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A Shrinkage Approach to Multiple Target
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Abstract—In this paper, we deal with the accurate estimation of
the covariance matrix for the optimization of multiple target node
(TN) localization using correlated received signal strength (RSS)
measurements. Two location schemes i.e. the iterative generalized
least squares (GLS) and the low complexity weighted linear least
squares (WLLS) methods are investigated. For many applications
the estimated covariance matrix needs to be positive definite and
hence invertible. For an insufficient number of data points, the
sample covariance matrix suffers from two drawbacks. Firstly,
although it is unbiased, it consists of a large estimation error.
Secondly, it is not positive definite. A shrinkage technique to
estimate the covariance matrix has been proposed in the fields of
finance and life sciences. In this paper, we introduce the shrinkage
covariance matrix concept in the area of multiple TN localization
in wireless networks with correlated measurements. An analytical
expression of the multiple TN covariance matrix is derived for
the WLLS method and the estimation is done via the shrinkage
technique. Similarly, the shrinkage technique is employed for
the covariance matrix estimation for the GLS algorithm. For
a limited number of measurements, the shrinkage covariance
technique improves the performance of both WLLS and GLS
considerably.

Index Terms—JLocalization, Received signal strength (RSS),
Shrinkage estimation.

I. INTRODUCTION

For a set of random variables, the covariance matrix is
a symmetric matrix, whose diagonal elements represent the
individual variances of the random variables while the off-
diagonal elements are the corresponding cross covariances.
When the variance of all random variables is set to unity,
the covariance matrix is then known as the correlation matrix.
The covariance matrices have applications in various fields.
In financc, portfolio analysis is donec via cstimation of thc
covariance matrix of stock returns [1], [2]. In life sciences
it is used in genes classification by finding the pairwise
correlation between genes [3]. In most cases, the elements of
the covariance matrix are unknown and need to be estimated.
Due to its ease of use, the sample estimator is commonly
used for covariance matrix estimation. Although the sample
estimator is unbiased, it faces serious issues when the number
of samples is equal or smaller than the number of variables.
If the samples are equal or less than the number of variables,
the sample covariance matrix will contain a large estimation
error. Furthermore, the sample covariance matrix will not be
positive definite, making it impractical to use. To elaborate
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on the previously given examples, for portfolio analysis, if
the number of stocks is larger than the number of historical
(e.g. monthly) stock returns then the corresponding sample
covariance matrix will contain large errors and will always
be singular. Similar problems are faced in gene classification
research, if the number of genes under considerations exceeds
the number of experiments performed.

The idea of shrinkage estimation for large covariance matri-
ces was introduced rather receuntly in finance applications [2].
As mentioned before, the sample estimator is unbiased but
poses large variance, the shrinkage idea is to introduce some
structure to the sample covariance matrix. A target covariance
matrix is chosen (which has a smaller number of variables) as
a candidate for covariance matrix estimate. Due to the small
number of parameters, the target covariance matrix will have a
relatively small error variance although it will be biased. The
idea is to choose an optimally compromised covariance matrix
instead of the two extremes i.e. the large variance but unbiased
sample covariance matrix and low variance but biased target
covariance matrix.

In this paper, we apply the shrinkage theory for covariance
matrix estimation to multiple node localization in wireless
networks. Node localization in wireless networks is needed
in many application including situation awareness, cattle/wild
life monitoring and logistics [4]. A number of techniques have
been developed for accurate positioning of wireless nodes.
These may include the time of arrival (ToA) [5] and angle
of arrival (AoA) methods [6]. Both ToA and AoA provide
an accurate distance and hence location estimation. However,
both techniques require additional hardware on board the target
nodes (TNs). A prerequisite of ToA method is the availability
of highly accurate and synchronized clocks on the TNs, while
AoOA requires an array of antennas [6], [7]. A low cost and
simplistic technique to localize wireless nodes is the received
signal strength (RSS) technique [8]. Considerable amount of
research has been done to optimize the performance of RSS
localization. Joint estimation of the path-loss exponent (PLE)
and location is discussed in [9], [10], [11]. Cooperative RSS
localization is studied in [12]. Tracking using RSS technique
is investigated in [13]. Most of these studies assume individual
links between TNs and sensor node (SN) to be independent of
each other. This is an oversimplification as readings at the SN
from TNs that are close to each other in a network introduces
an element of spatial correlation. In this study we simulate
our data using the widely accepted Gudmundson correlation
model presented in [14]. The Gudmundson’s model suggests
that the correlation between two nodes is an exponentially



decaying function of the distance between them. The authors
of [15] show that if these correlations are taken into account
they could enhance the location estimation performance. This
proposition was done by deriving the Cramer-Rao bound
for spatial correlation between nodes, however an algorithm
capitalizing on such correlation was not presented.

In this paper, we optimize the performance of two mul-
tiple TN RSS location algorithms. Location estimation of
TNs is a non-linear estimation problem. Due to the non-
linear nature, the location estimation is generally performed
using an iterative algorithm with a close initial estimate and
Newton step update. However, location coordinates can also be
estimated using a linear least squares (LLS) approach. In this
paper we first develop an iterative generalized least squares
(GLS) technique for multiple TN localization. Second, we also
formulate a weighted LLS (WLLS) solution to the multiple
TN location problem. A closed form expression is derived
for the covariance matrix of multiple TN readings at the SNs.
The covariance matrix expression depends on the variance and
covariance values of these readings. In practical scenarios and
in large networks these values are unknown and the number of
snapshots is not large enough to provide an accurate sample
estimate due to limited resources and packet lose. To counter
this problem, we apply the shrinkage technique to estimate the
variance and covariance elements required in the expression
for the covariance matrix in the WLLS method. The shrinkage
technique is also applied to estimate the covariance matrix
for the GLS technique. Due to the lack of structure and for
a limited number of snapshots the sample covariance matrix
is non invertible rendering it impractical to use in the GLS
method. The shrinkage covariance estimator on the other hand
introduces a structure to the covariance matrix and hence it is
invertible even for limited number of snapshots. It is shown
via simulation that the shrinkage covariance matrix compared
to the sample covariance matrix has a smaller estimation error.
Consequently, the shrinkage covariance matrix, when used
in the GLS and WLLS algorithm, results in superior perfor-
mance. Especially in the case of GLS case, where the sample
covariance estimator is non invertible for a limited number
of snapshots, this problem is resolved with the shrinkage
covariance matrix.

The rest of the paper is organized as follows. Section II
introduces the signal model and the multiple TN location
problem. Section III, develops the GLS and the WLLS es-
timator. In section IV we briefly discuss the shrinkage theory
and covariance shrinkage estimator. Section V presents the
simulation results which are followed by the conclusions.
The derivation of the shrinkage estimator is provided in the
Appendix.

II. SYSTEM MODEL

For future use, we define the following notations.

R"™ is the set of n dimensional real numbers, (.)7 is the
transpose operator, F(.) refers to the expectation operator,
[M] ;; refers to the element at the i*" row and j'* column of
matrix M, Iy represents the IV dimensional identity matrix.
N (i, o?) represents the normal distribution with mean y and
variance 2. ||Hiﬂ represents the Frobenius norm.

A two dimensional (2-D) network is considered,
consisting of N  SNs with known locations
¢i,j [zi,ﬁyi,j]T(Q{)i)j € RQ) for i,5 = 1,..,N.
The network also consists of M TNs which have
unknown coordinates 8j; = [zk_l,yk’l]T 0k, € R?)
for £, = 1,..., M that are to be estimated. The received
power at the SNs due to random shadowing is log-normally
distributed. This model is based on empirical results obtained
in [16], [17]. It is assumed that the TNs transmit during
preassigned epochs to avoid interference between different
TN transmissions. Thus the distance d;;, between the k** TN
and the i** AN is related to the path-loss at the i** AN, Z,
and the PLE, «, as [18]

Lix = Lo+ 10alogg dix, + wir, (D

where % is the path-loss at the reference distance dg (dy <
d;i, and is normally taken as 1 m) and w;; is a zero-
mean Gaussian random variable representing the multipath
log-normal shadowing effect, i.e. wy, ~ (N (0,02)). It
is assumed that « is known via prior channel modeling or
accurate estimation. The path-loss is calculated as

Zir = 10log,y Pr, — 10logq Pk, 2)

where Py, is the transmit power at the k" TN and Py, is the
received power at the i AN. The distance d;;, is given by

dit =\ @x — 2 + (e — y)*- 3

The observed path-loss (in dB) from dy to d;x, zix = -Lix—-20,
can be expressed as

zik = fi(Or) + wik, “4)
where f;(0;) = yalnd;, and v = %. (4) can be written in
a matrix form as

Z=F(0)+W, )

where the k" column of Z and W represents the readings
and associated noise elements at the SNs from the k" TN
respectively and [F (8)],, = fi(8x). For convenience (5) can
also be written in a ‘roll out’ form i.e. z = vec (Z), then for
the k' target, we have

21k f1(0%) Wik
Zok f2(0%) Wag
= : +
2Nk fn(0k) WNk
or
z = I, + wy. 6)

Then we have wy, ~ N (0, Cgi) where Cii, = 02 In and

E (wk (wl)T) = Cy;. Here Cy,; is the N x N covariance

matrix between RSS readings at the SNs from the £ and [t"

TN and its elements are given by Iypgio;r0;. Here py; is
the spatial correlation between the k" and [** TN. Its value



depends on the relative distance between the TNs and can be
modeled according to Gudmundson [14] as follows

d
Pri = exp (%) : ©)

where d,. is the ‘decorrelation distance’. Field measurements
in [23] suggest values for d. for different environments. Eq.
(6) when written for all TNs is given by

z = vec(Z) = ((zl)T (z2)" s (ZM)T)T ®
z=1 (0) +w, ®)

where w ~ A (0,C), where C encompasses correlations
between all TNs;

Ciu Cio Cim

Cgl CQQ CQJ\I
C=1 . )

CMl CMz CMM

Two location algorithms to solve (9) are discussed in the next
section.

III. LOCALIZATION ALGORITHMS FOR MULTIPLE TNS
A. Generalized least squares algorithm

It is clear that (9) presents a non-linear estimation problem
and a close form expression to solve (9) is not readily
available. A solution to (9) is obtained by minimizing the

following cost function [19]
€(0)=(z-1(0)" C ' (z-£(0)), (10)

where (10) can be minimized by first linearizing f (@) by the
first order Taylor series expansion to a close initial estimate

£(0) ie.

f(@)=£(0")+F (6% (6-6, (11)
where
F (0) = diag [F (61) ,F (63) , ..., F (0%)]

and F (6%) is the Jacobian matrix of the k" TN and its
elements are given by

[ 0f1(6k) 0f1(0k)
Ok g, o Wk g, =o0
0f2(8x) 9f2(8%)
Ox _pa oYk —ga
F( Z) _ 0,=0¢ 0,,=065
Ofn (8x) Ofn(8%) |
oxy, 6’“:92 Oy \gkzgc;_
for 8%3(;%) _ H/a(mzfmi)/d?k and 3fé(9k) _
Foole,=09 Yk lg,=07

volyi —vi)/d?,.
Using (11) in (10) and minimizing with respect to 8, so that
the next estimation is given by

9a+1 — 9 + Qa (12)

where

0t = (F 0T C'F (ea)) "R C (2 £(6%)).
(13)
Thus given an initial estimate @', the generalized least
squares (GLS) converges to the minima. The algorithm is
stopped after a fixed number of iterations or when the value
e (0°%") - €(0)| becomes smaller than a certain threshold.
To avoid the complexity of the iterative procedure and a close
initial estimate condition at the expanse of accuracy, a WLLS
solution is presented in the next subsection.

B. Weighted linear least squares algorithm

A slight manipulation of (9) renders it to be linear. This
technique was first proposed for ToA distance estimates in [20]
and analyzed in [21]. For a single target RSS measurements
the linearized model is discussed in [22]. Here we extend this
method for the multiple TN case as follows. From (9) it can
be readily shown that

1 QZZ'}c )
O — = d?
(e (55)) =

where 3;;. = exp (%) Similarly choosing a reference AN,

it can be shown

1 QZNC 12
E ex =d
(Brk p(')o‘)) e
2
(272)’“2) . For linearization, the square of
each distance equation is subtracted from the square of a

reference distance equation. This results in a linear system
which is represented in matrix form as!

(14)

5)

where (5, = exp(

b=A8+v, (16)

where b = [by, ...,by]” is the observation vector at the SNs
from the TNs. The linearized observation from the k** TN at
the ANs is thus given as

Orke — 01k — Krk + K1

Ok — 2k — Kpk + K2
by =

Ork — ON_-1k — Krk + AN -1

for 8,1 = 3—1]& exp (22—”“) and 6, = 6_1k exp (QZ—’“) While

Yo Yo
.2 2 2 2
Krk = Ty + Yrp and Ky = 27 + Y5

fori #r,i=1,...,N - 1. Also (2, yrx) are the coordinates
of the reference SN for the k' TN. A is the M (N — 1) x2M
data matrix for all TNs and is given by

A = diag (A", A% AM).

The diagonal elements of A are themselves data matrices
for the individual TNs. Thus for the k** TN, the data matrix
is given by

The inclusion of the constants 3;, 3,4 in (14) and (15) is essential for
the LLS solution to be unbiased.



T1 — Trk Y1 — Yrk
& T2 — Trk Y2 — Yrk
A" =2
IN-1 —Trk YN-1 — Yrk

v is the noise vector which has zero mean and a M (N — 1) x
M (N — 1) covariance matrix C, given by

Cv 11 Cv 12 Cv 1M
Cy = ) . . amn
Cyvmi Cyuar Comm

Expressions for the individual elements of C, are given as
follows.
The diagonal elements of C,;, are given by

[Corly =E {(5':"!« — Ok — djy + d?}c)ﬂ

402 402
= djj, exp o | — i+ dypexp | —5 ) —dyy
(ya) (va)
(18)

and the off-diagonal elements of Cy . are given by?
[Cvkk]i]’ =
E [(Ork O d2y +dy) (5% S dit d?kﬂ

402,
= [dﬁk exp ((A/O:)’E) - dﬁk‘| : (19)
The diagonal elements of Cy; are given as
[Cvkl]z‘i =
=al+a2 -—a3 —a4 (20)
where
11 2 (a2, + 0% + 2pr o, p0,
al = _dgkdgl exp ( rk rl 2/ klOrk 71)
Bri Brt (va)
1 1 2 02 —|—()',2 _|_2 OO
a2 = G_Td?kdlzl exp ( ik il 2Pkl ik zl)
ik il (’7/01)

a3 = d%,d% and a4 = d3d3,.

Finally, the off diagonal elements of C,; are given by
[Cvklhj =

E [(6;k = dik — iy +d3y) (61 — 60 — diy + d3y)]

=bl — b2 @1

2Here the correlation between the measurements of the same TN at different
ANs is not considered. This assumption is based upon two arguments. First,
for efficient operation of the localization algorithm, the SNs are placed far
apart hence retaining little correlation. Second, even if the SNs are placed
close to each other, distance and hence correlation between them is known
and can easily be incorporated in (19).

where

11 2 (02, + 02 + 2pki0rk0
bl _dgkdglexp< ( rk rl PkiOrk 'r‘l)

- ﬁrk: ﬁrl (’yOé)2

and
b2 = dfkdfl.

The WLLS solution is obtained by minimizing the cost func-
tion

ewres (0) = (b~ A8)" C, 7' (b AB), (22)
The WLLS estimate is obtained as follows
OwrLs = A'bY, (23)

where A* = [ATC, 'A] AT and b* = C,~!b. Since
the actual distances are not available, their estimated values are
used in (23). The variance and correlation elements of Cy, can
be estimated accurately by the sample estimation of C,, for a
large number of readings or snapshots. For a limited number of
snapshots, a shrinkage estimator is proposed in section I'V. The
WLLS technique presented is relative low in complexity and
does not require an initial estimate; however its performance
is sub-optimal. This is because information from all the SNs
is not utilized as the measurement from reference SN is used
to linearize the system.

IV. PRACTICAL ISSUES AND SHRINKAGE ESTIMATION

In practical scenarios the covariance matrix C is unknown
and it needs to be estimated. For seamless operation of the
iterative algorithm (12), C has to be positive definite and
hence invertible. For a sample covariance matrix to be positive
definite, the number of sample points need to be more than
the number of variables. For multiple TN this poses a serious
problem for the invertibility of C as the number readings need
to exceed the number of unknowns which can not always
be guaranteed in resource constraint networks. Furthermore,
a sample covariance matrix estimate with limited number of
sample points consists of large errors. Erroneous estimates
of C could lead to performance degradation of the GLS
algorithm. Similarly, the variance elements that are required to
generate the covariance matrix C, for the WLLS procedure
need to be estimated. Here again, the sample estimator is not
efficient for a limited number of snapshots. Thus, alternative
techniques to estimate C and C,, needs investigation to insure
minimum etror and positive definiteness. In this paper we
investigate the application of shrinkage estimation technique
for covariance matrix estimation. The shrinkage estimator is
introduced in the following subsection.

A. Shrinkage estimation of the covariance matrix

1) Shrinkage theory: In the context of multiple TN local-
ization, we briefly explain the theory behind the shrinkage
estimation as proposed by Ledoit and Wolf [2] for portfolio
analysis. For a large dimension covariance matrix C of size



NM x NM, let C be the sample estimator of C, then its
elements are given by

. 1 & ~ -
9], = PG B e 5,

where 4,5 = 1,... NM and Z; and Z; represent the sample
means. The sample estimator in (24) is unbiased and easy
to generate. Despite these advantages, for a small number of
snapshots P, C will exhibit a large error variance due to the
large number of unknown parameters to be estimated. We can
however introduce some structure to the sample covariance
generally by reducing the number of free variables. Such
structured estimates offer a relatively small error variance
however they can be biased due to a misspecified structure.
An optimal statistical solution is to reach an optimal tradeoff
between the the unbiased but high variance estimate and the
low variance but biased estimate. Thus the unbiased sample
covariance is shrinked towards a biased structured covariance
estimate.

To formalize the discussion and develop an expression for
the shrinkage covariance estimate. We define Cj to be the
true covariance matrix of the path-loss readings z. Let C be
an unbiased estimate of Cy. Let also the shrinkage target T
be another biased structured estimate of C, with relatively
small number of parameters, due to which T will consist of
a relatively small error variance. Thus instead of choosing
between the two extremes, the shrinkage estimator S combines
both estimates in a weighted fashion i.e.

S=AT+(1-X)C, (25)
where ) is the shrinkage intensity and its value is between 0
and 1. It is noted that if A = 1, then the shrinkage estimate is
the shrinkage target and the unbiased covariance is given no
weight. On the other hand, if A = 0, then no shrinkage takes
place and the unbiased estimator is chosen as the shrinkage
estimate. Here two obvious questions arise, firstly, how to
select the shrinkage target T and secondly, what value should
be given to the shrinkage intensity A. A number of shrinkage
targets can be used in (25), e.g. [3] lists six target shrinkage
intensities. In general, selection of T should be driven by
the lower dimension structure in the data. Thus in the case
of the covariance matrix Cy for multiple TNs, the natural
shrinkage target is the constant correlation shrinkafe target.

For the constant correlation shrinkage target [T],, = (AJ} ~and
k23

[T],; = » [C} - [C} ~, where p is the average correlation
il djj

of all the correlations between the network nodes i.e.

5= 1 Z Z {C} ij

" NM(NM -1) &~~~ [[- P
i=1 A /[c} M ;

2) Optimal shrinkage intensity: In otder to find the optimal
shrinkage intensity A, the Frobenius norm of the difference
between the shrinkage estimate and the true covariance matrix
is minimized with respect to A. This is achieved by minimizing

NM NM
(26)

the following cost function

L()\):EH/\TJr(l—A)C—COHi 7)
or equivalently
NM NM 2
L) =E3Y Y ()\ (T, + (1) [€] - [co}ij)
= 28)

Expanding (28) leads to (29) given at the top of the next page.
Finally, using F [C} )= [Cohj in (30), the value of A
ij

is obtained from the following expression

2 v ([¢],) - o (1m.[e], )]
(- 1,)]

Since the variance and covariances in (31) are also esti-
mated, they are replaced with their sample estimates to obtain
the optimal shrinkage intensity i.e.

Sere () o (r, )]

NM
i=1

5\:

NM NM
i=1 ijl

A= 2
sy e (m, - [e]) }

(32)

Expressions to obtain Var <[C} y and

Cov ([T] i [C} ij) are derived in the Appendix.

The value of X € [0 1] in most cases. In the unlikely event
if A exceeds these limits, the following bound is imposed.

5\ = max (O,min (1, 5\)) .

Thus the shrinkage covariance matrix S obtained from (25)
is used in the Newton step (13) to update the GLS algorithm
(12). Similarly, the variance and covariance values obtained
from S are used in the generation of the covariance matrix
C, for the WLLS algorithm.

V. SIMULATION RESULTS

In this section, we analyze the performance of the shrinkage
covariance estimate S and its impact on the performance of
WLLS and GLS algorithms. We consider a circular deploy-
ment of N SNs with radius R m. Within the network are
randomly deployed M TNs. The network deployment is shown
in Fig. 1. Each SN-TN link is given a random shadowing
variance o7, The PLE value is selected to be 3 (a = 3).
The GLS algorithm is operated for » number of iterations,
while to show an average performance for different number
of snapshots P, for every snapshot value, the simulation is
run v times independently.

Fig. 2 shows the error between the two covariance matrix
estimates, i.e. sample covariance estimate C and shrinkage
covariance estimate S. For this purpose, we base our evalua-
tion on the Frobenius norm of the difference between the true



NM NM

L= 3 AVar(IT],))+( - 3 Var ([(‘JL_)HA(l ~ A)Cov ([T]W €] j) J{)\E ([T]ij - 1€ j) +E ([C} j) _c OLJ} 2

i=1 j=1 7

Taking derivative with respect to A and equating to O yields

NM NM

¥y {2Avar (Im),;) =201 = A var <[c} J) +2(1—2)) Cov <[T}ij, €] J) +

i=1 j=1
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Figure 1. Network deployment
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Figure 2.  Error comparison of the estimated sample covariance matrix C
and shrinkage covariance matrix S. R =80 m, N =6, M =5, a = 3,
de = 40 m, v = 100.

. . N 2
and shrinkage covariance matrix i.e. €sprinkage = ||S — Col| %
and also between the true and sample covariance matrix i.e

2

€sample = HC — COH . The comparison is done for random
shadowing variance f%r each link between three different
bounds i.e. each link is given a random Ufj 1 value between
[1 3], [1 5] and [1 8]. It is evident from Fig. 2 that esprinkage
is lower than than eyq,p1e in all three cases. The difference

(30)

in performance is more profound for smaller number of P.
Also for larger afjkl bounds, larger error is shown by both
estimators.

)
i € [17]
b .
el i €15
. w0 € [13]
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Figure 3. Average value for optimal shrinkage intensity A over v = 100

independent runs. N =6, M =5, R=80m, o =3, v =50,d. = 40m,.

Fig. 3 compares the values of the optimal shrinkage inten-
sity for different number of snapshots P and different sets
of shadowing variance afjkl. From Fig. 3, we deduce the
following; i) the optimal shrinkage intensity is indeed between

the two extremes i.e. A € [0 1]. i) X decreases as the number
of snapshots increases, this is expected as with more snapshots
the sample estimator C becomes a more accurate estimator of
the covariance matrix Cy and hence a lower weight is given

to the target shrinkage covariance T according to (25). iii) A
is larger when the bound of shadowing variance afj i1 18 large,
this too is supporting the shrinkage theory as with increased
variance in the samples, less weight is given to the sample
estimator C for the same number of snapshots. The difference
for the different sets of rrfj 1 s however not significant.

Fig. 4, compares the average root mean squares error
(RMSE) performance of the WLLS with sample covariance
matrix WLLSqmpre, WLLS with the shrinkage covariance
matrix WLLSprinkage and the LLS estimator (i.e. when
C, = 1) for different number of snapshots. The comparison
is done for random shadowing variance between two sets. It is

observed that the WLLS5inkage due to its relatively accurate
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Figure 4. Average RMSE comparison between WLLS,p,inkage and — Figure 6. Average RMSE comparison between GLSgprinkage and
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estimation of the covariance matrix performs better than
WLLSsampie, the performance ditference is significant for a
smaller number of snapshots. However even for larger values
of P, WLLSp,rinkage still performs superior to WLLS sqmpie-

N ERaEs

WLLS sgmpie P =5
-a-\\erLSsllrivrkageP:E)
oLLS P =10
01 o WLLS g4nple P = 10 i
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D
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Figure 5. Average RMSE comparison between WLLS,p inkage and
WLLS ample- N=6, M =5, R=80m, oo =3, v=50,dc =40m.

In Fig. 5, we compare the average RMSE of the location
estimate of WLLSumple, WLLSsprinkage and LLS corre-
sponding to increasing value of shadowing variance ijkl.
In this case, 07}, is same for all SN-TN links i.e. 07, =
2V, j,k, 1. The plots are for two fixed snapshot values i.c
P =5 and P = 10. It is again noted that the WLLSp,inkage
performs superior to both WLLS 4ppie and LLS. It is also
interesting to note that the for P = 5, WLLS4p1e performs
even worse than the LLS, this is also evident from Fig. 4 for
P = 5. The reason being the large error in the sample estimate
Cv with a small number of P.

Fig. 6 compares the performance of the GLS algorithm with
the sample covariance matrix GLS;qmpie, GLS with shrinkage
covariance matrix GLSgprinkage and the GLS estimator with
identity covariance matrix GLS;gensitry. The average RMSE
of all the TNs is compared with the number of snapshots P.
The center of the network is selected as the initial estimate for

GLSsqmple- N =5, M =6, R=80m,a = 3,n =25, v =250,dc =
40m, 8% =[0,0]T .

all TNs i.e. 01 = [0,0]"Vk. The GLS algorithm is iterated
1 = 5 times. Due to the lack of structure in the sample
covariance matrix C, it is non-invertible for P < 20 and
hence GLSgqmpie produces no result for these values of P.
P =20 is by no means a minimum value for the invertibility
of C, in fact the minimum number of snapshots will increase
with the increase in the number of TNs. For P > 20 the
GLSsampie shows unacceptable error and performs worse than
GLSidentity- On the other hand, the shrinkage covariance
matrix S is both invertible and consists of a small error
variance, consequently GLSgprinkage performs better than
GLSsample and GLSidentity~

VI. CONCLUSIONS

In this paper, we focus on the optimized localization of
multiple TNs with correlated measurements. We have shown
that the correlation between readings from different TNs
at the SNs can improve the estimation accuracy. Two RSS
based localization algorithms were investigated. A closed form
expression is derived for the covariance matrix for multiple
TN WLLS algorithm. Furthermore, the covariance matrix
is estimated with a limited number of snapshots and the
shrinkage estimator. The shrinkage estimator is also used to
estimate the covariance matrix for the GLS algorithm. To
evaluate the performance of the proposed methods, correlation
between multiple TN readings at the same SN is based on the
the Gudmundson model. It is shown via simulation results that
the proposed WLLS and GLS algorithms with the shrinkage
covariance matrix perform superior to the same algorithms
using the sample covariance matrix. Especially for a small
number of snapshots the sample covariance matrix consists
of a large error (and is non invertible in case of GLS). This
results in degraded performance and in the worst case, the
performance is inferior to the case where the identity matrix
is used for the covariance matrix. The shrinkage covariance
matrix on the other hand, guarantees a relatively small esti-
mation error and it is always invertible. This results in superior
location estimation performance in both WLLS and GLS.
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APPENDIX

Following Schafer and Strimmer [3] and Kwan [24] whose
study focussed on gene classification and security returns
respectively, we derive optimal shrinkage intensity in the
context of multitarget localization. We define the following:
For P snapshots of path-loss measurements z;, the sample
mean is given by Z; = P2 S°7 2 Let

g Yy zi = p=1 %ip- L€

vigp = (2ip — Zi) (2jp — %) (33)
for i,j = LNM and p = P Also let v;; =

-1
P p=1 Vijp- Then the sample covariance is given by

P
D (zip =) (zp — 3). (34)

p=1

A P 1
c} - By =
[ ij P—lv] P-1

For ease of understanding, v;;, should be viewed as a
random variable. The unbiased variance of individual elements
of C is given by

w{le) -

Using the identity to find the variance of the mean of a
random variable, we have

Var (i)\w) . (35)

Var (3) = ]i)var (v3y) (36)
or
— 1 1 L N2
Var (Vi) = 5 | 57— ; (vijp — Vij) (37)

Thus the variance of the sample covariance matrix is given

by
(6, - iy B

On the other hand, the covariance elements are given as

Cov {[C} ij [C} “}_

An expression for Cov [T],; » [C} N
ij

complicated, here we use the so called ‘delta method’. For this
purpose, we consider the individual elements of C as variables

(38)

P

P
—_— Vijp —Vij) (Vip —Uki)-
(P - 1)3; JpP J P
(39)

is slightly more

and expand [T];; = [C} - [C} ~ via Taylor series around
@ L )jj

the corresponding point estimates [C| ., [C] ;; and C] y

provided by the samples. We have

[N ey

o ~ (40)
where  is obtained using (26) for C;; C;; and C;;.
Then from the definition of the covariance matrix, we have

Cov ([T]ij, [C} J)

E{ (i - £ (1m1,)) (191 - 2 (101))

using (40) in (41) leads to

(41)

o

o (1m0 [, ) -
E cov([c}h{c}ijy aren((e], [d)

Finally using (33) and (39), it is straightforward to define

cov ([e] . [¢], ) macav([¢] [e] )

o e -2

—(P 1_31)3 ;{[(ij —- %)

(1]
(2]

(3]

(4]

(3]

(6]
(7]

(8]

o ([e],[¢],) =

Cov
= —@z} [(Zip - %) (ij - 2j)‘if\ij]}
(42)

=1

hS]

and similarly

Cos qqg‘f{é}”)

‘@j} [(zip — 2) (2p — Z5) —

which completes the derivation.
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Abstract

In this paper, we deal with the accurate estimation of the covariance matrix for the optimization of multiple
target node (TN) localization using correlated received signal strength (RSS) measurements. Two location schemes
i.e. the iterative generalized least squares (GLS) and the low complexity weighted linear least squares (WLLS)
methods are investigated. For many applications the estimated covariance matrix needs to be positive definite and
hence invertible. For an insufficient number of data points, the sample covariance matrix suffers from two drawbacks.
Firstly, although it is unbiased, it consists of a large estimation error. Secondly, it is not positive definite. A shrinkage
technique to estimate the covariance matrix has been proposed in the fields of finance and life sciences. In this
paper, we introduce the shrinkage covariance matrix concept in the area of multiple TN localization in wireless
networks with correlated measurements. An analytical expression of the multiple TN covariance matrix is derived
for the WLLS method and the estimation is done via the shrinkage technique. Similarly, the shrinkage technique
is employed for the covariance matrix estimation for the GLS algorithm. For a limited number of measurements,

the shrinkage covariance technique improves the performance of both WLLS and GLS considerably.

Index Terms

Localization, Received signal strength (RSS), Shrinkage estimation.

I. INTRODUCTION

For a set of random variables, the covariance matrix is a symmetric matrix, whose diagonal elements
represent the individual variances of the random variables while the off-diagonal elements are the
corresponding cross covariances. When the variance of all random variables is set to unity, the covariance
matrix is then known as the correlation matrix. The covariance matrices have applications in various

fields. In finance, portfolio analysis is done via estimation of the covariance matrix of stock returns [1],
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[2]. In life sciences it is used in genes classification by finding the pairwise correlation between genes
[3]. In most cases, the elements of the covariance matrix are unknown and need to be estimated. Due
to its ease of use, the sample estimator is commonly used for covariance matrix estimation. Although
the sample estimator is unbiased, it faces serious issues when the number of samples is equal or smaller
than the number of variables. If the samples are equal or less than the number of variables, the sample
covariance matrix will contain a large estimation error. Furthermore, the sample covariance matrix will
not be positive definite, making it impractical to use. To elaborate on the previously given examples,
for portfolio analysis, if the number of stocks is larger than the number of historical (e.g. monthly)
stock returns then the corresponding sample covariance matrix will contain large errors and will always
be singular. Similar problems are faced in gene classification research, if the number of genes under

considerations exceeds the number of experiments performed.

The idea of shrinkage estimation for large covariance matrices was introduced rather recently in finance
applications [2]. As mentioned before, the sample estimator is unbiased but poses large variance, the
shrinkage idea is to introduce some structure to the sample covariance matrix. A target covariance matrix
is chosen (which has a smaller number of variables) as a candidate for covariance matrix estimate. Due
to the small number of parameters, the target covariance matrix will have a relatively small error variance
although it will be biased. The idea is to choose an optimally compromised covariance matrix instead
of the two extremes i.e. the large variance but unbiased sample covariance matrix and low variance but

biased target covariance matrix.

In this paper, we apply the shrinkage theory for covariance matrix estimation to multiple node
localization in wireless networks. Node localization in wireless networks is needed in many application
including situation awareness, cattle/wild life monitoring and logistics [4]. A number of techniques have
been developed for accurate positioning of wireless nodes. These may include the time of arrival (ToA)
[5] and angle of arrival (AoA) methods [6]. Both ToA and AoA provide an accurate distance and hence
location estimation. However, both techniques require additional hardware on board the target nodes (TNs).
A prerequisite of ToA method is the availability of highly accurate and synchronized clocks on the TN,
while AoA requires an array of antennas [6], [7]. A low cost and simplistic technique to localize wireless
nodes is the received signal strength (RSS) technique [8]. Considerable amount of research has been done
to optimize the performance of RSS localization. Joint estimation of the path-loss exponent (PLE) and

location is discussed in [9], [10], [11]. Cooperative RSS localization is studied in [12]. Tracking using



RSS technique is investigated in [13]. Most of these studies assume individual links between TNs and
sensor node (SN) to be independent of each other. This is an oversimplification as readings at the SN
from TNs that are close to each other in a network introduces an element of spatial correlation. In this
study we simulate our data using the widely accepted Gudmundson correlation model presented in [14].
The Gudmundson’s model suggests that the correlation between two nodes is an exponentially decaying
function of the distance between them. The authors of [15] show that if these correlations are taken into
account they could enhance the location estimation performance. This proposition was done by deriving
the Cramer-Rao bound for spatial correlation between nodes, however an algorithm capitalizing on such

correlation was not presented.

In this paper, we optimize the performance of two multiple TN RSS location algorithms. Location
estimation of TNs is a non-linear estimation problem. Due to the non-linear nature, the location estimation
is generally performed using an iterative algorithm with a close initial estimate and Newton step update.
However, location coordinates can also be estimated using a linear least squares (LLS) approach. In this
paper we first develop an iterative generalized least squares (GLS) technique for multiple TN localization.
Second, we also formulate a weighted LLS (WLLS) solution to the multiple TN location problem. A closed
form expression is derived for the covariance matrix of multiple TN readings at the SNs. The covariance
matrix expression depends on the variance and covariance values of these readings. In practical scenarios
and in large networks these values are unknown and the number of snapshots is not large enough to
provide an accurate sample estimate due to limited resources and packet lose. To counter this problem, we
apply the shrinkage technique to estimate the variance and covariance elements required in the expression
for the covariance matrix in the WLLS method. The shrinkage technique is also applied to estimate
the covariance matrix for the GLS technique. Due to the lack of structure and for a limited number
of snapshots the sample covariance matrix is non invertible rendering it impractical to use in the GLS
method. The shrinkage covariance estimator on the other hand introduces a structure to the covariance
matrix and hence it is invertible even for limited number of snapshots. It is shown via simulation that
the shrinkage covariance matrix compared to the sample covariance matrix has a smaller estimation error.
Consequently, the shrinkage covariance matrix, when used in the GLS and WLLS algorithm, results in
superior performance. Especially in the case of GLS case, where the sample covariance estimator is non

invertible for a limited number of snapshots, this problem is resolved with the shrinkage covariance matrix.

The rest of the paper is organized as follows. Section II introduces the signal model and the multiple TN



location problem. Section III, develops the GLS and the WLLS estimator. In section IV we briefly discuss
the shrinkage theory and covariance shrinkage estimator. Section V presents the simulation results which

are followed by the conclusions. The derivation of the shrinkage estimator is provided in the Appendix.

II. SYSTEM MODEL

For future use, we define the following notations.

R™ is the set of n dimensional real numbers, (.)7 is the transpose operator, E(.) refers to the expectation
operator, [M],; refers to the element at the i row and j column of matrix M, Iy represents the N
dimensional identity matrix. N (;,0%) represents the normal distribution with mean p and variance o?.
|I.||5 represents the Frobenius norm.

A two dimensional (2-D) network is considered, consisting of N SNs with known locations ¢, ; =
[xm,yi,j]T(qu € 7'\’,2) for i,5 = 1,..., N. The network also consists of M TNs which have unknown
coordinates 8, = [:L’k,l,yw]T (01, € R?) for k,1 = 1,..., M that are to be estimated. The received
power at the SNs due to random shadowing is log-normally distributed. This model is based on empirical
results obtained in [16], [17]. It is assumed that the TNs transmit during preassigned epochs to avoid
interference between different TN transmissions. Thus the distance d;; between the k" TN and the i*"

AN is related to the path-loss at the i" AN, %, and the PLE, «, as [18]

L = Lo+ 10alogg dig, + W, (1)

where %) is the path-loss at the reference distance dy (dy < d;, and is normally taken as 1 m) and w;
is a zero-mean Gaussian random variable representing the multipath log-normal shadowing effect, i.e.
wix ~ (N (0,0%)). It is assumed that o is known via prior channel modeling or accurate estimation. The

path-loss is calculated as

where P is the transmit power at the k" TN and Py, is the received power at the i" AN. The distance

d;, 1s given by

di =\ (e — ) + (i — 91)°. 3)

The observed path-loss (in dB) from dy to di, zi = L. —-Z0, can be expressed as



Zit, = fi(Or) + wig, 4

10

1o+ (4) can be written in a matrix form as

where f;(68;) = yalnd; and v =
Z=F(60)+W, (5)

where the k™" column of Z and W represents the readings and associated noise elements at the SNs from
the k' TN respectively and [F (0)],, = f;(6}). For convenience (5) can also be written in a ‘roll out’

form i.e. z = vec (Z), then for the k'" target, we have

%1k f1(64) Wik
%2k f2(64) Wak
= +
_ZNk_ _fN(Bk)_ _ka_
or
7, = f, + wy,. (6)

Then we have wy, ~ N (0, Cyy) where Cyy, = 021y and E (Wk (W,)T> = Cy;. Here Cy; is the N x N
covariance matrix between RSS readings at the SNs from the k™" and /" TN and its elements are given

lth

by Inpuoioi. Here py is the spatial correlation between the k' and TN. Its value depends on the

relative distance between the TNs and can be modeled according to Gudmundson [14] as follows

d
Pri = €xp <—d—’“) : )

where d,. is the ‘decorrelation distance’. Field measurements in [23] suggest values for d. for different

environments. Eq. (6) when written for all TNs is given by

2 = vee() = ()" (22)" ... (zM)T)T (8)

or

z="1(0)+w, ©))



where w ~ N (0, C), where C encompasses correlations between all TNs;

Ci Cip -+ Ciy
C_ Cy Cpn - Cuy
Cu1 Curp Cum

Two location algorithms to solve (9) are discussed in the next section.

III. LOCALIZATION ALGORITHMS FOR MULTIPLE TNS

A. Generalized least squares algorithm

It is clear that (9) presents a non-linear estimation problem and a close form expression to solve (9) is

not readily available. A solution to (9) is obtained by minimizing the following cost function [19]
c(0)=(z—-f(0) C'z-1£(9), (10)

where (10) can be minimized by first linearizing f (@) by the first order Taylor series expansion to a close

initial estimate f (8) i.e.

f@)=£f(6")+F(O")(6—-6, (11)

where

F (0") = diag [F (67) ., F (83),....F (6%,)]

and F (8}) is the Jacobian matrix of the k" TN and its elements are given by

0f1(8x) 9f1()
oz g, =67 Ovk  |g, =2
Of2(0) f2(8k)
3l’k __pna 8yk _pa
ay _ 0,=0 8,=6
F (0;) = Rk Rk
Ofn(8k) Ofn(6k)
Ov |g,—02 Y g =g
for 200|  _a(ot-n)ig, and 2400|  _a(i-u),
Tk 1g,=08 Yt lg,=0¢



Using (11) in (10) and minimizing with respect to €, so that the next estimation is given by
0t = 0" + o" (12)

where

o= (P69 CR(6) F(6°)7C (2 —£(6%). (13)

Thus given an initial estimate #', the generalized least squares (GLS) converges to the minima. The
algorithm is stopped after a fixed number of iterations or when the value |e (6““) —¢ (9“)| becomes
smaller than a certain threshold. To avoid the complexity of the iterative procedure and a close initial

estimate condition at the expanse of accuracy, a WLLS solution is presented in the next subsection.

B. Weighted linear least squares algorithm

A slight manipulation of (9) renders it to be linear. This technique was first proposed for ToA distance
estimates in [20] and analyzed in [21]. For a single target RSS measurements the linearized model is

discussed in [22]. Here we extend this method for the multiple TN case as follows. From (9) it can be

1 2z; A
E <—eXp ( Z’f)) _ (14)
Bik Yo

readily shown that

where 5;, = exp ( (27‘;2)’“2) Similarly choosing a reference AN, it can be shown
1 2ZT]€ N
E exp < )) = d? ) (15)
<5rk ies b
where 3., = exp ( (%;f)k2> . For linearization, the square of each distance equation is subtracted from the

square of a reference distance equation. This results in a linear system which is represented in matrix
form as!

b=A8+v, (16)

where b = [by,...,b M]T is the observation vector at the SNs from the TNs. The linearized observation

from the k™" TN at the ANs is thus given as

"The inclusion of the constants Oik, Ork in (14) and (15) is essential for the LLS solution to be unbiased.



Ok — 01k — Ky + K1

Ok — 02k — Ky + Ko
b, =

Op — ON—1k — Erk + KN—1

for 8, = %kexp (Qj—;’“) and 0;, = 3% exp (25—;’“) While

2 2 2 2
Krk = Ty + Yo and &; = 27 + y;

fori#r, i=1,..,N — 1. Also (x,1,y,) are the coordinates of the reference SN for the k* TN. A is

the M (N — 1) x 2M data matrix for all TNs and is given by

A = diag (AI,A2~-~AM).

The diagonal elements of A are themselves data matrices for the individual TNs. Thus for the &' TN,

the data matrix is given by

T1 — Trg Y1 — Yrk

To — Trg Y2 — Yrk

IN-1— Trk YN-1— Yrk

v is the noise vector which has zero mean and a M (N — 1) x M (N — 1) covariance matrix C, given

by
Cvll Cv12 T Cle
Cv _ Cv21 Cv22 T Cv2M
Cle CvM2 T CvMM

Expressions for the individual elements of C, are given as follows.

The diagonal elements of C,,,; are given by

a7



[Cvkk]ii =F [(57"16 — Oi, — d?«k + d?k)Q}

402 402
= djj, exp ( UZkz) — djp + dyy, exp (%) —dy, (18)
(o) (va)

and the off-diagonal elements of C,,, are given by>

[Coriliy = B [(6k — dix — &2 + d2y) (0r — S5 — Ay + 3y )]

4 2
_ {dﬁk exp <<7‘Z§2> - dﬁk] . (19)

The diagonal elements of C,,;,; are given as

Cynl; =F [<5Tk — G — d2y, + d?k) (61 — 0 — 2 + d?z)}
=al+a2—a3—a4d

(20)

where

1 1 2 (52 2 19 O,
al = __kod?«z exp ( (O + 00 + 2Pkl(7 kO z))
/87‘]4? /BTl (f)/(y)
1 1 2 (o3 2 4 90100
a2 = __dzzkdzzl exp ( (0 +oi + QPklU kﬁ))
Bik Pi (704)

Finally, the off diagonal elements of C,,; are given by

“Here the correlation between the measurements of the same TN at different ANs is not considered. This assumption is based upon two
arguments. First, for efficient operation of the localization algorithm, the SNs are placed far apart hence retaining little correlation. Second,
even if the SNs are placed close to each other, distance and hence correlation between them is known and can easily be incorporated in (19).



[Conlyy = E [(6rk — Gix — Ay + diy) (0r — 650 — d2y + d?lﬂ

=bl — b2
(21)
where
1 1 2 (c? 249 1O
bl = — —d?.d% exp ( (0 100 + kalg i l)>
Brk: Bri (ver)
and
The WLLS solution is obtained by minimizing the cost function
ewrrs (8) = (b— AB) C, ' (b — A8), (22)
The WLLS estimate is obtained as follows
Owrrs = A'bl, (23)

where A* = [ATC, 'A] 'AT and b' = C, 'b. Since the actual distances are not available, their
estimated values are used in (23). The variance and correlation elements of C,, can be estimated accurately
by the sample estimation of C, for a large number of readings or snapshots. For a limited number of
snapshots, a shrinkage estimator is proposed in section IV. The WLLS technique presented is relative low
in complexity and does not require an initial estimate; however its performance is sub-optimal. This is
because information from all the SNs is not utilized as the measurement from reference SN is used to

linearize the system.

IV. PRACTICAL ISSUES AND SHRINKAGE ESTIMATION

In practical scenarios the covariance matrix C is unknown and it needs to be estimated. For seamless
operation of the iterative algorithm (12), C has to be positive definite and hence invertible. For a sample

covariance matrix to be positive definite, the number of sample points need to be more than the number of



variables. For multiple TN this poses a serious problem for the invertibility of C as the number readings
need to exceed the number of unknowns which can not always be guaranteed in resource constraint
networks. Furthermore, a sample covariance matrix estimate with limited number of sample points consists
of large errors. Erroneous estimates of C could lead to performance degradation of the GLS algorithm.
Similarly, the variance elements that are required to generate the covariance matrix C, for the WLLS
procedure need to be estimated. Here again, the sample estimator is not efficient for a limited number of
snapshots. Thus, alternative techniques to estimate C and C,, needs investigation to insure minimum error
and positive definiteness. In this paper we investigate the application of shrinkage estimation technique

for covariance matrix estimation. The shrinkage estimator is introduced in the following subsection.

A. Shrinkage estimation of the covariance matrix

1) Shrinkage theory: In the context of multiple TN localization, we briefly explain the theory behind
the shrinkage estimation as proposed by Ledoit and Wolf [2] for portfolio analysis. For a large dimension
covariance matrix C of size NM x NM, let C be the sample estimator of C, then its elements are given

by
P

[C} i P—1 > (zp—2) (i — %) (24)

p=1

where i,7 = 1,...NM and Z; and Z; represent the sample means. The sample estimator in (24) is
unbiased and easy to generate. Despite these advantages, for a small number of snapshots P, C will
exhibit a large error variance due to the large number of unknown parameters to be estimated. We can
however introduce some structure to the sample covariance generally by reducing the number of free
variables. Such structured estimates offer a relatively small error variance however they can be biased due
to a misspecified structure. An optimal statistical solution is to reach an optimal tradeoff between the the
unbiased but high variance estimate and the low variance but biased estimate. Thus the unbiased sample

covariance is shrinked towards a biased structured covariance estimate.

To formalize the discussion and develop an expression for the shrinkage covariance estimate. We define
Cy to be the true covariance matrix of the path-loss readings z. Let C be an unbiased estimate of Cj,.
Let also the shrinkage target T be another biased structured estimate of C, with relatively small number

of parameters, due to which T will consist of a relatively small error variance. Thus instead of choosing



between the two extremes, the shrinkage estimator S combines both estimates in a weighted fashion i.e.
S=)T+(1-))C, (25)

where ) is the shrinkage intensity and its value is between 0 and 1. It is noted that if A = 1, then the
shrinkage estimate is the shrinkage target and the unbiased covariance is given no weight. On the other
hand, if A = 0, then no shrinkage takes place and the unbiased estimator is chosen as the shrinkage
estimate. Here two obvious questions arise, firstly, how to select the shrinkage target T and secondly,
what value should be given to the shrinkage intensity A. A number of shrinkage targets can be used
in (25), e.g. [3] lists six target shrinkage intensities. In general, selection of T should be driven by the
lower dimension structure in the data. Thus in the case of the covariance matrix C, for multiple TNs, the
natural shrinkage target is the constant correlation shrinkage target. For the constant correlation shrinkage
target [T, = [C} ; and [T],; = p [C} ; [C} e where p is the average correlation of all the correlations

between the network nodes i.e.

NM NM |:C:|

= NM NM—lZZ '
im

2) Optimal shrinkage intensity: In order to find the optimal shrinkage intensity )\, the Frobenius norm

(26)

of the difference between the shrinkage estimate and the true covariance matrix is minimized with respect

to A. This is achieved by minimizing the following cost function
R 2
L(A):EHAT+(1—>\)C—COH 27)
F

or equivalently

—E {%NZM ()\ )+ (1) [€] - [Co]ij)Q} (28)

Expanding (28) leads to (29).

Finally, using £ <[C} ) = [Co]ij in (30), the value of \ is obtained from the following expression
ij

A=

€2




NM NM

L= 3 e (T),) + 0~ 2 Var (M ) +22(1 = A)Cov (mij, ] J)
+ {)\E ([T]ij - €] ) +E ([C} j) - KJo]iJ " )

Taking derivative with respect to A and equating to O yields

NM NM

>y {2)\var ([T]ij) —2(1 - A)var ([C} ) +2(1 - 2)) Cov ([T]Zj, M J) +

2 {E ([TL,- - [e] )} {AE ([T]ij - [e] ) ‘B ([c} ) . {co]i]} } 0 0

Since the variance and covariances in (31) are also estimated, they are replaced with their sample

estimates to obtain the optimal shrinkage intensity i.e.
SN N {VA ([c} ) _Cov (n—j, €] )}

E ([T]ij _ M ij)2

Expressions to obtain Var ([C} ) and Cov ([T] i [C} > are derived in the Appendix.
1] )

)=

(32)
NM ~—~NM
Zi:l j=1

The value of A € [0 1] in most cases. In the unlikely event if A exceeds these limits, the following

bound is imposed.
5\ = max (O, min (1, 5\)) .

Thus the shrinkage covariance matrix S obtained from (25) is used in the Newton step (13) to update
the GLS algorithm (12). Similarly, the variance and covariance values obtained from S are used in the

generation of the covariance matrix C,, for the WLLS algorithm.

V. SIMULATION RESULTS

In this section, we analyze the performance of the shrinkage covariance estimate S and its impact on
the performance of WLLS and GLS algorithms. We consider a circular deployment of N SNs with radius
R m. Within the network are randomly deployed M TNs. The network deployment is shown in Fig. 1.

Each SN-TN link is given a random shadowing variance O'inkl. The PLE value is selected to be 3 (a. = 3).



The GLS algorithm is operated for n number of iterations, while to show an average performance for

different number of snapshots P, for every snapshot value, the simulation is run v times independently.
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Figure 1. Network deployment
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Figure 2. Error comparison of the estimated sample covariance matrix C and shrinkage covariance matrix S. R=80m, N =6, M =5,
a=3,d.=40m, v = 100.

Fig. 2 shows the error between the two covariance matrix estimates, i.e. sample covariance estimate
C and shrinkage covariance estimate S. For this purpose, we base our evaluation on the Frobenius norm
of the difference between the true and shrinkage covariance matrix i.e. €sprinkage = ||S — COH?; and also
between the true and sample covariance matrix i.e €sgmple = HC — COH; The comparison is done for
random shadowing variance for each link between three different bounds i.e. each link is given a random
U,L-ijl value between [1 3], [1 5] and [1 8]. It is evident from Fig. 2 that esrinkage 1S lower than than
esample 10 all three cases. The difference in performance is more profound for smaller number of P. Also
for larger afjkl bounds, larger error is shown by both estimators.

Fig. 3 compares the values of the optimal shrinkage intensity for different number of snapshots P
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Figure 3.  Average value for optimal shrinkage intensity A over v = 100 independent runs. N = 6, M = 5, R =80 m, a = 3,
v =50,d. =40 m,.

and different sets of shadowing variance O’Z-ijl. From Fig. 3, we deduce the following; i) the optimal
shrinkage intensity is indeed between the two extremes i.e. 3\ € [0 1]. ii) i decreases as the number of
snapshots increases, this is expected as with more snapshots the sample estimator C becomes a more
accurate estimator of the covariance matrix Cy and hence a lower weight is given to the target shrinkage
covariance T according to (25). iii) i is larger when the bound of shadowing variance Ufjkl is large, this
too is supporting the shrinkage theory as with increased variance in the samples, less weight is given to
the sample estimator C for the same number of snapshots. The difference for the different sets of afj o 18

however not significant.
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Figure 4. Average RMSE comparison between WLLS 4 rinkage and WLLSsqmpie- N =6,M =5, R=80m, o = 3, v = 50,d. = 40m.
Fig. 4, compares the average root mean squares error (RMSE) performance of the WLLS with sample

covariance matrix WLLS,,,,,;., WLLS with the shrinkage covariance matrix WLLSinkqge and the LLS

estimator (i.e. when C,, = I) for different number of snapshots. The comparison is done for random



shadowing variance between two sets. It is observed that the WLLSj,,inkqge due to its relatively accurate
estimation of the covariance matrix performs better than WLLS,4,p, the performance difference is
significant for a smaller number of snapshots. However even for larger values of P, WLLSp,inkage still

performs superior to WLLS 4.
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Figure 5. Average RMSE comparison between WLLS 4 rinkage and WLLSsampie. N =6,M =5,R=80m, a = 3, v = 50,d. = 40m.

In Fig. 5, we compare the average RMSE of the location estimate of WLLS.p1e, WLLShrinkage and
LLS corresponding to increasing value of shadowing variance a?j - In this case, o*fjkl is same for all SN-
TN links i.e. O'Z-ijl = 02V, 7, k,l. The plots are for two fixed snapshot values i.e P =5 and P = 10. It is
again noted that the WLLS4,inkage performs superior to both WLLS 4,0 and LLS. It is also interesting
to note that the for P = 5, WLLS,,,e performs even worse than the LLS, this is also evident from Fig.

4 for P = 5. The reason being the large error in the sample estimate C., with a small number of P.

GLS sampic 0353 € [110]
" GLSiden(z(yU?]k[ €[110]
-4-GLS hrinkage 071, € [110]

- 1

Average RMSE (m)

Figure 6. Average RMSE comparison between GLSshrinkage and GLSsampie. N =5, M =6, R=80m, o =3,n =25, v =50,d. =
40m, 8} = [0,0]".

Fig. 6 compares the performance of the GLS algorithm with the sample covariance matrix GLSgqmpie,



GLS with shrinkage covariance matrix GLSpyinkage and the GLS estimator with identity covariance matrix
GLS;gentity- The average RMSE of all the TNs is compared with the number of snapshots P. The center
of the network is selected as the initial estimate for all TNs i.e. 8, = [0, O]TV k. The GLS algorithm is
iterated 77 = 5 times. Due to the lack of structure in the sample covariance matrix C, it is non-invertible
for P < 20 and hence GLS;. produces no result for these values of P. P = 20 is by no means a
minimum value for the invertibility of C, in fact the minimum number of snapshots will increase with the
increase in the number of TNs. For P > 20 the GLSg,;,,p. sShows unacceptable error and performs worse
than GLS;gentity- On the other hand, the shrinkage covariance matrix S is both invertible and consists of

a small error variance, consequently GLSp,inkage performs better than GLS.mpe and GLS;gentity -

VI. CONCLUSIONS

In this paper, we focus on the optimized localization of multiple TNs with correlated measurements.
We have shown that the correlation between readings from different TNs at the SNs can improve the
estimation accuracy. Two RSS based localization algorithms were investigated. A closed form expression
is derived for the covariance matrix for multiple TN WLLS algorithm. Furthermore, the covariance matrix
is estimated with a limited number of snapshots and the shrinkage estimator. The shrinkage estimator
is also used to estimate the covariance matrix for the GLS algorithm. To evaluate the performance of
the proposed methods, correlation between multiple TN readings at the same SN is based on the the
Gudmundson model. It is shown via simulation results that the proposed WLLS and GLS algorithms with
the shrinkage covariance matrix perform superior to the same algorithms using the sample covariance
matrix. Especially for a small number of snapshots the sample covariance matrix consists of a large
error (and is non invertible in case of GLS). This results in degraded performance and in the worst case,
the performance is inferior to the case where the identity matrix is used for the covariance matrix. The
shrinkage covariance matrix on the other hand, guarantees a relatively small estimation error and it is

always invertible. This results in superior location estimation performance in both WLLS and GLS.
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APPENDIX

Following Schafer and Strimmer [3] and Kwan [24] whose study focussed on gene classification and
security returns respectively, we derive optimal shrinkage intensity in the context of multitarget localization.
We define the following: For P snapshots of path-loss measurements z;, the sample mean is given by
Z =P Y0 2 Let

vigp = (2ip — %) (2jp — Zj) (33)

fori,j=1,..,NM and p=1,..., P. Also let v;; = P! Z;::l v;jp- Then the sample covariance is given

by
P

A P 1 = R
[C} TP 1T P > (zp = 3) (zp — 3)- (34)

p=1
For ease of understanding, v;;, should be viewed as a random variable. The unbiased variance of

individual elements of C is given by

Var { [C} U} - %Var (@) (35)

Using the identity to find the variance of the mean of a random variable, we have

—_— 1
Var (v;;) = pvar (viz) (36)
or
1] 1 &
ST ~ \2
Var (v;;) = PlP_1 pz;l (vijp — Vij)" | - (37)

Thus the variance of the sample covariance matrix is given by

P
— ~ P 2

e {[e] ) oS 5

el } = D w 3
On the other hand, the covariance elements are given as
. p &L

Cov {[C} ;' [C} kl} — W; (Vijp—i5) (Vkip—Ukt)- (39)

An expression for Cov <[T] i [C} ) is slightly more complicated, here we use the so called ‘delta

ij

method’. For this purpose, we consider the individual elements of C as variables and expand [T =



~

p [C} B [C} ~ via Taylor series around the corresponding point estimates [C] o [C_JL.J. and [C_J] i provided
2 27
by the samples. We have

where p is obtained using (26) for C,i (_3]-]- and Cij.

Then from the definition of the covariance matrix, we have

ov (111, [¢], ) = £ [(1m, - £ (1m,)) (11, - £ (11, )] @)
using (40) in (41) leads to

on([e] [e], )+ e ((e], [e] )}

Jj

Finally using (33) and (39), it is straightforward to define 6&/([@} ,[C}) and
i i

& ([e], [, » |

Co <[C} i [C} z’j) T P_1? Z{K'Zi” B 2)2—%] [(2ip = 2i) (2jp — 25) =l 42)

and similarly

63§<[C}ﬂ,[é}w>::E;;éqygéi{ﬂ%p"%)2—an}K%p"z)(%p"%)—ﬁﬁﬁv (43)

which completes the derivation.
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