycamore leaves (1 leaf per container).

TPS Dig2 (Rohlf, 1997) software was employed to place landmarks on digital images where
a substantial change of direction (>20 degrees) occurred. Sketches of track direction were
used to order landmarks correctly. In this way the number of changes of direction, individual
distances travelled and total distance travelled were recorded.

Experiment 2 - Light/Dark choice in G. pulex

To compare light/dark choices in the different predator treatments, a circular transparent plas-
tic pot (80 mm diameter) was filled to a depth of 20 mm with dechlorinated water (c. 100 ml)
and 30 ml of predator cue. One half of the pot was covered in black plastic and a single
light source was placed directly above the pot to create a shadowed “dark side” and a “light
side”. Individual G. pulex were placed in the centre of the pot, and over 180 s the time spent
in the dark was recorded. Treatments (30 replicates per treatment) were randomised over time
and the pot was rotated by 180 degrees between each trial. Trials were carried out on four
separate days with two non-experimental days between cues to allow baseline behaviours to
re-establish.
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Experiment 3 - Vertical migration in P. jenkinsi

In this experiment, the snail P. jenkinsi was tested for antipredator response in the form of
vertical migration and floating. Small plastic containers measuring 80 mm in diameter were
filled to a depth of 40 mm (c. 100 ml) with dechlorinated water and 30 ml of predator cue. In
each replicate, twenty individual P. jenkinsi were placed on the centre of the base of the pot.
After 3 h the number of snails in each of four location positions was recorded. The positions
were: “base” (remaining in the centre on the base), “climbing” (between the substrate and
the surface), “surface” (at or above the surface in contact with the sides), or “floating” (at
the surface and not in contact with the sides). Thirty replicates (each replicate containing
20 snails) were used per treatment and each group of snails was used once for each treatment
(four times in total; order of treatments randomised). Experiments were run in a total of four
days, with six replicates run per day. Two rest days were used between trials to allow for
re-establishment of baseline behaviour. Pots were randomised spatially.

>STATISTICAL ANALYSIS

All analyses were performed using R (R Development Core Team, 2005). In all cases where
significant differences between predator cues were detected, pairwise comparisons were per-
formed without adjustment of p-values. Instead, Bonferroni adjustment of alpha (typically
a = 0.05) based on the number of pairwise comparisons was employed for clarity.

The number of changes of direction and total distance travelled by G. pulex were com-
pared between treatments using linear mixed effects models with individual prey identity as
a random effect, since residuals were normally distributed (distance travelled (Shapiro-Wilk:
W = 0.992, p = 0.583), changes in direction (Shapiro-Wilk: W = 0.988, p = 0.228)). All
variances were homogeneous (p < 0.05). Time spent in the dark was compared between
predator cues for G. pulex using a linear mixed effects model (LME) using individual prey
identity as a random effect. Pairwise comparisons were undertaken using similar linear mixed
effects models. A principal components analysis (PCA) was performed on position data from
experiments with P. jenkinsi and used to produce three principal components. The first and
second principal components were tested against treatment with linear mixed effects model
(LME (Pinheiro and Bates, 2000)) with the random effect being the snail group used.

RESULTS
>EXPERIMENT 1 - LOCOMOTORY RESPONSE IN G. PULEX

We found that total distance travelled by G. pulex differed significantly between predator cues
(LME: F3,109 = 7.055, p < 0.001) (Figure 1, Table I). G. pulex travelled further in the presence of
the invasive crayfish than in controls or in the presence of native fish. There was no significant
difference in distance travelled in response to native versus invasive crayfish. Native fish cues
elicited no detectable change in comparison with controls and all other pairwise comparisons
were not significant (p > 0.008; threshold of significant, a, conservatively reduced to account
for multiplicity of p-values in pairwise comparisons). We found the number of changes of
direction by G. pulex to be unaffected by predator cue (LME: F3 199 = 2.450, p = 0.070).

> EXPERIMENT 2 - LIGHT/DARK CHOICE IN G. PULEX

We found that time spent by G. pulex in the dark relative to the light differed significantly
between predator cues (LME: F3 115 = 17.408, p < 0.001) (Figure 2, Table Il). G. pulex showed
no difference in phototactic behaviour in response to cues from native or invasive crayfish
in comparison with the control, whereas prey spent significantly more time in the dark in
response to the native fish relative to controls, invasive crayfish and native crayfish.
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Figure 1

Total distance travelled over 180 seconds for Gammarus pulex presented with different predator cues;
“Control” — no predator cue, “Native fish” — Gasterosteus aculeatus, “Non-native crayfish” — Pacifastacus
leniusculus, “Native crayfish” Austropotamobius pallipes. Points are means and bars are + two standard
errors. Lines above indicate significant pairwise differences at Bonferoni adjusted « = 0.008.

Table |

Pairwise comparisons for linear mixed effects model of total distance travelled in G. pulex locomotory
response experiment. Degrees of freedom for all pairwise comparisons =1,56. *denotes statistical sig-
nificance relative to a Bonferonni-adjusted level of alpha, a = 0.008.

Control - F=0.076 F=5.599 F=14.315
p =0.784 P =0.021 P < 0.001*
Native fish - F=4.672 F =10.933
P =0.040 P =0.003*
Native crayfish - F=2.608
P=0.119

Invasive crayfish -

Two grouping variables were identified in the PCA for the vertical migration results; relocated
(all responses where snails had moved from the bottom of the arena; climbing, at or above the
surface, or floating) and static (snails remained on the bottom of the arena). This relocated-vs-
static variable was the main factor structuring variability along the first principal component.
Although we use the terms relocated and static it is possible that the “static” snails had
moved but returned to the base of the pot. The relocated-vs.-static variable accounted for
substantial variation in the data (eigenvalue = 2.498, 62.4 percent of total variation). Table IlI
shows the magnitude and direction of the contribution of each variable to this first princi-
pal component. Distinct differences between the three predator cues and the control along
this axis are evident in Figure 3 (LME: F3115 = 13.994, p < 0.001), showing that snails re-
sponded significantly to all predators but failed to leave the base in controls. Native and
invasive crayfish cues are grouped centrally around zero, corresponding to equal degrees of
static and relocated behaviours (mean snail number of 8.0 relocated and 12.0 static for both
native and invasive crayfish). Native fish cues are clustered high on the axis, corresponding
to high levels of relocated behaviours, with snails responding greatest to native fish, then
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Figure 2

Time spent in dark for Gammarus pulex presented with different predator cues; “Control” — no predator
cue, “Native fish” — Gasterosteus aculeatus, “Non-native crayfish” — Pacifastacus leniusculus, “Native
crayfish” Austropotamobius pallipes. Points are means and bars are + two standard errors. Lines above
indicate significant pairwise differences at Bonferoni adjusted « = 0.008.

Table Il

Pairwise comparisons for linear mixed effects model of time spent in the light in G. pulex light/dark
response experiment. Degrees of freedom for all pairwise comparisons = 1.56. *denotes statistical sig-
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nificance relative to a Bonferonni-adjusted level of alpha, a = 0.008.

Control - F =53.787 F =0.594 F =5.520
P < 0.001* P =0.447 P =0.026

Native fish - F =36.776 F=21.708
P < 0.001* P < 0.001*

Native crayfish - F=1.786
P=0.192

Invasive crayfish

Table Il

Contributions of activity measures towards the first principal component (PC1) of a PCA for Potamopyr-

gus jenkinsi following exposure to predator cues.

Surfacing (at or out of surface and in contact with sides) 0.484
Floating 0.465
Climbing 0.390
Base (remaining at site of release) -0.630

native and invasive crayfish together. Pairwise comparisons identified significant differences
between controls, invasive crayfish, and fish predator cues, but indicated no differences be-
tween crayfish groups (see Table 1V). The second principal component (eigenvalue = 0.886
22 percent of variation) was not significantly affected by predator cue (LME: F3 45 = 0.531,

p = 0.472).
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Figure 3

First principal component from PCA of vertical migration activity in Potamopyrgus jenkinsi between
predator cues. “Control” — no predator cue, “Native fish” — Gasterosteus aculeatus, “Non-native cray-
fish” — Pacifastacus leniusculus, “Native crayfish” Austropotamobius pallipes. Points are means and bars
are + two standard errors. Different letters indicate significant pairwise differences at Bonferoni adjusted
a = 0.008.

Table IV

Pairwise comparisons of P. jenkinsi vertical migration responses to different predator cues. Degrees of
freedom for all pairwise comparisons = 1.57. * denotes statistical significance relative to a Bonferonni-
adjusted level of alpha, a = 0.008.

Control - F =501.469 F=72147 F =79.553
p < 0.001* p < 0.001* p < 0.001*
Native fish - F =66.273 F =94.727
p < 0.001* p < 0.001*
Native crayfish - F =0.006
p =0.938

Invasive crayfish -

DISCUSSION

We found that G. pulex responded differently to fish and crayfish predators, which probably
reflects the different selective pressures imposed by these predators. In accord with previous
studies (Perrot-Minnot et al., 2007), they responded to olfactory cues from native fish by in-
creasing the time spent in the dark. G. aculeatus is a visual predator (Ohguchi, 1978) and is
diurnal (Sevenster et al., 1995), and this antipredator behaviour displayed by G. pulex should
reduce the likelihood of predation. We found no evidence of a locomotory response to the fish
predator, in contrast with other studies that have reported decreased locomotion in response
to olfactory fish cues (Dunn et al., 2008; Abjérnsson et al., 2000). These differences may re-
flect the selective pressures of the habitat. In our study, G. pulex were sourced from a shallow
muddy stream, where habitat features such as a low water depth and dense benthic detritus
may reduce the risk of visual detection whilst favoring refuge seeking responses to fish preda-
tors. Antipredator responses can be costly (e.g. Daly et al., 2012), affecting reproduction and
distribution patterns (e.g. Dunn et al., 2008) and hence there is likely to be strong selection for
habitat specific responses that optimize the tradeoff between predator avoidance and other
life history costs.
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In contrast with the response to fish, G. pulex showed no change in phototactic behaviour
but responded to crayfish by moving further over the 180-second experimental period. This
behaviour may reduce the likelihood of predation (Ohman, 1988) by these nocturnal, sit-and-
wait predators (Gherardi et al., 2001), since darkness is not necessarily a haven from predation
by crayfish and yet increased movement during daylight, when crayfish are less likely to be
feeding, may well result in reduced predation.

The snalil, P. jenkinsi, responded to all three predator cues. It showed the greatest movement
in response to native fish olfactory cues, displaying more surfacing, climbing, and floating re-
sponses than remaining on the base. A lower level of these relocating behaviours occurred in
response to the two crayfish predator cues. The difference in magnitude of response elicited
between native fish and both crayfish cues may result from the different modes of preda-
tion of these predators. Fish feed throughout the water column and snails on all surfaces are
susceptible to predation , although those that escape the water column by exiting the water
or moving to refuge in habitat complexity may escape, accounting for the elevated activity
in response to fish. Crayfish, however, can only feed from the benthos and so snails need
only migrate above the level accessible to crayfish chelae to avoid predation. In a simple
environment, such as our experimental containers and many natural environments, this cor-
responds to vertical migration. This observation of vertical migration in response to crayfish
predation is in accord with observations in the field (e.g. Lewis, 2001), where snail distribution
in North American lakes was negatively spatially correlated with crayfish presence. Turner
et al. (2000) and Bernot and Turner (2001) found the snail Physa integra to respond differently
to fish and crayfish, but they noted that snails sought shelter in the presence of fish and ver-
tically migrate in the presence of crayfish, whereas shelter was not provided in current study.
Our results contrast with studies of Lymnaea, however, who found no response to non-native
crayfish (Orr and Lukowiak, 2009; Orr et al., 2009).

G. pulex did not demonstrate different antipredator behaviours in the presence of native rel-
ative to invasive predator cues to which the study population was naive. Similarly, no dif-
ference in activity was evident in snail behaviours between native and invasive crayfish cues.
Covich et al. (1994) found that two species of snail were unable to differentiate between native
and invasive crayfish predators, responding similarly to both P. leniusculus and Procambarus
acutus. Similar work by Dalesman et al. (2006) shows that naive snails (Lymnaea stagnalis)
respond to olfactory cues from native fish predators with vertical migration, despite having
no prior experience of the predator. Our results indicate that both G. pulex and P. jenkinsi
are able to detect invasive crayfish despite a similar lack of prior experience, responding with
appropriate antipredator behaviours.

The Predator Recognition Continuum Hypothesis predicts that prey may be more likely to
generalise antipredator responses to novel predators where the number of predator species
is high (Ferrari et al., 2007). It is interesting that both the snail P. jenkinsi and the amphi-
pod G. pulex showed similar responses to the native crayfish with which they are sympatric
and the invasive crayfish predator. The number of predatory species in Wyke and Meanwood
Becks may be sufficiently high that novel potential predators are responded to in the same
manner as known predators as predicted by the Predator Recognition Continuum Hypothe-
sis. This high predator diversity may favour generalised responses to crustacean predators,
for example, since innate responses would be unfavourably inflexible. A more parsimonious
explanation may be, that kairomones released by the invasive crayfish are sufficiently similar
to those of the native crayfish that prey simply respond as they would to native predators.

Ferrari et al. (2007) proposed that selection will favour generalisation of antipredator re-
sponses to phylogenetically related prey that are likely to share similar predatory tactics. In
addition, related predators are more likely to provide similar cues. The native (A. pallipes) and
invasive (P. leniusculus) crayfish belong to the same Family and hence kairomones released
by the invasive crayfish may be sufficiently similar to those of the native crayfish that prey
respond as they would to native predators. In contrast, Gomez-Mestre and Diaz-Paniagua
(2011) found that Rana perezi tadpoles exhibited changed activity in response to native
dragon fly (Anax imperator) predators but not to the phylogenetically distant invader the red
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swamp crayfish (Procambarus clarkii). Invasive predators drive changes in biodiversity and
community structure through their interactions with native prey species. We have recently
reported a higher predatory impact by the invasive signal crayfish than the native white-
clawed crayfish (Haddaway et al., 2012). However, our data do not support the hypothesis
that naiveté underlies this increased rate of predation, with such differences more likely to re-
flect differences in predator behaviour. The innate responses of both amphipod and mollusc
prey observed in our study indicate a generalised antipredator response that is likely to be
adaptive in the context of invasion by novel crayfish predators.

Although reductions in invert diversity and abundance have been reported following invasion
by signal crayfish, our results do not support the hypothesis that prey naiveté is a factor for
snails and amphipods. Further work is needed to investigate whether other species of prey,
particularly those that are already threatened by existing factors such as habitat degradation,
also recognise novel crayfish.
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