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Abstract

We analyse the optimal times for implementing unitary quantum gates in a constrained finite di-
mensional controlled quantum system. The family of constraints studied is that the permitted set of
(time dependent) Hamiltonians is the unit ball of a norm induced by an inner product on su(n). We
also consider a generalisation of this to arbitrary norms. We construct a Randers metric, by applying a
theorem of Shen on Zermelo navigation, the geodesics of which are the time optimal trajectories com-
patible with the prescribed constraint. We determine all geodesics and the corresponding time optimal
Hamiltonian for a specific constraint on the control i.e. xTr(H.(t)?) = 1 for any given value of x > 0.
Some of the results of Carlini et. al. are re-derived using alternative methods. A first order system
of differential equations for the optimal Hamiltonian is obtained and shown to be of the form of the
Euler Poincaré equations. We illustrate that this method can form a methodology for determining which
physical substrates are effective at supporting the implementation of fast quantum computation.

1 Problem and Motivation

1.1 TImplementation of Quantum Gates in Constrained Quantum Systems

We study the speed that a quantum system can implement a desired quantum gate. Here, all systems have
pure states and finite dimensional Hilbert spaces associated to them.

This question has been discussed from many perspectives before, for example [1,11,20,25,30,31, 36,41,
46]. Notable recent works based on geometric methods are [11,12,45]. Our previous work [39] begins an
investigation into the application of “Zermelo Navigation” to determining speed limits for implementing
quantum gates in systems of the form eqn.(1), by a applying a solution in time optimal control based on
Randers geometry [14]. We attempt to solve essentially the same problem as Carlini et al [12], but in a way
based on intrinsic geometric structures in order to derive a first order equation for the optimal Hamiltonian
driving the time evolution operator.

Caneva et al [10] address the behavior of a commonly applied numerical algorithm, the Krotov method,
near the quantum speed limit [10]. Nielsen [35] has highlighted a connection between Finlser geometry and
quantum optimal control. Furthermore, this work indicates an interesting connection between quantum
circuit complexity and Finsler geometry. A fuller bibliography on the quantum speed limit more generally
can be found in the introduction to [39].

In order to implement a certain quantum information processing (QIP) task in a controlled quantum
system, we consider the dynamics of the system (more precisely, the time evolution operator Ut) as given by
the Schrédinger equation:

% — —ifl,0, = =i (Ho + Ho(1)) Ur (1)



This is a standard form taken by the Schrodinger equation in the case of a quantum optimal control problem
[46]. Hy is the ‘drift’ Hamiltonian, which represents the dynamics of the system in the absence of control
fields; here we take it to be time independent throughout. ﬁc(t) is the control Hamiltonian, which represents
the effect of control fields on the dynamics of U,. We say that a quantum system implements a gate O at
time 7" if Up = O [12,39,45].

1.2 Central Results of the Paper

We show that, under the assumption that H.(t) is constrained such that h(iH.(t),iH.(t)) = 1 for some inner
product on su(n), the time optimal trajectories of the time evolution operator U, are exactly the geodesics
of the following right invariant Randers metric on SU(n):

F (A0 = W@Aumf@)a +h(A,)\z'Ho) o

where A\ = 1 — h(iHy, iHp).
We show that, under the assumption that H,(t) is constrained such that xTr(H,(t)2) = 1 (that is,
choosing h to be some multiple of the Killing form of su(n)), the time optimal trajectories are given by:

V, = exp(—itHy) exp(itD)

for some iD (depending on the desired gate) in su(n) such that h(iD,iD) = & Tr(D?) = 1.
We show that, under the same constraint, the optimal control Hamiltonian is:

H,(t) = — exp(—itHy)D exp(it Hy) (3)

We give a series expansion based on the Baker—Campbell-Hausdorff formula for D in terms an arbitrary
desired gate O € SU(n).

We present a set of equations (88) which determine the time optimal control Hamiltonian for an arbitrary
gate in any situation where F(iH,.(t)) = 1 for an arbitrary Minkowski norm F on su(n) in scenarios where
F(iHy) < 1 for that same norm.

2 Speed Limits in Constrained Systems

In this section we outline the problem of Zermelo navigation on a manifold. We illustrate how a Randers
metric, which depends on the ‘drift’ dynamics of a controlled dynamical system on a manifold and the driftless
speed of the navigator, has the property that its geodesics are time optimal trajectories for navigating on the
same manifold. We discuss Shen’s theorem [42] which provides an explicit formula for this Randers metric.
We are motivated by the desire to determine time optimal trajectories in quantum systems with constraints
in novel ways. This method builds on previous work as it allows one to obtain the optimal time for arbitrary
trajectories, as well as determining theoretically optimal ones. This is practically relevant as it is not always
the case that all trajectories can be practically realised.

In the following we use the notation 7}, M to refer to the tangent space at the point p on a manifold M,
and T'M to refer to the entire tangent bundle of a manifold, that is, all tangent spaces considered together.
For example T SU(n) is the tangent space to SU(n) at the point U € SU(n). We use the notation I' (T M)
to refer to the set of all smooth sections of the tangent bundle T'M, that is, effectively to say, all smooth
vector fields on M. For good references using this notation for both general manifolds and Lie groups,
see [9,30].



2.1 Randers Metrics and Shen’s Theorem on Zermelo Navigation

2.1.1 Definition of a Finsler Metric

A Finsler metric on a manifold M, of which a Randers metric is a special case, is a type of metric structure
generalising a Riemannian metric. This generalisation is essentially that the norm induced on each tangent
space does not need to be induced by an inner product. Technically, a Finsler metric on a smooth manifold
M is a smoothly varying ‘Minkowski norm’ on each tangent space on M.

Definition A Minkowski Norm on a vector space V is a function |- | : V — R which satisfies the following
axioms:

e Yo eV, |v]|>0. |v] =0« v=0. Positive definite.
e Vv e V,VA € RT, || = Av|. Positive homogeneous.

o Yu,v €V, |u+v| < |v|+ |u|. Subadditive.

e Vu,z,y € V the Hessian of | - |* is positive definite. That is: % azzat v+ tx + sy|? >0
t=0,s=0
The only Minkowski norms that are true norms are exactly those that are reversible: | —v| = |v| Vv € V.

For a detailed discussion of this definition see [2,14]. See [23] for an interesting and thorough discussion of
variations of Finsler metrics in use in applications.
2.1.2 Zermelo Navigation

We note a type of metric for which the lengths of any curve is the optimal traversal time rather than just
a bound, namely Randers metrics. A Randers metric is a specific case of a Finsler metric [14]. A Randers
metric on a manifold M is a Finsler metric on M which is a Randers norm on each tangent space.

Definition A Randers norm on a real, finite dimensional vector space RY is a map |- | : RN — R which
can be written as follows:

vl = Va(v,v) +B(v) (4)
where « is an inner product on RV and 3 is a one form.

Definition Subsequently, a Randers metric on a manifold M can always be written as a Finlser metric with
fundamental function Fj, : T,M — R of the following form:

Fyp(v) = \/ap(v,v) + Bp(v) (5)
for any v € T, M, where a is a Riemannian metric in the usual sense and /3 is a differential one form.

A theorem due to Shen relates the problem of Zermelo navigation on a Riemannian manifold (M, h) in the
presence of vector field W (such that h,(W,, W,) < 1,Vp € M) to the geodesics of Randers metrics [14, Ch.2].
The results of Shen [42] completely classify Randers metrics and demonstrate that they are in one to one
correspondence with Zermelo navigation problems on Riemannian manifolds.

The problem of Zermelo navigation on a Riemannian manifold can be stated as follows [3]. Given:
e A Riemannian manifold (M, h)

e A smooth vector field W € I'(T'M) such that h,(W,,W,) <1,Vpe M



determine the time optimal trajectories to follow in order to navigate from an arbitrary given initial point p;
to an arbitrary given terminal point py on M, where the navigator is restricted such that its speed (according
to h) in the absence of wind (i.e. W = 0) is exactly 1.

Shen’s theorem can be stated as follows: the time optimal trajectories are exactly the geodesics of the
Randers metric F' defined by the following equations:

Fp(v) = ap(vav) + ﬁp(v) (6)
_ hp(u,v) + ApBp(u)Bp(v)
ap(u,v) = )
Byl) = 2]

Ap =1 = hyp(Wp, Wp)

where these definitions hold Vu,v € T,M,¥p € M. The optimal times are the geodesic lengths of the
same metric. (M, h) and W together are know as the navigation data for the specific instance of Zermelo
navigation. For a full derivation of these facts and much more detailed discussion providing stronger intuitive
aids, see [14, Ch.2]. For a recent application to quantum computing see [39].

2.2 Right Invariance and Right Extension

It is well known that SU(n) is a compact, connected Lie group. Here we state some standard definitions
from Lie theory (see for example [9,18,26]), relevant for our later derivations.

Definition A function F : T'SU(n) — R is said to be Right Invariant if the following holds:
Fp o (dRy | (4)) = Fy(A) (7)

YU,V € SU(n),YA € Ty SU(n). As SU(n) is a linear algebraic group (or LAG) [22] this definition simplifies
to:

Fyyp(AV) = Fy(A) (8)
Definition A function F' : TSU(n) — R is said to be the Right Extension of G : T;SU(n) — R if the
following holds:

Fy(A) = F;(AUY) 9)

One readily checks that right extension always leads to a right invariant function on TM.

This construction allows one to construct all right invariant Randers metrics on SU(n) as they are in one
to one correspondence with pairs of the form («, 8) wherein « : su(n) x su(n) — R is an inner product on
su(n) (when identified with the tangent space at the identity) and f : su(n) — R is a one form on su(n). «

and § can be combined into a Randers norm F : su(n) — R by setting F(A) = /a(A, A) + B(A). Now the
metric can be set to be the right extension of this function to the entire tangent bundle of SU(n) as follows:

Fy(AU) = Fi(A) = \Ja(4, A) + B(A) (10)

One can also easily check that F' is a smooth function on TM/{0} (the slit tangent bundle) in the required
sense to be a Finsler metric. This follows from the fact that right translation in a Lie group is smooth as
the group multiplication operation is smooth.

One could equally right translate o and 8 before adding them, but this would yield the same result. It
it readily checked that a Randers metric is right invariant exactly when its Riemannian and linear parts are
right invariant individually. This fact precludes the possibility of a bi-invariant Randers metric on SU(n) as
there are no bi-invariant one forms on SU(n).



2.3 Shen’s Theorem Applied to Right Invariant Metrics on SU(n) and Quantum
Mechanics

We now set up the problem of Zermelo navigation on SU(n) and show how it can be applied to quantum
mechanics. Suppose that h : su(n) x su(n) — R is an inner product on su(n). Suppose that a con-
trolled quantum system of the form eqn.(1) is constrained such that its control Hamiltonian H,(t) satisfies
h(iH.(t),iH,(t)) = 1, Vt. That is, the constraint is time independent and satisfied for all time. It is clear that
the right invariance of the Riemannian metric hy (formed by right extending h) corresponds to a constraint
only on ﬁt, not any constraint depending on U, explicitly. This argument is very similar to the argument
for the requirement of right invariance presented in [35].

Suppose further that a drift Hamiltonian Hy is given. The time evolution operator for our quantum
du,
has two terms: —iH.(¢)U; and —iHyU;. In order to fix terminology closer to the original formulation of the

system now satisfies a Schrodinger equation of the form eqn.(1). The tangent vector to the curve Uy
Zermelo navigation problem, we define the “wind” vector field on SU(n) by Wﬁ = —iH,U.

In such a setup, there is enough information to construct the “navigation data” for a Zermelo navigation
problem. From these ingredients one can construct a Finsler metric (which is in fact a Randers metric)
that has the property that its geodesics are the time optimal trajectories for U, to be driven between given

endpoints, by applying Shen’s theorem, eqn.(6). This Randers metric is FU(A) = \/040(/1, A) + By (A). In
terms of the navigation data (h, W) on SU(n), the o and 8 are found to be:

Mg (AU, AU + hyp (AU, W )?

040(/1[7,/1[7) = 2 (11)
 hy(AU,AD) N ho (AU, —iHoU)?
= 3 =
_ h(4 A N h(A,iHy)>?
- v
- hi (AU, —iHoU A, il Ty
8y (Al = — oAU ZiHhU) ___h(d,—iflo) WA, —io) "
1 — hy(—iHoU,—iHoU) 1 — h(iHo,iHo) A
Thus F' is, in full, given by:
PN - 1 . .
P h(A,A)  h(A,iHo)?  h(A,—iH, .

As stated above, the right invariance of this quantity is clear. Here A, =1 — hU(AU,Aﬁ) =1- h(/l,fl),
thus we note that A\ is a scalar quantity because it is right invariant, and that all right invariant scalar
quantities are constant. This is a simplifying factor of the case when h and W are right invariant compared
to the general case.

2.4 The Length Functional when F' is Right Invariant

In Riemannian geometry, each Riemannian metric defines a length functional on the space of all curves on
a Riemannian manifold. The situation in Finsler geometry is essentially identical.
The length functional L[U;] for a curve Uy : [0, T] — SU(n), for a Finlser metric can be written as follows:

. .
LU, = /t_o Fy, <%> dt (14)



In the case that F is is right invariant one finds:

L[Ut]:/t ) <dZtUt )d

In the case that Uy solves the Schrodinger equation (1) one finds:
T T
A du, A
LU, = / Fy, [ St ) de = / 7, (—iH(t)Ut) dt (15)
t=0 dt t=0 ‘

T T
- / F (—ufl(t)) dt = / F (—iﬁo - iﬁc(t)) dt
t=0 t=0
The length L[Ut] depends only on quantities in su(n) rather than on the group in general, as all dependence
on U, itself has disappeared. It is possible to formulate the geodesic equation for such a Finsler metric as an
ODE in su(n), and leads to an equation for the time optimal control Hamiltonian for a controlled quantum
system with the type of constraint discussed above.

2.5 Geodesics of Right Invariant Randers Metrics on SU(n)

This shows that the desired time optimal trajectories required are the geodesics of a right invariant Randers
metric on SU(n). In order to find these geodesics we must determine the extremal curves of the length
functional for a Randers metric:

. T dU, dU, | du,
L[Ut] :/0 g, <d_tt’ d—tt> ﬁUt ( t) dt (16)

under the assumption of right invariance.

This could be achieved via the usual Euler-Lagrange (EL) equations. However another method exists that
exploits the right invariance of the metric. By considering the quantity dtt Ut = de Ut , we can determine
a first order differential equation for its value along a geodesic, the Euler-Poincaré (EP) equations ( [13,19];
see [27] for an application to optimal control) by the procedure of Lagrangian reduction. Furthermore, we
have dtf Ut = iﬁt, by applying the Schrodinger equation for any potentially time dependent quantum
system. These yield a first order equation for the Hamiltonian which drives the system along a geodesic of
any given Randers metric.

The geodesics of Randers metrics have already been seen to be the time optimal trajectories for the
relevant constraint, so the EP equations corresponding to a Randers metric on SU(n) are a first order system
of equations for the Hamiltonian driving U, along a time optimal trajectory. This illustrates an alternative
understanding of the origin of the first order “Brachistochrone” equation [12], at least in a special case.
Applying boundary conditions to such an equation allows us to obtain the Hamiltonian that drives U, from
I to a desired operator (i.e. a specific quantum gate) in the least time.

In a coordinate-free language (where £ € su(n)) the EP equation reads [13,19):

d ot ol

= adf (= 17

i =~ (%) o
where ¢ : su(n) — R is the restriction of an arbitrary right invariant Lagrangian £ : T'SU(n) — R to su(n),
and ad”™ is the co-adjoint representation of su(n) [5]. Note the minus sign here: this is due to the metric here

being right invariant rather than left invariant as is more commonly studied in pure mathematics contexts
such as [19].



There are some additional conditions on £ for the EP equations to apply; these can be readily found
in any mathematical description of the theory of Lagrangian reduction [13,27]. It is clear that all Finsler
metrics meet the required conditions. For example, it is clear that the regularity condition is met, as it is
present in the definition of a Finsler metric.

This equation may also been seen with a § (signifying a functional derivative) in place of the d above; this
is the form of the equation which applies to infinite dimensional problems rather than the finite dimensional
ones studied here.

On fixing a basis {By} for su(n) and expressing an arbitrary element —iH, as £ By, the EP equation
takes the form [13,19]:

d or , ot

dEogd —Cada—gbfa (18)

where C%, are the structure constants of su(n). See [18] for details of structure constants in general, and [37]
for su(n) specifically, where the structure constants of su(2) and su(4) are given explicitly. The tensor C
possesses many symmetries, including C7;, = —C¢, for example; this follows directly from the antisymmetry
of the Lie bracket. The use of these symmetries as a tool for simplifying the EP equations in the case of
su(n) will be included in further work.

Henceforth the subscripts indicating a point on SU(n) are dropped from « and 3, and they are understood
to be restricted to the tangent space of SU(n) at the identity, i.e. su(n). However, coordinate indicies still
appear.

Setting ¢ to be the square (to obtain unit speed geodesics) Randers norm /(A) = (F|I(/i))2 =

2
z (\/a(/l,fl) —i—B(A)) , i.e. the restriction of a Randers metric F' on SU(n) to su(n), we can derive

the EP equation associated to the geodesics of F'.

1
2

Substituting:
s = (€)' + 5ie") (l€llx an” + 50 19)

Differentiating:
% (55) = 3 Uleha + 1) el anag + 5o (20)

d
= (11614 ©a + Bi€) (116113 ama™ + Ba) -
(Iglla + B1€*) (12 € ) aomag® = IIg]1" anaé")
These yield the EP equation of a geodesic:
(1€ ©)a + B,€7) (I€]|" amas™ + Ba) - (21)
(€l + Beg®) (IEI12 €, Eacrnac® — Nl anaé”)
= ~Ci ((€lla + BE") (IE]15 nat™ + B)) €

where we take the following meanings: ||€]|a = /@;;€¢7" and (u, v)q = aiju'v?.

We are interested in the geodesics associated to a navigation problem specified in terms of its navigation
data. Such an equation can be obtained by substituting in the definitions of & and 3 in terms of h and W from
Shen’s solution to the navigation problem. This is an elementary but somewhat tedious computation that
provides little insight, so is omitted here. Many numerical /approximate methods exist for solving this type
of first order ODE. Thus, many practical approaches could be taken to solving for the optimal Hamiltonian
after obtaining the equation in terms of ~ and 0. We leave obtaining this final equation to the reader.



2.6 Applications of Killing Fields to Determining Geodesics

Choose h(fl, /1) =K Tr(fﬂ/l) (i.e. a constant positive multiple s of the Killing form); then the right extension
of h is the unique bi-invariant metric. This is essentially the case studied in [12,39]. It exhibits a simplifying
factor pertaining to the task of determining geodesics. The geodesics can be determined by an application
of a special case of Robles [38, thm.2]. We use ¢ = 0 in that theorem, as the special case of a Killing field
(see [21] for definitions) in place of the infinitesimal homothety. Also, we specialise to SU(n), rather than
a general manifold, as this is the case relevant to quantum mechanics. In fact, there are no infinitesimal
homotheties that are not Killing fields for the bi-invariant metric on SU(n), so no real restriction has been
incurred on which metrics can have their geodesics determined using the following theorem. The theorem
states:

Theorem 2.1 (adapted from [38, thm.2]) Given:
e A Riemannian manifold (M, h)

e A smooth vector field W € T(TSU(n)) on SU(n) such that Ly, (h) =0 (that is, the Lie derivative of
the metric is 0, or equivalently W is a Killing vector field).

Given that F is the Randers metric solving the Zermelo navigation problem on M for h and W, then the
unit F' speed geodesics of F' are given by V, = o (S’t), where:

e ¢ is the flow associated to 174
o S is a unit speed geodesic of h

Any geodesic of F' obtained this way is a length minimiser if and only if the associated Riemannian geodesic
of h is a length minimiser of h [38].

In the case that h is the bi-invariant metric, the unit speed geodesics S, are the one parameter subgroups
of SU(n), parameterised to have unit h speed. These can all be expressed as S, = exp(itf)) for some
De su(n) that is a unit vector for the same h. The flow associated to the vector field VVU = —iHyU is
¢+(U) = exp(—itHy)U. This follows from the observation that the equation defining the flow is exactly the
Schrédinger equation with Hamiltonian Hy. We thus conclude that the time optimal trajectories are given
by:

Ur = 61(8) = 01 (exp(itD)) (22)
= exp(—itHy) exp(itD)

This is to be compared with [12, eqn.51] which exhibits a similar product of exponential structure.
We determine the optimal Hamiltonian by assuming U; solves the Schrodinger equation for an as yet

unknown Hamiltonian H;:

U o
d—tt = —'LHt‘/t (23)
which implies that:
. dU; -
H = ZgUtT (24)

=i ((=iflo)V; + V(D)) V'

=i ((—il?lo) + V}(if))fﬂ)

= Ho - V(D)VT

= Hy — exp(—itHy)(D) exp(itHp)
= Ho +iAd i) (D)



In order to conclude that these are the geodesics and their associated Hamiltonians, we check that the
given VVU is a Killing field for the metric h. This is achieved by checking £;,(h) = 0 thus:

d

ahm(m (doe] (AV), do ] (AV)) (25)

t=0

—itHy) AV, exp(— itHo)AV)

- dt exp( tho)V (exp

t=0
d PN PN
= —h i lexp(—itHy)A, exp(—itHy)A
dt exp(—itHo) ( ) o
d IO
= —h;(AA) =0
dt’ o

where V is an arbitrary group element and AV is an arbitrary element of Ty SU(n). We have d(bt‘v ) =
exp(—itHp)AV trivially, as it is the differential of a linear map. Here, both the left and the right invariance
of the metric h have been appealed to; this proof would need to be modified, or may not hold, in the case
that h is not the unique bi-invariant metric.

We conclude (by subtracting Hy) that the control Hamiltonian H,(t) driving a system (which meets the
required premises) along a time optimal trajectory is given by:

H.(t) = — exp(—itHy)D exp(it Hy) (26)

This is constant exactly when D commutes with f[o, which, from eqn.(28), is equivalent to saying that H,
commutes with O. Thus we have obtained a necessary and sufficient condition for the time optimality of
constant control fields for any system meeting the premises of the above derivation. This condition neatly
sidesteps the need for the analysis of “homogenous geodesics” (see [28,29] for much interesting mathematical
discussion and [33,34] for more direct physical applications of the concept) of right invariant Randers metrics,
which could pose significant mathematical challenges. See section (2.10) for a fuller discussion of this topic
of homogeneous geodesics.

What remains to determine is the formula for a geodesic with desired endpoints (connecting the identity
I to a desired operator O € SU(n)) and the corresponding Hamiltonian. This boils down to determining the
D corresponding to a given OeS U(n). To determine which D yields the geodesic with endpoints Iand O
such that the system traverses the geodesic in time 7', we need to solve:

Ur = exp(—iT Hp) exp(iT D) = O (27)
Rearranging and taking logs:
exp(iT D) = exp(iT Hy)O (28)
o~ 1 A
iD= T log (exp(zTHo)O> (29)

which yields the desired geodesic and corresponding control Hamiltonian:
N . t A
U, = exp(—itHy) exp (T log (exp(iTHo)O)) (30)
. . NE/T
= exp(—itHy) (exp(iTHo)O)

He(t) = %GXP(_#E[O) log (exp(iTﬁO)O) exp(itHo) (31)
= % log (exp(—itﬁo) exp(iT Hy)O exp(itﬁo))

= %log (exp (z(T - t)lffo) Oexp(itﬁo))



We can take the exp(:l:itflo) factors inside the logarithm, because the matrix logarithm is analytic [44,
Ch.7], which follows from the fact that any matrix function f which is defined by a power series obeys
f(V-YAV) = V=1 f(A)V for all matrices A and all non singular V.

2.7 Optimal Times

Now we attempt to find T,p¢, the optimal time for implementing some given 0. Insisting that the left hand
side of eqn.(28) has norm 1 according to h, that h(if), zf)) =1, in accordance with the premise that it is the
unit speed geodesics of h that are needed, we determine that:

A 1 oA 1 .
1=h(D,iD)=h (T log (exp(zTHo)O) ' log (exp(zTHo)O)> (32)
which yields the following equation to be solved for T':

—% Tr ([log (exp(iTﬁo)O)} 2) =1 (33)

The smallest positive solution that is truly the optimal time; we refer to this as Tope. At the time of writing,
we have found no method for solving this analytically in general; it appears prohibitively difficult by standard
means known to the authors. However, once Hy and O are given, it can easily be solved numerically; some
simple cases are illustrated in §3.

One special case that can be solved analytically is where O and Hy commute. Expanding the matrix
logarithm using log(/lB) = log(/l) + log(f?), rearranging and applying the standard quadratic formula gives:

(34)

opt =

in Te(Hy lo5(0)) \/ A T((105(0)?) _ R (Tr( o 0s(0))?)
kTr(HZ) -1 kTr(HZ) -1 (kTr(HZ) — 1)2

where, as in [39], the & is chosen to ensure a positive time.
Once Topt is known, either analytically or numerically, then the true geodesics and corresponding optimal

control Hamiltonian are:

A L.on 3 A~ N t/Topt
U, = exp(—itHp) (exp(zToptHo)O) (35)
N 7 N N N
H.(t) = log (exp (i(Typt — t)Hg ) O exp(itH,

(t) = 7108 (exp (i(Tups ~ 1) o) O exp(it )

We can use the well-known BCH formula [18, §3] to evaluate approximations to iD as it provides a series
type representation for the solution to exp(z) = exp(x)exp(y). Given a certain x,y in a Lie algebra the
solution for z is given by:

z:x+y+1[$,y]+ ! [Ia [xvy]]

1 R N A% [ PN ) B VA R £ | R (36)

We apply this to eqn.(28) to solve exp(iT'D) = exp(iT Hy) exp(log(O)), to obtain:
A 1 A1 A T =~ .- A
iD= iHg + T log O + §[ZH0, log(O)] + E[zHO, [iHo,log(O)]] (37)

. log(0), [i Ho, [i Ho, log(O)]]] + - - -

1 . .
— E[log O, [iHy,log O]] — 2

2.8 Scope of Our Approach

The choice that h is the bi-invariant metric in the above derivation of the geodesics given in eqn.(3) allows
us to exploit the fact that the geodesics of this metric are the one parameter subgroups. If a different right
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invariant metric hy; were chosen (that is, a different physical constraint on flc(t)), then the geodesics of h;
would need to be found by a different method. In the case that, at the identity, i (in some basis of su(n))
has the form h;;, then its unit speed geodesics can be found using the standard methods of the Riemannian
geodesic equation (or the EP equations for a right invariant Riemannian metric), although they will not
necessarily be the one parameter subgroup.

This section depends on being able to apply theorem (2.1) to determine the geodesics of F' in terms of
the geodesics of h and the flow ¢, associated to WU = —iHoU. In order to do this we need that WU is a
Killing vector field of h. In such cases the following results apply. At the time of writing, we are unaware
of tractable, necessary and sufficient conditions for checking when a right invariant Riemannian metric on
SU (n) has any right invariant Killing fields; it is well known that all left invariant vector fields are Killing for
such a metric. However, there are certainly at least some in addition to the bi-invariant metric, for example:

95 (AU, AU) = Tr(AtA) + ¢ Te(A, ©)? (38)

for ¢ € RT small enough that the formula for ¢ defines a positive definite Riemannian metric. It is readily
checked that this metric has the right invariant vector field X 0= CU for a Killing field.
The unit speed geodesics of an arbitrary h can be found by using the Euler Poincaré equation:

d (0hi;€¢) 4 (0hi8'¢)
@ oer - gt .
This yields:
&8 = —Cp R gt (40)

When this can be solved, one can obtain the unit speed geodesics of h and apply theorem (2.1) again.
Once the geodesics of h are known they can be used to find the geodesics of the Randers metric F' solving a
Zermelo navigation problem on SU(n) where the ‘wind’ is the vector field WU = —iHoU. If the unit speed
geodesics of h are given by S,, then the geodesics of F' are given by V, = ¢t(5't) = exp(—itflo)gt.

We can now solve for the optimal Hamiltonian in a manner similar to the specific case where h is the
bi-invariant metric, by setting:

av;

— =iV (41)
and deducing that the following is required:
d P . PN
= (exp(—itHo)St) — il exp(—itHp)S, (42)
which yields:
. o dS; s A
H; = Hy — exp(—itHp) —ZES’t exp(itHp) (43)

If S, are the unit speed geodesics of h, then by solving the EP equation associated to h, we can find the
Hamiltonian driving along S, at unit speed. Suppose then that this Hamiltonian is known and solves:

E = —’LQtSt (44)
It follows that:
A dS; 4t



Substituting into eqn.(43) gives:
H, = Ho — exp(—itHy)(iQy) exp(it Ho) (46)

The control Hamiltonian is:

H_(t) = exp(—itHy)(iQ) exp(itHp) (47)

All that is required to obtain the optimal trajectories is to solve the EP equation for a right invariant
Riemannian metric on SU(n) and then apply the above procedure. This can be achieved by solving a first
order system of ODEs. As this system is the EP equation for a quadratic ¢, it is possible to solve for the
time derivative of £ analytically. This makes numerical integration even simpler.

Solving for a geodesic with specified end points appears difficult without first actually obtaining the h
geodesics in closed form. However, in some simplifying cases of the value of h the unit speed geodesics can
be obtained in closed form using Jacobi Elliptic functions. For an example of how to do this on the group
SO(3), see any mathematical mechanics textbook (eg [34]) that includes a derivation of the solutions of
the Euler equations for a falling rigid body. The SU(2) case proceeds similarly and is tractable, essentially
because s0(3) = su(2), as is familiar from the theory of spin half particles under spatial rotations in quantum
mechanics.

2.9 Physical Constraints Encompassed and not Encompassed by Shen’s Theo-
rem

It is worth noting what is not achieved by this approach. The only constraints that can be studied this
way are those which restrict the control Hamiltonian iH, to the unit sphere of a norm induced by a given
inner product h on su(n). This is because such inner-products are in one-to-one correspondence with right
invariant metrics on SU(n) (by right translation). This allows only quadratic constraints to be studied.
An interesting constraint not included in this class is the restriction that the energy expectation (in some
specific state [¢))) associated to the control Hamiltonian alone is equal to a fixed constant for all time:

SYIAL() ~ - Bo(t) 1) =1 (48)

Future work will include potentially applying the results in [21,42] to a generalisation of the setup
described here. The desired generalisation would be to relax the condition that the function representing the
constraint on the control Hamiltonian is an inner product, and to allow more general Minkowski norms to
take this role instead. This leads to a desire to solve the problem of Zermelo navigation on Finsler manifolds
rather than Riemannian ones, which is currently not solved. See [3] for an exhaustive account of the status
of Zermelo navigation of Riemannian manifolds.

The main result of [21] is particularly relevant as it generalises [38] and allows one to replace the role
of h with a general Finsler metric that has iHoU as a Killing field. One class of Finsler metrics with this
property is the bi-invariant ones, of which there are many. The proof is similar to the bi-invariant Riemannian
cases already presented, and so is omitted. Examples of such constraints are found in the Finsler metrics
formed from the right translation of the Shatten p-Norms on su(n). These correspond the constraint that
FO(HL) = (3, |En|p)l/p = 1 Vt, thus generalising the case of the bi-invariant Riemannian metric
studied above, wherein p = 2 (the only value of p yielding a Riemannian metric on SU(n)). Solving the
navigation problem in general has not been achieved by the mathematics community, as far as the authors
are aware. However, there are other cases besides the Riemannian case that have been solved; the Kropina
metric case [47] is notable. In the absence of a solution to the navigation problem analogous to the role of
Randers metrics in the Riemannian case, alternative methods must been sought. The central result of [21]
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allows one to determin the geodesics of the Finsler metric solving the navigation problem on SU(n) for
which H,(t) is constrained such that F®)(H,(t)) = 1. The geodesics of the (yet unknown) metric solving
the navigation problem in such a generalised case are:

V; = exp(—itHy) exp(itD) (49)

where F®)(iD) = 1.
One can also find the time optimal Hamiltonian for implementing gate O to be the same as the Riemannian
(p = 2) case:

H.(t) = %exp(—itﬁo) log (exp(iTﬁo)O) exp(itHo) (50)
except with T, taking a different value. The requirement is now that Ty is the value of 7" that solves:
F® (1og(exp(iTzf10)o)) =T (51)

Further work will also include an investigation into application of [24]. This work extends the results
of [21,38] to so called ’conic’-Finsler metrics and obtains a similar form for the geodesics under broadly
analogous conditions.

2.10 Homogeneous Geodesics and the Optimality of Constant Controls

A homogeneous geodesic (through the identity) on a Lie group with a Finsler metric F is a one-parameter
subgroup which is also a geodesic [17,28]. Here, it is a curve of the form U; = exp(—itA) for some iA € su(n),
which is also a geodesic of F. The Ae su(n) is a geodesic vector. These are exactly the curves that can
be trajectories of a controlled quantum systems (of the type discussed throughout) for which only constant
controls are permitted, as discussed in [39].

Theorem 3.1 in [28] presents a condition, which need to be mildly adapted to our situation. Adapted to
the present example of SU(n) (rather than a more general homogeneous space), the condition for X to be
a geodesic vector is:

95 (X, [X, Z]) =0,YZ € su(n) (52)

where g is the fundamental tensor of F restricted to su(n). Here the fundamental tensor of a Finsler metric is
the Hessian of the same metric point-wise. For the definition of the fundamental tensor, much more detailed
discussion of its role in Finsler geometry, and many specifics of Randers metrics, see [14].

Many of the results about homogeneous geodesics of Finsler metrics on Lie groups are applicable to left
invariant metrics. However, these results can be easily adapted to the right invariant case, which arises
naturally in quantum mechanics. The construction of an “opposite group” allows one to adapt results
without difficulty; typically only sign changes are incurred.

Theorem 3.7 in [28] can be applied to establish that any right invariant Randers metric on SU(n) (n > 2)
will have infinitely many homogeneous geodesics. The theorem establishes that a right invariant Finsler
metric on a compact Lie group will have infinitely many geodesic vectors. This can be easily seen by direct
application of the theorem and by the observation that the rank of SU(n) is n — 1, and thus the theorem
applies to any qubit system of more than one bit. The theorem requires that the rank is > 2, thus in all
cases except SU(2) (the single qubit), there exist infinitely many homogeneous geodesics. This establishes
the importance of determining all homogeneous geodesics of right invariant Randers metrics on SU(n).
Furthermore, in the case of a Randers metrics (as is our case) theorem (4.2) in [28] establishes a practically
simplifying condition on homogeneous geodesics.
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3 Example Calculations

In this section we use the results derived above to calculate speed limits; these follow the examples in
[39], except here allowing time dependent controls. Throughout this section the metric h representing the
constraint on H,(t) is h(iA,iB) = k Tr((iA)TiB) = k Tr(AT B) = k Tr(AB). The dagger vanishes in the final
step since A is Hermitian. This yields the constraint Tr(H,(t)?) = L for all times.

3.1 Single Spin in a Magnetic Field

3.1.1 Pauli 0, Gate

Following the example calculations performed in [39] we study the speed limit to performing the gate:

A 0 -1 .
0= (1 0 ) = —ioy (53)

in a system constrained such that h ((zflc(t))Tzflc(t)) =k Tr(H,(t)?) = 1 with drift Hamiltonian:
Hy = B*0, + BY0, (54)

such that h(iHo,iHo) < 1.
Substituting these conditions into eqn.(33) for the optimal time gives

5 Tr (log(u(T))%) = 1 (55)

where the matrix u is defined as

sin(TB)(BY + iB”)

—cos(T'B)

w(T) := B n(TB)(BY — iB® (56)
cos(T'B) sin( )(B i57)
and where B = ||§ || (standard Euclidean norm).

A numerical solution can be achieved using any zero finding algorithm; we found Mathematica’s “Find-
Root” method to be effective when given suitable starting points. The result (due to the cyclic property of
the matrix trace) depends on the eigenvalues of the quantity within the trace. Thus one should diagonalize
before attempting to numerically solve eqn.(33). It greatly simplifies the process and can be easily achieved
with any good algebra package.

By eqn.(30), the geodesic (of the Randers metric on SU(2) which solves Zermelo’s navigation problem)
which connects I to O is given by:

t

Vi = exp(—itHp) exp (T

opt

log (exp(iToptflo)O)> (57)

A A ~ t/Topt
= exp(—itHy) (exp(iToptHo)O)

t/Topt
= exp (—it(B%0, + BYo,)) (exp(iTopt(B:”ax + Byay))(—iay)) ’

= exp (—it (B0, + Byay)) (M(TOPt))t/TOPt

These geodesics are not generally of the form of any time independent trajectory, i.e. the optimal controls
are not constant.
The optimal control Hamiltonian in closed form is:

He(t) =

T’ exp(—it (B%0, + BY0,)) log(u(Topt)) exp(it (B0, + BYa,))
opt
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where

cos(tB) - Sin(tB)(é}y +iB")

Sin(tB)(gy —iB") cos(tB)

exp(—it (B*o, + BY0y)) =

Expanding these quantities in an attempt to find ﬁc(t) does not lead to tractable expressions.

The optimal control fields can also be determined. Consider that the control Hamiltonian can be expressed
as iﬁc(t) = DFiog. One can now extract the individual control fields D¥ from the following, as oy are an
orthogonal basis (according to h(iA,iB) = k Tr(AB)) for su(n):

Df = h (ui(t), %) — ST (o) (59)
This calculation rapidly becomes intractable analytically, however by substituting the Taylor series for log
and exp, one can find a simple series representation for the optimal control fields. Numerically extracting
the control fields to arbitrary precision is straightforward.

3.1.2 Specific Physical Instance

We now specialise to specific values for x, B* and BY in order to numerically obtain the optimal time. We
set B* = BY = 1/4 and k = 1; one readily checks that this system meets the “small wind” premise of Shen’s
theorem.

We solved the specific instance of eqn.(33) using Mathematica. The smallest, real, positive root is
Topt ~ 3.2043.... (The actual physical time in seconds can be obtained by reintroducing the physical
constants that have been lost after non-dimensionalisation throughout. Specifically, & has been set to 1
throughout.)

In this instance the optimal control Hamiltonian is given by

. . 143 o; Topt Topt .
. i it It gin ( ) — cos ( ) it
He(t) = Topt P (T(% * 0y)> s | ¥ (Top\t/? Ll sin (\;it) o (Z(% - Uy)) (60)

COS 78 W /s

by eqn.(30). We have evaluated the logarithm exactly in closed form, but the result is cumbersome and does
not provide any physical insight, so it is omitted.

We obtain the optimal control fields from this result. The kth field is obtained by evaluating eqn.(59)
%Tr(flc(t)ok) numerically, as shown in fig.(1). As a check, we have numerically confirmed that the control
fields have the property that the sum of their squares is 1/2 (V¢), which the constraint on Tr(H.(t)?)
mandates.

3.1.3 Example of Assessing Quantum Systems

Given a choice of quantum systems for the potential implementation of fast quantum computation, one
requires methods to assess systems. Here we show how the methods illustrated in this paper can be used to
perform such assessment through an example.

As shown in [39], the optimal time-independent control implementation time for the same gate as above

—ioy is:

™ BY D2 — B2
Topt = = 5 | 12414+ 1
pt 2(D2—BQ)< + (By)2 ) (6)

where D = ||D|| (standard Euclidean norm).
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Figure 1: Optimal control fields D (dashed), DY (dot-dashed), D* (solid) for Pauli y gate, as a function of
time, in the B = 1/4 case.

Optimal Time

7016 —0‘.4 —0.‘2 6 0‘.2 0‘.4 016
Figure 2: Optimal times for time dependent (solid) and independent (dashed) controls.

To illustrate, we set x = 1/2 (achieved through setting the value of D = 1, a choice made for ease) and
B* = BY = b (some real number b? < 1/2). Then the optimal time in the time independent case is:

b ) <117M> (62)

™
Topt = = —————~
PET9 (1 — 202 b

where the + is chosen to make the time always positive [39]. We numerically solve eqn.(55) in Matlab, with
the given parameters substituted to find the optimal time (as a function of b also) when time dependent
controls are allowed. This yields the results of fig (2). This illustrates that some systems and some types
of controls are significantly better for the implementation of specific QIP tasks. The method presented is
a powerful tool for assessing such situations. One can clearly see from fig.(2) that scenarios with values of

b < 0.2 are favorable over the b > 0.2 region if only constant controls are permitted.
The computation time to obtain the fig.(2) and the optimal control schemes shown in fig.(1) were both

negligible in Matlab, and that this also appears to be the case for two qubit gates.
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3.2 Swap Gate in a Length Two Heisenberg Spin Chain
3.2.1 Two Spin Chain

The drift Hamiltonian for a two spin chain with (arbitrary spin coupling) is [40]:
,E[O:Jm0m®0'1+JyUy®Uy+JZUZ®O'Z (63)

Again, we take h to be the Killing form so we can apply theorem (2.1) to obtain the geodesics in closed
form. By eqn (30), the geodesic which connects I to O of the relevant Randers metric on SU (4) are given
by eqn. (35). One can exploit the block diagonal form of Hy in order to simplify the equation that needs to
be solved.

The optimal Hamiltonian is:

H.(t) :TZ : exp (=it (JPop @ 05 + JY0, @ 0y + J?0, ® 0,)) (64)
op

x log (exp (iTopt (JP0z @ 0y + S0, @ 0y + J?0, @ 02)) O)
x exp(it (J¥0, @ 0 + JY0, @ 0y + J70, ® 0,)))

The actual control fields can be extracted, similarly to before, via:

Frm(t) = g Tr (Hc(t)am ® on) (65)

This is the expansion of H.(t) in a basis for su(4). This basis is:
{ion, ® om|ln, m = 0,2, y, z but not both n =0 and m = 0} (66)

Here 0¥ is taken to be the 2 x 2 identity matrix whereas the other os are all the standard Pauli matrices.
One readily checks that this basis is orthogonal w.r.t. the Killing form, which is the key property applied
when extracting the control fields in eqn.(65). The origin of the 4 in this formula is the trace of the 4 x 4
identity matrix. Explicitly, we are representing H,(t) as:

where ths sum is over the basis vectors appearing in eqn (66).

3.2.2 Specific Physical Instance: The X X X-Spin Chain

In order to again illustrate the way in which out method allows us to determine which systems are best
suited to quickly implementing a QIP task, we study the case of the isotropic Heisenberg spin chain, the
J* = JY = J* = J case of eqn.(63). This leaves only one parameter J to consider, yielding a simple pedagogic
example for the method. We set k = 1 and consider the optimal time for implementing the (special unitary)
swap gate:

O _ eiﬂ’/4

S O O =
o = O O
S O = O
= O O O
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Optimal Time
iz

0 I I I I I I I I I I I
-0.25 -02 -0.15 -01 -0.05 0 0.05 01 015 02 025
J

Figure 3: Optimal times for time dependent (solid) and time independent (dashed) controls in an XXX Spin
Chain.

Using eqn (30), the optimal Hamiltonian is:

2e 0 0 0
i ® i 0 e—it] | o3itd  o—itd _ 3it] 0 (©9)
c ATy 0 e—itd _ g3it] =it | Bit] 0
0 0 0 2e Mt
2¢iToptd 0 0 0
1 s 0 ¢/ Topt _ =30 Topt  oidTope | =31 Topt 0
Ze
x log 26 0 ¢ Topt 4 =30 Topt  oidTope _ =31 Topt 0
0 0 0 2¢? Topt
2¢eit] 0 0 0
0 it | g=3idt  gitd _ o—3it] 0
X ) ) ) )
0 eth _ 8731Jt eth + 873115,] 0
0 0 0 2et

We can determine the optimal time Topy as before, by numerically solving eqn (33). Substituting the specifics
of the current problem into this equation yields:

2¢iTont) 0 0 0 ’
1 1 0 T Topt _ =30 Topt i Tope | =31 Top 0
T Tope)? Tr [ log 5¢" 0 il Topt 1 =310 Tope @i Topt _ =31 Topt 0 =1
0 0 0 2¢ Topt

Using the same procedure as in the previous example, we obtain the optimal execution times. These are shown
in fig.(3). The dashed line in fig.(3) plots the function, adapted to this specific scenario, from [39, eqn.21],

giving the time independent optimal time:

i
Topt = 3 <m> (70)

where the + is again chosen to make the time positive. The cusp in the time dependent line is due to its
behaviour intersecting the time independent line, and then following the time independent behaviour.
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3.2.3 Example of Assessing Quantum Systems

It can be seen from fig.(3) that, in the region between .J ~ —0.075 and J = —*, constant controls perform

exactly as well as time dependent ones. However, outside this region, time d\QpTendent controls significantly
out-perform constant ones for which the optimal time has an asymptote at J = —\/%. This indicates that
our method can be used to assess the choice of the best type of control scheme as well as to determine
optimal control fields when a specific physical system is considered.

The fact that the optimal times agree for both types of control scheme on a contiguous region of values for
the parameter J suggests that the theorem leading to eqn.(52) could potentially be strengthened (perhaps
only in the Randers case) to show that the infinitely many geodesics vectors of a Finsler metric are a
connected set. We conjecture that this is the case for Randers metrics on SU(n) (n > 2). These results

justify the physical relevance of that theorem.

4 Further Constraints on H, Using Lagrange Multipliers

4.1 The Need for Further Constraints

The constraints studied thus far are, alone, insufficient for many physical applications. The assumption
thus far as been only that the control Hamiltonian is constrained to be such that h(iH.(t),iH.(t)) = 1. In
comparison to [12], only the roles of the Ly and Lg parts of the Lagrangian have been treated here. The Ly
part is analogous to our application of the result of [42] on Zermelo navigation in the case of a right invariant
Riemannian metric. The Lg part has no analogue as our work expresses the problem in a geometrically
intrinsic way. We consider this to be an advantage of our method as it allows a more mathematical view
of the problem; intrinsic geometry has been proven many times to be superior for mathematical analysis of
geometric problems over methods based on many constraints or specific coordinate systems. This allows us
to formulate the problem as a first order system of ODE from the outset by using the EP equation, rather
than needing to compute any first variations or use the EL equations. So we can obtain a first order equation
for the optimal Hamiltonian, without the need to actually determine any geodesics a priori.

The disadvantage of our method compared with [12] is that we can handle fewer constraints, as described
above (§2.9). Our method thus far can handle only the cases where the “size” type constraint [12] is
representable by an inner product.

To motivate the need for further constraints, we again consider the drift Hamiltonian for a two spin
“chain” (with anisotropic couplings .J) [40]:

ﬁo =Jyo" ®o" + Jyo' @ oY+ J.0" ®@0F (71)

Simply constraining the control Hamiltonian to be such that h(iﬂc(t), zflc(t)) = 1 for some inner product
h is insufficient for practical applications where the producible set of control Hamiltonians does not include
every direction within su(n). For example, a common model of a controlled spin chain is one in which the
control Hamiltonian takes the form:

Ho(t) = fit)o. @ I + fo() @ 0, (72)

That is, there is one local control field in the z direction only for each site in the chain. In such a situation
no terms like ¥ ® o (or multiples there of) could appear in the control Hamiltonian, as these represent the
couplings between sites in the chain, and are not the effect of any possible external field. In this case (choosing
h to be & times the Killing form), the constraint h(iH.(t),iH.(t)) = 1 evaluates to & Tr(H,(t)?) = 1, which
only constrains the sum of the squares of the control fields. An extra constraint must be added to exclude
those terms from the control Hamiltonian that cannot be physically implemented.
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This can be done by including Lagrange multipliers to create a new functional:

A <Ut, %,w(t)) = % ngt (%) +zk:wk(t) (fk,m (%) - Ck) (73)

where F' is the Randers metric solving the relevant navigation problem, f; represent the additional con-

straints, and wy, are the Lagrange multipliers. The values cj represent the value of f to which the trajectory
is constrained.

We consider only the case where f is right invariant; this results in A also being right invariant. This
corresponds to situations where the additional constraints depend only on the Hamiltonian, rather than the
on location of U; on SU(n).

In this situation A can be expressed as:

(e (Ea) )
[F (—u?z(t)ﬂ g 3 wnlt) ( e (—u?z(t)) - ck) (75)

N = N =

where H, is the Hamiltonian such that U; solves the corresponding Schrodinger equation.

4.2 Forbidden Directions

One specific set of f; and ¢, with practical relevance is: fi (%Uf) = Tr (((%UQ + zﬁo)zﬁk)) with
¢ = 0. This corresponds to the Fy, spanning a set of “forbidden” terms for the control Hamiltonian. One

can check this interpretation of the constraint by noticing that if U, solves the Schrodinger equation with a
Hamiltonian of the form of eqn.(1), then variation of eqn.(74) by wy, yields:

av, - . .
Tr <<%U§ + iH()) iFk> (76)

Tr (flc(t)ﬁk) -0

which implies:

and thus the desired “forbidden” directions are trace-orthogonal to the control Hamiltonian, and the control
Hamiltonian has no component in any forbidden direction. These are essentially identical to the “linear
homogeneous” constraints in [12]. There is a subtle difference however: here the forbidden direction applies
only to the control Hamiltonian and not the overall Hamiltonian. This constraint is equivalent to an affine
constraint on the overall Hamiltonian. Adding too many additional constraints may render the system in
question uncontrollable. Existence/uniqueness of optimal trajectories is an issue not addressed in [12].

In order to find the equation satisfied by the optimal Hamiltonian that takes into account some additional
constraints, we must modify eqn.(21). In the remainder of this paper we consider only the “forbidden
direction” type of additional constraint. The equations satisfied by the optimal Hamiltonian (if any exist)
can be found (in a basis for su(n)) by variation of each dependent variable on which A depends. Variation
by dd—[zfﬁ: yields the EP equation for A:

d oA , OA

— b
Ea—fd - _dea—fag (77)
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Variation by wy, yields:

au, - . .
Tr <<%U§ + iH()) iFk> =0 (78)

Equations (77) and (78) need to be solved simultaneously in order to obtain the optimal Hamiltonian.

Closed form solutions for these equations and further numerical solution techniques in specific cases of
physical interest form the basis of further work. We intend to perform a complete analysis of common two
qubit gates implemented in spin chain systems and other laser driven models. We hope to obtain an exact
formula for the initial conditions required (for the system (77) and (78)) in order for numerical solution of
the system of ODEs to yield a geodesic connecting I to an arbitrary desired gate O. A method for achieving
a very similar goal has be found in a very different context [4]; only the Riemannian case is addressed, but
it seems that the technique is easily adaptable.

4.3 Role of Sub-Riemannian Geometry and Sub-Finsler Geometry

Mathematically, the optimal trajectories can be understood as sub-Finsler geodesics, or more specifically,
what could be appropriately called sub-Randers geodesics. For all the relevant definitions needed here see [16].
One can find information about sub-Riemannian geometry in optimal control in [43]. For an application of
sub-Finsler geometry in optimal control see [32]. For a specific application in quantum control see [25]. The
now well known “Hormander’s condition” for the controllability of affine linear control systems of the type
studied in this work, that is systems of the form of eqn.(1), indicates when too many forbidden direction
results in the system no longer being controllable. This would mean that there were unitary gates that could
not be implemented using a system constrained in such a way.

The method for handling the constraint 2 (iH,(t), iH,(t)) = 1, alongside additional constraints, shows that
the optimal trajectories for U, are geodesics of Randers metric restricted to an affine distribution, say D, on
SU(n). D is the distribution consisting of vectors in T'SU (n) of the form —iHQU+Span{iﬁkU‘ k=0,...,N}
Here {zflk|k =0,...,N} C su(n) span the subset of su(n) that is h-orthogonal to the span of the subset of
su(n) spanning the “forbidden directions”. This distribution is right invariant in the sense that: Dy = DU.
That is, the optimal trajectories are the length minimising curves that connect given endpoints (f to O)
according a Randers metric F' (solving the navigation problem in our case), and which are parallel to the
v ¢ Dy, Vt. The system is controllable, that is,

dt
every unitary gate could be implemented, as long as this distribution is “Bracket Generating”. This provides

distribution D. A curve V; being parallel to D means that

an exact condition, albeit a very technical one, for controlability in the presence of additional constraints.
The systems formed by equations (77) and (78) are solved by such curves. Eqn.(77) imposes that a curve is
an, at least local, extremal curve of the length functional. Eqn.(78) can then be understood as imposing the
curve is parallel according to D.

4.4 Example Equations For Optimal Trajectories

We illustrate how a forbidden direction can be treated in the example of a single spin. For simplicity, we
consider the case that there is no drift. This makes the navigation metric F' Riemannian, which makes ¢ a
quadratic function. This allows us to solve for the time derivative of ¢ explicitly in the EP equations, and
then integrate the equation in closed form by hand. The case with drift is conceptually identical, except it
may not always be possible to solve for 5 , so the resulting system could be more difficult to solve analytically.

We consider the system with control Hamiltonian constrained such that %’I‘r(flc(t)Q) = 1. Writing
iH.(t) = €¥(t)ioy, we see that this condition is €72 + £¥? 4+ £22 = 1. Suppose further that we are restricted to
&* = cfor Vt. This is different from the examples worked out in [12], as this is an affine constraint rather than
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a linear homogeneous constraint. In a situation with a drift term, it is simple to see that a linear constraint
on the control Hamiltonian corresponds to an equivalent affine constraint on the overall Hamiltonian.
In the present case the overall Lagrangian is:

A(HL ) = 5 (62462 +67) +u(t) (€ - ) (79)
The EP equations are:
é‘.m _wé'y
&+ 0

and £%(t) = ¢, €2 = 0, which implies:

€)= (=) ®
and that w is a constant. The general solution (after imposing the unit speed condition) is:
&8 (t) = Acos(wt) — msm(wt) (82)
&Y(t) = Asin(wt) + mcos(wt)
&) =c

wherein A is an arbitrary constant parameter and w is the Lagrange multiplier. The trajectories in su(n)
are circles in su(2) centered at:

o O

(83)

The unit speed condition imposed ensures that the parameter in H, is physical time as it appears in the
Schrédinger equation.

Both A and w paremeterise possible endpoints of U, after the trajectory on the group is reconstructed
via the Schrodinger equation. The optimal Hamiltonians are:

H; = (Acos(wt) — Bsin(wt))o, + (Asin(wt) + B cos(wt))o, + co, (84)
where B = £v/1 — ¢2 — A2%.

4.5 Generalising the Forbidden Directions Equations

The method for handling forbidden directions can be generalised to include a much larger class of constraints
replacing the constraint that h(iH.(t).iH.(t)) = 1. One can replace the role of h representing the constraint
of the size of iﬁc(t) with an arbitrary right invariant Finsler metric, which we denote by FU’ i.e. we now,
more generally than before, impose F(iH.(t)) = 1 holds at the identity on SU(n). As right invariant
Finsler metrics on SU(n) are in one-to-one correspondence with Minkowski norms on su(n), this new class
of constraints is much larger that the class of right invariant Riemannian metrics employed before.

We adapt Shen’s [42] Lemma 3.1 to the case of SU(n) with a right invariant F. In addition to the exact
solution for the Riemannian case given by Shen’s theorem, this gives an equation for a Finlser metric F' the
geodesics of which are time optimal the the presence of the constraint F(iH.(t)) = 1.

F <F?f1) + iﬁ0> =1 VA esu(n)/{0} (85)
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Note that the roles of F and F are reversed here compared with the original presentation. One can easily
check that the solution for F' will be a Randers metric exactly when F' is Riemannian; this is exactly the
case solved by Shen’s theorem.

The premise that the ‘wind’/drift Hamiltonian can be overcome by the control is now F(if[o) < 1.
This guarantees that the desired time optimal trajectories are the geodesics of the Finsler metric F' solving
eqn.(85). The solution F is right invariant if both F and the drift vector field are, as is the case for quantum
control problems. This follows directly from substituting right invariant F' and drift vector field into the
equation defining F' and then right translating to the identity.

Now we give the set of equation that define the optimal trajectories in such a scenario. Time optimality
yields:

d OA . OA
diogd ~  hdpga
Variation by wy to impose the forbidden direction constraints, as before, yields:

Tr (Hc(t)ﬁk) -0 (87)

¢ (86)

Here A is as before, except the F' is no longer necessarily a Randers metric, but is now the solution to
eqn.(85). This solution is guaranteed to also be a Finsler metric [42].
Together this all yields the system for the time optimal Hamiltonian H, = Hy + Hc(t) = §kék:

F <i: + iﬁ0> =1 VA esu(n)/{0}

F(A)
dON 0 0N
dt ogd — Tt jga

Tr (Hc(t)Fk) =0 VkVE>0

T
Ur = T exp </ —ifltdt> =0
0

These we refer to as the time optimality equations for the gate O, the drift Hamiltonian Hy and the
constraint that F(H,(t)) = 1 ¥t > 0. Here, G}, are a basis for su(n). These equations determine the
optimal Hamiltonian.

As in [12], we have not yet found a way to impose the boundary condition Upr=0 (for some T') without
solving the other time optimality equations explicitly. It is, however, known which variations at the algebra
level correspond to variations of U, that leave the end points of a curve on SU(n) fixed [19]. In quantum

mechanical terms these are exactly variations of —iﬁt of the form: §iH,; = id;? + [iflt, th] Here Kt is any

smooth curve in su(n) which is 0 at both end points. A method for imposing similar boundary conditions
is presented in [4] in a different context. We hope to analyse that method and adapt it to quantum control
scenarios, so that end point conditions on U, can be imposed at the algebra level and thus the EP equations
can still be applied.

5 Conclusions And Further Work

We have shown that the time optimal control of any quantum system of the form eqn.(1) with the constraint
that F(iH.(t)) = 1, for some Minkowski norm F on su(n), is exactly the problem of finding geodesics of
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a right invariant Finsler metric on SU(n). Furthermore, we have shown that this can be achieved, for the
Hamiltonian driving U, along a geodesic, using the EP equations, which are first order. We have also shown
that, in the presence of forbidden directions for ﬁc(t), the optimal trajectories for U, are the geodesics of
a right invariant sub-Finsler metric on SU(N). Here, sub-Finsler geodesics is taken to mean the shortest
curves connecting desired endpoints which are parallel to a specific affine distribution. We have also shown
that this problem can also be expressed as a system of equations in su(n) and that these equations are first
order also.

We have shown that the method of quantum optimal control based on Randers geometry is highly effective
in the case of constraints on the control Hamiltonian of the form h(iﬁc, zﬁc) for some inner product h on
su(n). We have produced a broadly applicable method that does not depend on the dimension of the Hilbert
space that the goal gate O acts on. We believe that our approach will be taken into a more practical setting
with further analysis of the “forbidden directions” type constraints. A numerical method for solving eqn.(77)
will be presented in further work, along with examples of many practically encountered gates and constraints.

We have also shown that the method can be at least partially generalised to an even broader class of
problems where the constraint is represented by a Finsler metric rather than a Riemannian one, at least in
the case that the Finsler metric representing the constraint has the required Killing field, which includes all
bi-invariant ones of which there are uncountably many. One example class of uncountably many bi-invariant
Finsler metrics on SU(n) are the formed by the right translation of the Shatten-p norms from the identity.
In this case the desired geodesics can be found in close form.

We intend to produce a general purpose Matlab script into which one can insert:

e A drift Hamiltonian
e A norm constraining the control Hamiltonian
e A desired gate O

and out of which will be produced the optimal control Hamiltonian and control fields, by numerically solving
the system of equations (88) and the optimal time. We predict that the main obstacle to this will be solving
for the metric F in terms of F.

Recent work [45] contains a large appendix “Euler-Lagrange equation on SU(n)” discussing methods for
finding geodesics on SU(n). Other recent work [35] also discusses finding Finsler geodesics on SU(n) in
the context of quantum optimal control. We feel that the relative simplicity of the EP equations, which
hold on a vector space su(n), compared to the methods described in [35,45] that hold on SU(n), justify the
usefulness of our approach. Furthermore, they avoid the need to ever determine a geodesic on SU(n) when
all that is practically needed is the Hamiltonian that drives U, along that geodesic. Another advantage is
the lack of need for the use of any coordinate system on SU(n), as the EP equations directly exploit the
right trivisation of SU(n), T'SU(n) = SU(n) x su(n) (available as Lie groups are all parallelizable manifolds,
for definitions see [15]).

The desired optimal trajectories are geodesics of eqn.(14). However, the metric can also be used to
obtain optimal times for a system (meeting the appropriate premises) to traverse an arbitrary curve. This is
illustrated for the time independent trajectories and a specific drift Hamiltonian and value h in [39]. This is
in contrast to other methods which exactly determine optimal trajectories, but do not offer any way to obtain
optimal times for arbitrary trajectories. In practical physical systems, it is unlikely that arbitrary trajectories
can be implemented, so one needs a technique for assessing the trajectories that can be implemented over
a method for determining theoretically optimal ones. For example a laser pulse is often described using an
envelope function [46] and this imposes a form for the control functions a priori. Our method allows one to
assess such systems; a full analysis of a laser driven 2 spin—% particle system with a known envelope function

will be given in forthcoming work.
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Recent work by Brody, Meier and Gibbons [6-8] tackles similar navigation problems. The work in [§]
specifically obtains identical results to our equations (26, 27), using an interesting method complementing
those in this paper, for the time optimal navigation trajectories and associated control Hamiltonians.
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