
This is a repository copy of Enhanced hybrid positioning in wireless networks II: AoA-RSS.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/84020/

Version: Accepted Version

Proceedings Paper:
Salman, N, Khan, MW and Kemp, AH (2014) Enhanced hybrid positioning in wireless 
networks II: AoA-RSS. In: Proceedings of the 2014 International Conference on 
Telecommunications and Multimedia, TEMU 2014. 2014 International Conference on 
Telecommunications and Multimedia, TEMU 2014, 28-30 Jul 2014, Heraklion. IEEE , 92 - 
97. ISBN 9781479932009 

https://doi.org/10.1109/TEMU.2014.6917742

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 
Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright 
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy 
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The 
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White 
Rose Research Online record for this item. Where records identify the publisher as the copyright holder, 
users can verify any specific terms of use on the publisher’s website. 

Takedown 
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


Enhanced Hybrid Positioning in Wireless

Networks II: AoA-RSS
N. Salman, M. W. Khan, A. H. Kemp

School of Electronic and Electrical Engineering, University of Leeds, U.K.

(e-mail: {elns, elmwk, a.h.kemp}@leeds.ac.uk).

Abstract—In order to achieve higher location estimation ac-
curacy through utilizing all the available information, in this
paper we propose a hybrid localization system. We use the
angle of arrival (AoA) measurement with the inherent received
signal strength (RSS) information to develop an AoA-RSS linear
least squares (LLS) location estimator. To accurately predict the
performance of the LLS estimator, a closed form expression for
the mean square error (MSE) is also derived. Furthermore, the
information present in the covariance of the incoming signals is
utilized and a novel weighted linear least squares (WLLS) method
is proposed. It is shown via simulation that the theoretical MSE
accurately predicts the performance of the LLS estimator. It
is also shown via simulation that the WLLS algorithm exhibits
better performance than the LLS algorithm.

I. INTRODUCTION

Accurate wireless node localization has been the focus of

many researchers in the past decade. Wireless nodes could be

located using the global positioning system (GPS) however

due to the high cost in terms of power consumption and price

of the GPS chip and in many scenarios the unavailability of

direct line of sight (LoS) to the satellites, GPS positioning

is not always favored. Hence alternative methods to obtain

node location have been developed. Most localization systems

first estimate the distance between the target node (TN) and

a node with known location called an anchor node (AN).

One of the simplest and cheapest techniques to determine the

distance between two nodes is the received signal strength

(RSS) technique. RSS range estimation does not require any

additional hardware on the nodes. Distance between nodes can

also be determined using the angle of arrival (AoA) at the TN

from two or more ANs [1]. The AoA could be estimated by

using an array of antennas as in [2] or a rotating beam of

radiation [3], and using techniques such as Multiple Signal

Classification (MUSIC) [4] or estimation of signal parameters

via rotational invariance techniques (ESPIRT) [5]. As for

the RSS distance estimation, various techniques have been

proposed to enhance its performance [6]. Once the distance

information is made available, it can then be used to estimate

the location coordinates. Moreover the localization scheme can

be either iterative [7] or non-iterative [8], or it can be co-

operative [9] or non-cooperative [10], [11].

In this paper, instead of emphasizing either AoA or RSS

individually, we use all the available information to develop

a hybrid AoA-RSS LLS approach. We study the performance

of LLS estimator for hybrid AoA-RSS systems and develop

a theoretical mean square error (MSE) equation. We also

propose a WLLS algorithm that shows better performance than

the LLS algorithm.

The rest of the paper is organized as follows. In section

II, basic RSS, AoA and the hybrid localization systems are

reviewed . Section III deals with the derivation of the theoret-

ical MSE expression. WLLS algorithm is proposed in section

IV. In Section V we compare the results of LLS with WLLS

algorithm and section VI concludes the paper.

II. RSS, AOA AND HYBRID LOCALIZATION

For future use, we define the following notations R
n repre-

sents a set of n dimensional real numbers, (.)T is the transpose

operator, Tr(M) is the trace of matrix M , Ex(.) refers to the

expectation with respect to the random variable x.

1) RSS. If only RSS measurement is present then at least 3

or 4 ANs are required for 2d or 3d localization respectively.

Each distance estimate can be represented as the radius of a

circle, the center of which is the ANs location. Hence we have

a number of circles depending upon the number of ANs. The

point of intersection of all these circles is the position of the

TN.

We assume that our network consists of N ANs with

locations θi = [xi, yi]
T (

θi ∈ R
2
)

for i = 1, ..., N. Where

the distance di between the TN and the ith AN, is related to

the path-loss at the ith AN, Li , and the path loss exponent

(PLE), α, as [12]

Li = L 0 + 10α log10 di + wi, (1)

where L0 being the path-loss at the reference distance d0
(d0 < di, and is normally taken as 1 m) and wi is a

zero-mean Gaussian random variable representing the log-

normal shadowing effect, i.e. wi ∼
(

N
(

0, σ2

i

))

. The path-

loss is the dB difference between the transmit power and the

received power and is given by Li = 10 log10 P −10 log10 Pi

where P is the transmit power at the TN and Pi is the

received power at the ith AN. The distance di is given by

di =

√

(x− xi)
2
+ (y − yi)

2
. The observed path loss (in dB)

from d0 to di, zi = Li−L0, can be expressed as

zi = γα ln di + wi, (2)

for γ = 10

ln 10
.

From (2), we can obtain the noisy distance equation as

d̂i = di exp

(

wi

γα

)

(3)



Clearly (3) is non-linear and can be solved using iterative

techniques, however a least squares (LS) can also be be used

by first linearizing (3) [6]. From (3) we obtain

d̂2i ≈
[

(x− xi)
2 + (y − yi)

2
]

exp

(

2wi

γα

)

, (4)

then a reference AN is selected and its distance equation is

subtracted from (4) for i = 1, ..., N (i 6= r). Let d̂r represent

the reference distance of this reference AN.

d̂2r ≈
[

(x− xr)
2 + (y − yr)

2
]

exp

(

2wr

γα

)

. (5)

The reference AN can be randomly chosen or a special

criterion can be developed to choose the reference distance

as in [6]. From (3) and (5) we get

(xi − xr)x+ (yi − yr) y =

0.5

[

1

βr

(

dr exp

(

wr

γα

))2

−
1

βi

(

d1 exp

(

w1

γα

))2

−κr+κi

]

,

(6)

where κr = x2
r + y2r and κi = x2

i + y2i . (6) can be rewritten

in matrix form as

Arur= 0.5b̂r. (7)

where,

Ar=











x1 − xr y1 − yr
x2 − xr y2 − yr

...
...

xN − xr yN − yr











∈ R
N×2, ur=

[

x

y

]

∈ R
2×1

br =


















1

βr

(

dr exp
(

wr

γα

))2

− 1

β1

(

d1 exp
(

w1

γα

))2

−κr+κ1

1

βr

(

dr exp
(

wr

γα

))2

− 1

β2

(

d2 exp
(

w2

γα

))2

−κr+κ2

...

1

βr

(

dr exp
(

wr

γα

))2

− 1

βN

(

dN exp
(

wN

γα

))2

−κr+κN



















,

and br ∈ R
N×1

Moore-Penrose pseudo inverse is taken on both sides of (7)

to obtain the solution

ûr = 0.5A†
r b̂r. (8)

where

A
†
r =

(

A
T
r Ar

)−1

A
T
r

2) Angle of Arrival. If angle estimates are only available

then we need only 2 and 3 ANs for 2d and 3d localization

respectively. Each AN forms a line on which the AN and

TN are situated. Hence we get a number of lines depending

upon the number of ANs. The point of intersection of these

lines is the estimated position of the TN. The AoA system

generally shows good results but the estimation error increases

significantly as the target moves away from the ANs.

Keeping the same notation as for RSS, we have

θ̂i ≈ arctan

[

(y − yi)

(x− xi)

]

+mi, (9)

where mi represents the zero mean Gaussian noise in the

estimate of the angle θ̂i of the TN with ithAN, i.e. mi ∼
(

N
(

0, σ2
mi

))

. (9) can be written in matrix form as

Aaua= b̂a (10)

where,

Aa =











tan θ̂1 −1

tan θ̂2 −1
...

...

tan θ̂N −1











∈ R
N×2 , ua =

[

x

y

]

∈ R
2×1

b̂a =

















x1 tan θ̂1 − y1

x2 tan θ̂2 − y2
...
...

xN tan θ̂N − yN

















∈ R
N×1

For the standard LLS estimator the solution is given by

ûa =A
†
a b̂a (11)

3) Hybrid(ToA/AoA). If both RSS and angle estimates are

available then localization can be achieved with only one AN.

But in order to achieve better accuracy more ANs can be

introduced to the system. In this case each AN forms a line,

rather than a circle. At one end of the line the AN is situated

with known position while at the opposite end the TN is

situated for which the coordinates are to be estimated. If the

slope (AoA) and the magnitude (RSS) of this line is available,

then the TN coordinates can be easily determined. The error in

this case also increases with the increase in distance between

AN and TN.

From the RSS and AoA equations given by (3) and (9)

respectively we obtain

A =





















11 0
...

...

1N 0
0 11
...

...

0 1N





















∈ R
2N×2

u =

[

x

y

]

∈ R
2×1

b̂ =

[

b̂x

b̂y

]

∈ R
2N×1



b̂x =







x1 + d̂1 cos θ̂1δ1
...

xN + d̂N cos θ̂NδN







b̂y =







x1 + d̂1 sin θ̂1δ1
...

xN + d̂N sin θ̂NδN






,

where δi is the bias reducing constant and is given by

δi = exp

(

σ2
mi

2
−

σ2
wi

2 (γα)
2

)

.

The LLS solution for the hybrid system is given by

û =A
†
b̂. (12)

III. THEORETICAL MSE OF LLS

In this section we derive the theoretical MSE expression

for the least square estimator in (12). The MSE for the hybrid

system is given by

MSE(u) = Tr

{

E

[

(û− u) (û− u)
T
]}

, (13)

where û is the erroneous estimated location and u is the

location with no error. Putting (12) in (13) we get

MSE (u) = A
†
C (u)A†T . (14)

where C (u) = E

[

(

b̂− b

)(

b̂− b

)T
]

, for b representing

the noise free observation. The covariance C (u) can be

partitioned into separate matrices as follows

C (u) =

[

C (x) C (xy)
C (xy) C (y)

]

(15)

C (x) = E

[

(

b̂x − bx

)(

b̂x − bx

)T
]

∈ R
N×N . (16)

For the diagonal terms i.e. i = j,

C (x)ii

=
d2i
2

exp

(

σ2
wi

(γα)
2
+σ2

mi

)

+
d2i
2

cos (2θi) exp

(

σ2
wi

(γα)
2
−σ2

mi

)

−

(

di cos (θi)

)2

.

(17)

On the other hand, for the non-diagonal terms i.e. i 6= j, we

have

C (x) ij = 0. (18)

C (y) = E

[

(

b̂y − by

)(

b̂y − by

)T
]

∈ R
N×N . (19)

For the diagonal terms i.e. i = j,

C (y) ii

=
d2i
2

exp

(

σ2
wi

(γα)
2
+σ2

mi

)

−
d2i
2

cos (2θi) exp

(

σ2
wi

(γα)
2
−σ2

mi

)

−

(

di sin (θi)

)2

.

(20)

On the other hand, for the non-diagonal terms i.e. i 6= j, we

have

C (y)ij = 0. (21)

Similarly,

C (xy) = E

[

(

b̂x − bx

)(

b̂y − by

)T
]

∈ R
N×N , (22)

for the diagonal terms i.e. i = j,

C (xy)ii= d2i cos θi sin θi exp

(

σ2
wi

(γα)
2
− σ2

mi

)

−d2i cos θi sin θi.

(23)

On the other hand, for the non-diagonal terms i.e. i 6= j, we

have

C (xy)ij = 0. (24)

Proof: Appendix.

IV. WEIGHTED LINEAR LEAST SQUARES ALGORITHM

The location estimates obtained from (12) shows a high

error because in (12) the information about the link quality is

not utilized. If this information is available at hand, we can

use it to improve the performance of the system. Thus in this

section we propose a weighted linear least squares (WLLS)

algorithm by exploiting the covariance matrix. The covariance

matrix C (u) gives us the information about the link quality.

Thus the links with large noise variance are given less weights

and vice versa. The WLLS solution is obtained by minimizing

the cost function.

εWLLS (û) = (b−Aû)
T
C (u)

−1
(b−Aû) (25)

where C (u)
−1

is the inverse of the covariance matrix defined

in (15).

The elements of (15) are dependent on the real values of

distance and angles which are not available. Thus we use

the estimated values to get the estimated covariance matrix

C (û)
−1

. The WLLS solution is obtained as follows,

ûWLLS = A
±
b̂
± (26)

where

A
± =

[

A
T
C (û)A

]−1
A

T and b̂
± = C (û) b̂.



V. SIMULATION RESULTS

In this section, performance of the system, obtained by

Monte Carlo simulation is compared with the theoretical

MSE derived in section III. Furthermore it is shown through

simulation that the WLLS algorithm produces better results

than LLS. System performance is also analyzed by changing

different variable like PLE, angle noise variance and distance

noise variance. All simulations are run independently η num-

ber of times.

In Fig. 1, theoretical MSE is compared with Avg. RMSE

obtained by Monte Carlo simulation. Four ANs are taken at

the corners of a 40m × 40m network and five targets are

taken at random locations. The PLE is kept fixed at 2.5 for

all links, while noise variance in angle and distance estimates

is increased gradually. From Fig. 1 it can be seen that the

theoretical MSE accurately predicts the system performance.

Figure 1. RMSE for analytical LLS and simulation LLS. α = 2.5, N = 4,
η = 2000.

Fig. 2 compares the performance of LLS with WLLS

algorithm. Again we take four ANs at the corners of the

network and 5 TNs are taken at random locations, PLE is

kept at 2.5 and RMSE is plotted against shadowing and angle

noise variance. Fig. 2 shows that WLLS outperforms LLS.

In Fig. 3, RMSE is plotted against shadowing noise variance

and PLE. Performance is analyzed by increasing shadowing

noise variance from 0 to 6 dB and PLE from 2 to 4.5,

while keeping angle noise variance fixed at 4o. Fig. 3 shows

that as the PLE increases, performance of the system slightly

improves for both LLS and WLLS, which is the expected

result. Also expected is the better performance of WLLS,

which is justified by the figure.

VI. CONCLUSION

In this paper, a LLS model for hybrid localization was re-

viewed. The system performance was analyzed and an analyti-

cal MSE equation was derived. Performance was improved by

introducing a WLLS algorithm which exploits the covariance

matrix. Via simulation it was shown that the WLLS algorithm

shows better performance than the LLS algorithm. In future

Figure 2. Performance comparison between LLS and WLLS. α = 2.5,
N = 4, η = 2000.

Figure 3. Performance comparison between LLS and WLLS for a different
PLE’s. N = 4, σm = 2

o, η = 3000.

work a combined PLE/location estimator will be developed

using AoA-RSS model.

APPENDIX

Proof of (17) and (18): For diagonal terms i.e. i = j, we

have from (16).

C (x)ii = Ew ,m

[

(

b̂x − bx

)2
]

ii

. (27)

Putting values of b̂x and bx in (27)

C (x)ii =Ewi ,mi

[

(

di exp
(

wi

γα

)

cos (θi+mi) δi − di cos θi

)2
]

,

=Ewi ,mi

[

{(

diexp
(wi

γα

)

)2

cos2(θi+mi)

}

δ2i+

(

dicos θi

)2

−2δi

(

di cos θi

)(

di exp
(wi

γα

)

)

cos (θi +mi)

]

,

(28)



= Ew,m

[

d2i exp
(2wi

γα

)

×

{

0.5 + 0.5

(

cos (2θi) cos (2mi)

− sin (2θi) sin (2mi)

)}

δ2i +

(

di cos θi

)2

− 2δi

(

d2i exp
(wi

γα

)

)

×

(

cos2 (θi) cos (mi)−cos (θi) sin (θi) sin (mi)

)

]

.

(29)

Equ. (29) is obtained from (28) by using the identity

cos2 (t) = 0.5 + 0.5 cos (2t) . Also using the expectation

Emi
[sin (mi)] = 0 and Emi

[sin (2mi)] = 0, (32) is obtained.

=

{

d2i
2
Ewi

[

exp
(2wi

γα

)

]

+
d2i
2
Ewi

[

exp
(2wi

γα

)

]

cos 2θi

× Emi

[

cos(2mi)

]

}

δ2i +

(

di cos (θi)

)2

− 2δi

(

di cos (θi)

)2

× Ewi

[

exp
(wi

γα

)

]

Emi

[

cos (mi)

]

. (32)

Finally, using expectations

E[cos (mi)]=exp

(

−
σ2
mi

2

)

, E

[

exp

(

2wi

γα

)]

=exp

(

2σ2
wi

(γα)
2

)

,

(33)

E[cos (2mi)]=exp
(

−2σ2

mi

)

, E

[

exp

(

wi

γα

)]

=exp

(

σ2
wi

2 (γα)
2

)

,

(34)

we conclude the proof by obtaining (17).

For non-diagonal terms i.e. i 6= j, we have from (16)

C (x)ij= Ewij ,mij

[

(

di exp
(

wi

γα

)

cos (θi+mi)δi− di cos θi

)

×

(

dj exp
(wj

γα

)

cos (θj +mj) δj − dj cos θj

)

]

,

which yields (30) and then (31) given at the top of next page.

The derivation of C (y) is similar to the C (x) other than

that the x coordinates are replaced by y.

Proof of (23) and (24).: From (22) we have

C(x , y)ii=Ewi,mi

[

(

di exp
(

wi

γα

)

cos (θi+mi) δi − di cos θi

)

×

(

di exp
(wi

γα

)

sin (θi +mi) δi − di sin θi

)

]

,

= Ewi,mi

[

(

di exp
(wi

γα

)

)2

cos (θi +mi) sin (θi +mi) δ
2

i

−di

(

di exp
(wi

γα

)

)

cos (θi +mi) sin θiδi

−di

(

di exp
(wi

γα

)

)

sin (θi +mi) cos θiδi

+d2i cos θi sin θi

]

.

(35)

Expanding (35), and then using double angle identity cos2 t−
sin2 t = cos (2t) , and also E [sin (mi)] = 0, we obtain

= Ewi ,mi

[

{

d2i exp

(

2wi

γα

)

cos (θi) sin (θi) cos (2mi)

}

δ2i

−

{

d2i exp

(

wi

γα

)

cos (θi) cos (mi) sin (θi)

}

δi

−

{

d2i exp

(

wi

γα

)

sin (θi) cos (mi) cos (θi)

}

δi

+ d2i cos θi sin θi

]

.

(36)

Finally, using expectation (33) and (34) we conclude the proof

by obtaining (23) from equation (36).

For non-diagonal terms i.e. i 6= j, we have from (22).

C(x)ij=Ewij ,mij

[

(

di exp

(

wi

γα

)

cos (θi+mi) δi−di cos θi

)

×

(

dj exp

(

wj

γα

)

sin (θj +mj) δj − dj sin θj

)

]

,

which yields (37) and then (38) given at the top of next page.
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C (x)ij=Ewij ,mij

[

{(

didj exp

(

wi

γα

)

exp

(

wj

γα

))

(cos (θi) cos (mi)+sin (θi) sin (mi)) (cos (θj) cos (mj)+sin (θj) sin (mj)) δij

}

{(

didj exp
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{(
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+ didj cos (θi) cos (θj)

]

, (30)

where δij = δiδj .

Taking expectations in (30), we obtain

C (x)ij = didj cos (θi) cos (θj)− didj cos (θi) cos (θj)− didj cos (θi) cos (θj)

+didj cos (θi) cos (θj) = 0. (31)

which proves (18).
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(

wi

γα
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(

wj

γα
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(cos(θi) cos(mi)−sin(θi) sin (mi))(sin (θj) cos (mj)+cos (θj) sin (mj)) δij

}

−

{(

didj exp

(
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γα

))

(cos (θi) sin (θj) cos (mi) + sin (θi) sin (θj) sin (mi)) δi

}

−

{(

didj exp

(

wj

γα

))

(cos (θi) sin (θj) cos (mj) + cos (θi) cos (θj) sin (mj)) δj

}

+ didj cos (θi) sin (θj)

]

. (37)

Taking expectations in (37), we obtain

C (xy)ij = didj cos (θi) sin (θj)− didj cos (θi) sin (θj)− didj cos (θi) sin (θj)

+didj cos (θi) sin (θj) = 0. (38)

which proves (24).
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