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Despite considerable advances in recent years for the focal treatment of localized prostate cancer, high recurrence rates and
detrimental side effects are still a cause for concern. In this review,we compare current focal therapies to a potentially novel approach
for the treatment of early onset prostate cancer: low temperature plasma.The rapidly evolving plasma technology has the potential
to deliver a wide range of promising medical applications via the delivery of plasma-induced reactive oxygen and nitrogen species.
Studies assessing the effect of low temperature plasma on cell lines and xenografts have demonstrated DNA damage leading to
apoptosis and reduction in cell viability. However, there have been no studies on prostate cancer, which is an obvious candidate for
this novel therapy. We present here the potential of low temperature plasma as a focal therapy for prostate cancer.

1. Introduction

Prostate cancer is now recognised as the second most diag-
nosed cancer overall and accounts for around a quarter of all
cancers in males [1]. The risk of prostate cancer peaks in men
over 60 years of age, yet high incidence rates are also found in
younger aged groups [2]. In addition, benign enlargement of
the prostate becomes increasingly common in men over the
age of 40 and particularly so beyond 60 years of age [3].

Treatment for advanced prostate cancer is still unsatis-
factory, with an almost inevitable development of hormone
resistance [4]. Even new generation androgen ablation drugs
fail to deliver a life extension beyond several months [5]. In
addition, there is poor response to chemotherapy, alongside
unpleasant side effects, and reduced quality of life [6].
Therefore, the emphasis remains to detect and treat prostate
cancer at an early stage to have most hope of a cure. Indeed,
early diagnosis has become more common with increased
uptake of PSA testing [7, 8].

Once prostate cancer is diagnosed, the clinician is pre-
sented with a series of dilemmas; firstly, is the tumour
localized or has it spread [9]; second, if localized is it poten-
tially aggressive or indolent [10]; and the third, should the
patient undergo active surveillance or be treated immediately

[11]. If the latter is chosen in the context of a localized
tumour, then the next decision is between radical surgery
with the risk of incontinence and impotence, radiotherapy,
or treatment with a focal therapy [12]. Radical surgery has
the potential to be an overtreatment in early-onset or low-
risk disease [13], where active surveillance or treatment with
a focal therapy may be more suitable [14]. Ideally, focal
therapy is targeted to maximize elimination of the tumour
foci without treating the whole gland, while minimizing side
effects [15, 16]. This review aims to evaluate several currently
available focal therapies for prostate cancer and introduces
a potential focal treatment in the form of low temperature
plasma (LTP). Application of LTPs to internal organs such
as the prostate may seem technically difficult but could offer
many advantages over current treatments.

2. Approaches to Focal Therapy of
Localized Prostate Cancer

For patients to be considered as candidates for focal therapy,
their prostate cancer must be present in only one lobe,
typically unifocal, and contained within the prostate capsule
[17]. However, no absolute ideal patient selection criteria exist
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for focal prostate treatment [18]. In the following subsections,
some focal therapies for localized prostate cancer are briefly
analyzed, with their respective advantages and pitfalls out-
lined for comparison. In addition, the importance of imaging
techniques in the context of focal therapy treatments is also
discussed.

2.1. High-Intensity Focused Ultrasound. The concept of high-
intensity focused ultrasound (HIFU) was first applied in
the 1980s to benign prostate hyperplasia (BPH) [19], with
the first recorded application to localized prostate cancer
in 1995 [20]. The physical mechanism of HIFU follows the
same principles as diagnostic ultrasound, whereby ultrasonic
waves pass through healthy tissues without causing harm.
However, if the ultrasonic beam is sufficiently focused and
the intensity increased, high levels of energy can be delivered
to very localized regions [7]. These high levels of energy are
capable of causing irreversible damage to the targeted tissue
via hyperthermia mechanisms, either by heating or inertial
cavitation [7, 21, 22]. In the case of thermal effects, energy
delivered by the ultrasonic beam is absorbed by the treated
area, leading to rapid heating effects, which can raise the
temperature of the treated tissue to 80∘C in a few seconds [23].
This instant heating leads to coagulative necrosis through
protein denaturation [15, 24]. A recent study considered
the treated area to have been successfully ablated once a
minimum temperature of 65∘C had been reached [25].

The typical devices used for HIFU treatment of the
prostate are applied transrectally and so possess the advan-
tage over other focal therapies in that an invasive surgical
approach is not required. There are two devices currently
available for HIFU: Sonablate and Ablatherm. Taking Son-
ablate as an example, the device utilizes a 4MHz trans-
ducer which is capable of both treatment and imaging
depending upon the intensity applied, with intensities of

up to 2000Wcm−2 achievable at focal lengths as short as
3 cm [26]. Due to the extremely high intensities involved
in the procedure, there is a need for accurate monitoring
of the energy delivery to, and resulting temperature of, the
target tissue. In recent years, the effectiveness of real-time
magnetic resonance imaging (MRI) has improved, such that
it constitutes an invaluable tool for the monitoring of the
HIFU procedure [25, 27].

The difficulty with treating enlarged prostates lies mainly
in limitations on the focal length of the ultrasound probe [22,
28]. A transurethral resection of the prostate (TURP) pro-
cedure is recommended prior to treatment to reduce organ
volume, as post-HIFU swelling of the prostate is common
[8, 29].The effective treatment of anterior prostate tumours is
also problematic using HIFU, as anterior perirectal fat tissue
can prevent intended penetration depth of the ultrasound
beam [30]. This occurs due to reflection of the signal and is a
particular problem if the patient is overweight [31].

2.2. Photo-Dynamic Therapy. Photodynamic therapy (PDT)
damages tissues in a highly localized fashion by exciting
photosensitizing drugswith light.The drugs are administered
either orally or intravenously, absorb energy from a light

source, for example a laser, and transfer it to molecular
oxygen residing in the surrounding tissues [32]. This in turn
produces an activated form of molecular oxygen [33] known

as singlet delta oxygen (1O2, SDO). It is believed that SDO is
predominantly produced following the excitation of the sen-
sitizing agent from its triplet ground state, upon irradiation
from the light source [34]. SDO is highly toxic to cells and
can interfere with cell signalling as well as inducing cellular
stress [35–37]. Importantly, the photosensitizing process is
recurrent, eliminating the need for repeated applications
during delivery as a stream of SDO is produced [33]. In
addition, PDT has the advantage of greater selectivity versus
other cancer therapies, as only simultaneous exposure to
the photosensitizing drug, light, and oxygen will result in a
cytotoxic effect on the treated cells [34]. This selectivity can
be further improved by the use of an antibody, applied in
conjunction with the photosensitizer, which is specific to the
tumour [38, 39].

PDT predominantly utilizes two approaches to damage
cancerous tissue. Either tumour hypoxia can be induced
following laser targeting of the blood supply to the tumour
or an apoptotic/necrotic response can be initiated following
direct targeting of the tumour surface itself [40]. It is
necessary to protect the skin and eyes of the patient, even
following treatment. Such protection may be required for
a few hours up to several weeks, depending on the photo-
sensitizer used [41], as the time each drug remains in the
patient’s bloodstream varies vastly. A transperineal approach
allows treatment of tumours localized to anterior prostate
[42], giving advantages over other treatment approaches such
as HIFU (see Table 1), although this can still be problematic
[7]. However, PDT has the advantage of being potentially
applicable at the same treatment site multiple times [42],
unlike for instance surgery or radiotherapy, in addition to
being a potential salvage therapy following failure of these
techniques [43].

2.3. Cryotherapy. Rapid freezing and thawing cycles are
employed by cryotherapy techniques in order to cause local-
ized cellular destruction due to either the extremely low tem-
perature alone, the rapid rate of cooling, or the period of time
for which the tissue stays frozen [21]. Either liquid nitrogen or
argon gas is administered to the prostate transperineally via
cryoprobes under transrectal ultrasound (TRUS) guidance.
Argon gas probes are now favoured over liquid nitrogen
based approaches due their thinner diameters, permitting the
insertion of additional probes (in a brachytherapy-like man-
ner) to improve the efficacy of treatment [44]. In addition,
the use of argon gas dramatically improves the freeze-thaw
effect by reducing the probe tip to a temperature of −187∘C,
before 67∘C helium gas rapidly thaws the treated region [44,
45], causing rupturing and bursting of the cells. Two cycles,
reaching at least −40∘C are required for complete cell death,
with cell shrinkage and protein denaturation occurring as
the tissue temperature decreases beyond 0∘C [21]. A urethral
warming catheter and multiple thermosensors are typically
used to prevent freezing of unwanted regions [45, 46].

Cryotherapy can be applied as a salvage therapy, for exam-
ple, after the failure of or recurrence following radio- and
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Table 1: Pros and cons of focal therapies currently available for prostate cancer.

Treatment Summary of Pros Summary of Cons

High-intensity
focused ultrasound

(i) Transrectal application negates the need for
surgical approach
(ii) Improvements in MRI technology allow
real-time procedure monitoring and improved
targeting

(i) Difficulty treating enlarged prostates, especially
in overweight patients
(ii) Effective treatment of anterior tumours is not
achievable

Photodynamic
therapy

(i) More selective than other focal therapies due to
conditions needed for SDO production
(ii) Can be applied at the same treatment site
multiple times

Photosensitizing agent remains in patient’s
bloodstream following treatment, requiring
protection of the eyes and skin for potentially
weeks after the procedure

Cryotherapy

(i) Double freeze-thaw cycle effectively destroys
cells in targeted region
(ii) Can be applied as a salvage following
radiotherapy techniques

(i) Urinary infections and perineal discomfort
posttreatment are common
(ii) Relatively invasive treatment, with added
needed for thermal protection of urethra, bladder
and rectum

Radiotherapy

(i) Minimally invasive approach as radiation is
usually applied externally
(ii) Proton beam therapy and Cyberknife
technologies give hope of improved targeting with
fewer side effects

(i) Many side effects as a result of radiation at
unintended sites, causing urinary incontinence,
rectal pain, and erectile dysfunction
(ii) A third of patients experience radiorecurrent
disease

Brachytherapy
Image guided seed placement allows effective
treatment of localized areas

Needle array application is a highly invasive
process

brachytherapy [47, 48]. Common side effects following
cryotherapy include rectal or perineal discomfort [49] and
urinary infections [50]. Major complications can include
rectourethral fistula, although this is rare [45].

2.4. Radiotherapy. Whilst radiotherapy is not considered a
focal therapy, variants such as Cyberknife and brachytherapy
have the potential to be applied tomore localized cancers and
are discussed later in this section. It has long been known
that ionizing radiation (IR) can lead to adverse effects on
cells. Using this principle, effects include, but are not limited
to DNA damage, cell cycle arrest, and ultimately cell death
can be achieved through radiotherapy [51]. This is due to
reactive oxygen species (ROS) formed from interactions with
free radicals, produced as a result of multiple ionizations via
the Compton effect [52]. Radical formation is believed to take
place in discrete regions [51], with so-called “clustered” DNA
damage necessary in order to produce a potentially lethal
cellular effect [53, 54]. However, it has been shown that cancer
stem cells (CSCs), which are thought to instigate cancerous
growth [55], can be resistant to radiological techniques, as
well as promoting cancer recurrence following treatment
[56, 57]. Indeed, prostate stem-like cells in epithelial cultures
derived from patient samples are more radioresistant than
more differentiated cells, due to increased levels of hete-
rochromatin conferring a protective effect [58].

Some studies have suggested that at least 74Gy, and
indeed upwards of 80Gy [59], should be applied in the
case of localized prostate cancer, as patients treated with
less than 72Gy have shown higher cancer recurrence rates
[60]. The total dose is usually delivered in multiple smaller
fractions of, for example, 2 Gy per day for 60 days, not

including weekends [61]. Following treatment, patients may
often experience side effects including but not limited to
urinary incontinence, diarrhoea, and rectal discomfort. Uri-
nary problems can persist or present at longer time periods
following initial treatment, as well as erectile dysfunction
[62, 63]. In addition, and most worryingly, a third of patients
experience radiorecurrent disease [64].

Different techniques are available, whereby the radiation
is either deposited externally or internally. For the external
treatment of tumours, the most applied therapy is external
beam radiotherapy (EBRT), where the cancerous area is
treated by a focused beam of IR. This relies on precise beam
alignment with the targeted area, in order to maximize treat-
ment efficacy andminimize collateral damage to surrounding
healthy tissue. Several variants of EBRT are being pur-
sued and constantly developed, including three-dimensional
conformal radiotherapy (3D-CRT) and intensity-modulated
radiation therapy (IMRT),which aim to utilize improvements
in imaging technology to satisfy the aforementioned criteria
for most effective treatment [65].

Other approaches for the radiological treatment of
prostate cancer exist, which rely on the underlying principles
of IR, including proton beam therapy. Proton beam therapy
has the advantage that protons deliver their energy at the end
of the particle’s path in the tissue compared to photons which
deliver radiation along their path in the tissue [66]. The focal
nature of the energy delivery in proton beam therapy could
in theory mean that untargeted areas are left unharmed [67].
However, a recent study indicated that damage to irradiated
tissues outside of the target area is less severe following IMRT
[68], in addition to being of lower cost than proton beam
therapy. As such, questions still remain as to the efficacy and
effectiveness of proton beam therapy as a focal technique.
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Another recent development, which seeks to improve
localization of radiotherapy compared to EBRT, is hypofrac-
tionated stereotactic body radiation therapy (SBRT) via the
Cyberknife linear accelerator machine. A unique feature of
prostate cancer is its low “𝛼/𝛽 ratio,” which represents nonre-
pairable versus repairable cellular damage,respectively, with
the 𝛼-term linearly dependent on administered dose and the
𝛽-term to its square [69]. For this reason several studies have
suggested that hypofractionated radiation dosesmay result in
more effective treatment of localized tumours [69–72]. Dur-
ing Cyberknife SBRT movement of the prostate is detected
and automatically corrected for during the procedure by the
robotic arm [73], enabling delivery of the radiation to be
directed within 2mm of the target area [74]. This enables
the Cyberknife to deliver a hypofractionated radiation dose
more accurately and noninvasively to the tumour [73] than
conventional EBRT. Another major advantage of SBRT over
EBRT is that treatments are usually delivered over a few days
rather than weeks, rendering posttreatment hospitalization
unnecessary [73]. However, SBRT treatment results in simi-
lar side-effects to those experienced following conventional
radiotherapy. Rectal and urinary complications have been
reported, in addition to erectile dysfunction [70], although
the levels of these have been proposed as within acceptable
limits [75]. In addition, the cost of Cyberknife technology is
more expensive than other radiological techniques, at least
in terms of initial outlay [72], although this is yet to be
thoroughly investigated.

An increasingly common approach for treating prostate
cancer internally is brachytherapy, which uses radioisotopes

such as 125I, 103Pd, and 131Cs and is typically applied in order
to ablate the whole prostate gland [76]. The radioisotopes,
with half-lives ranging from ∼10–60 days [76] are delivered
to the prostate as seeds through a matrix of narrow diameter
needles inserted transperineally. Brachytherapy can either be
used as a stand-alone treatment, in conjunction with radio-
therapy or radical prostatectomy, or as a salvage treatment
following EBRT [77].

A more recent development of brachytherapy is known

as high dose rate (HDR) brachytherapy with 192Ir [76], which
provides a boosted dose of radiation following EBRT [78].
If administered in conjunction with utilizing imaging tools
such as MRI or TRUS, radioactive seeds may be delivered to
the targeted area more accurately, providing a case for HDR
brachytherapy as a focal therapy [79].

2.5. Imaging: An Integral Part of Focal Therapy. All focal
therapies for prostate cancer rely on accurate imaging to
havemaximumeffect [79]. Imaging techniques are constantly
advancing and are used for initial detection, determination
of tumour location, staging of tumour, assessment of tumour
aggressiveness, and detection of recurrences as well as iden-
tifying metastases [80, 81]. In the context of administration
of focal therapies, early detection is most critical. Since
the widespread uptake of the PSA test, early detection has
become more common [79].

The kinds of imaging used in prostate cancer detec-
tion, diagnosis, and treatment are TRUS to enable targeted

biopsies; MRI for accurate imaging of soft tissue; positron
emission tomography (PET) for detecting lymphnodemetas-
tasis and bone scans; and X-rays and computerized tomogra-
phy (CT) scans to assess bone metastases. To detect localized
prostate cancer, TRUS and MRI are by far the most used and
most useful scans.

TRUS was traditionally used to allow biopsies from
predetermined sites in the prostate, following an abnormal
digital rectal examination (DRE) and increased PSA, and
not as a method to identify precise locations of tumour foci
[82]. However, improvements to the technique, including
contrast-enhanced ultrasound using microbubble contrast
media, elastography to measure tissue stiffness, and Doppler
ultrasound tomeasure blood flow, can result inmore targeted
biopsies, leading to improved detection and diagnosis [83,
84]. TRUS can distinguish between an outer and inner gland
encompassing the central, peripheral, and transition zones,
though not at the same resolution as MRI [82].

MRI is highly sensitive and is the dominant imaging
modality used for focal treatment [85, 86]. To undertake stan-
dardMRI, endorectal and pelvic phase-arrayed coils are used
in conjunction to improve positioning of the prostate and to
receive MR signals, respectively, resulting in clearer images
with optimal signal-to-noise ratio [79].The prostate zones are
clearly visualized using MRI [87]. However, standard MRI
is not accurate enough to determine precise location and
diagnosis, where multiparametric MRI is required [88]. This
includes diffusion-weighted imaging (DWI-MRI) that mea-
sures water diffusivity, dynamic contrast enhanced (DCE-
MRI), making use of a contrast agent, and proton magnetic
resonance spectroscopic imaging (H MRSI) that measures
metabolites (citrate, choline, creatine, and polyamines), the
ratios of which change between normal and cancerous
prostate [89]. The technology to allow real-time MRI-guided
biopsy has also advanced, and it is conceivable that this would
be the ultimate method used when administering any focal
therapy, including low temperature plasma-based treatment
[88, 90–92].

In order for themore sophisticated imaging procedures to
become routine, there has to be access to specialized equip-
ment and personnel (e.g., magnetic resonance physicists),
which both contribute to the potentially prohibitive expense
[93]. To confidently choose focal therapy as a treatment
option, patients and clinicians alike have to be convinced of
its effectiveness. Imaging technology and both present and
future focal therapy procedures therefore need to evolve in
tandem to assure focal tumour ablation.

3. Low-Temperature Plasmas and
Their Use in Biomedicine

Low temperature plasmas are emerging as an exciting devel-
opment for therapeutics. The unique properties of cold
nonequilibrium plasmas have enormous potential in disease
therapeutics and plasma pharmacology as drug alternatives.
Applications of these plasmas range from surface sterilization
and bacterial decontamination [94–99], biofilm inactiva-
tion [100–102], antimicrobial treatment in food preservation
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Figure 1: Examples of different plasma devices for medical applications. Linear-field plasma jets: (a) dielectric barrier discharge jet
configuration (DBD), (b) floating-electrode DBD (FE-DBD), and cross-field plasma jets (c) radiofrequency (RF).

[103–105], and wound healing [106, 107], to cancer treatment
[108–111].This rapidly growing field of “plasmamedicine” has
emerged over the last 5–10 years and offers great potential,
bringing together multidisciplinary branches of science and
engineering.

Nonequilibrium plasmas, operated at ambient atmo-
spheric pressure and temperature, are very efficient sources
for the production of highly reactive neutral particles, for
example, reactive oxygen and nitrogen species (RONS)
(such as atomic oxygen [112–114], atomic nitrogen [115],
hydroxyl radical, superoxide, singlet delta oxygen, and nitro-
gen oxides), charged particles, UV-radiation, and electro-
magnetic fields. Individually, many of these components
have been implicated in therapeutics. RONS are known to
play a crucial role in biological systems, such as signalling
and generating oxidative damage to a variety of cellular
components, which can ultimately lead to cell death [116–
119]. Graves presents a comprehensive review summary on
the role of RONS of relevance for plasma applications in
biology [120]. Plasmas have the advantage of delivering these
simultaneously, providing potentially superior processes. The
role of these plasma components, even individually, is to date
not fully known and is a topic of current research. It can be
anticipated that, similar to low pressure plasma processes, in
for example, plasma etching or plasma deposition, synergistic
mechanisms govern the plasma surface interface rather than
the individual species themselves.

3.1. Methods of Plasma Formation and Production of Reac-
tive Species. The low temperature plasma environment is
actually quite remarkable. Plasmas are formed by applying
a sufficiently high electric field across a region of gas such
that electrons are stripped off atoms and breakdown of the
gas occurs. These free electrons in the background gas are
accelerated by the applied field and collide with ions and
neutral gas molecules through various processes, which are
discussed below. An important feature is that the electrons
are not in thermodynamic equilibrium with the background

gas due to the largely different masses (light electrons, heavy
atoms, andmolecules).Thebackground gas is the dominating
constituent and is at room temperature, while the electrons
are hotter and can drive a unique reactive environment. Ions
and electrons can be created through ionization, and pro-
cesses such as excitation and dissociation of the background
gas result in, for example, formation of metastable particles,
reactive species, radicals, and also radiation. These plasmas
essentially create an otherwise impossible dry, chemically
reactive environment at room temperature. Until recently,
atmospheric pressure plasmas have been unstable and low
temperature plasmas have conventionally been operated
under lower gas pressure conditions.While this approach has
proven extremely beneficial, for example, in the multibillion
dollar semiconductor industry, it is limiting with regard to
broader exploitation of nonvacuum compatible materials.
Through the use of gas flow it is now possible to sustain
stable, controllable plasmas at atmospheric pressure. Reactive
species can be brought from the main plasma production
region, transporting energy to a surface. Here, two distinctly
different plasma sources, with varying degrees of reactivity
will be discussed.

Various devices are available for the formation and
delivery of plasma [120–124] which rely on broadly the same
principles. One variant is the dielectric barrier discharge
(DBD) configuration plasma jet (Figure 1(a)). Such plasmas
are produced by feeding carrier gas (e.g., helium or argon)
with small oxygen admixtures (around 0.5% is typical),
across a high voltage kHz operated supply, typically 5–
30 kV, generating a discharge between two electrodes of
dielectric material. Using helium as a buffer gas provides a
flexible parameter space for stable homogenous operation
at cold gas temperatures. The resulting plasma plume self-
propagates outwards, and as the dynamic high electric field
is parallel to the direction of propagation, the jet contains
reactive neutrals, charged particles, electric fields, and UV
radiation (Figure 2). A variation of the DBD schematic is
the floating electrode dielectric barrier discharge (FE-DBD)
plasma (Figure 1(b)), which operates by using the surface
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Figure 2: Illustrative diagram conveying the interaction of aDBDplasma jet with a cancerous tumour, leading to the induction of intracellular
RONS, DNA damage, and resultant effects such as cell cycle arrest, cell death, and decreased viability.

to which it is applied as a floating counter electrode. This
is possible provided that the surface has sufficient “charge
storage” [94]. FE-DBD has even been applied to human skin
without causing thermal damage or unwanted effects [125].

A third example of a plasma source arrangement is
the radiofrequency (RF), or cross-field, plasma source
(Figure 1(c)) which uses a 13.56MHz RF signal as a means of
gas excitation. This device utilizes plane-parallel electrodes,
with a gas flow passing through the core plasma volume.
This particular source, unlike the DBD plasma jet, possesses
a charge-free effluent since the applied electric field is
perpendicular to the direction of gas-travel, thus confining
charged species to the core plasma region. Due to the high
collision frequency at atmospheric pressure, the effluent is
devoid of charge carriers and its characteristics are dominated
by energy carrying reactive neutrals. The RF plasma jet
is the most comprehensively studied LTP with respect to
diagnostics and modelling [112, 115, 126–136] and is currently
being developed into a reference source.

The transport of the plasma components to the targeted
area is complex. In the core plasma region a large, but defined,
number of species can be created (including O, N, NO, and
O2
−). As the plasma crosses the interface with ambient air,

new reactions and components are formed. Upon interaction
with either humidity or liquid layers on biological samples
(Figure 2) new species with varying lifetimes can be created
(OH, H, H2O2, and ONOO−). Energy dissipation at these
interfaces is important and to date unclear. Measurements
and simulations under this atmospheric pressure environ-
ment are challenging, primarily due to the multiphase (solid,
liquid, gas, and plasma), strongly nonequilibrium environ-
ment with large gradients (e.g., in electric field), high colli-
sionality thus short-lived species and micron length scales.
This requires the development of many new techniques
for both measurements and models. The plasma chemistry
can be deliberately manipulated or optimized for a desired
result by fine alterations to gas admixtures or the electron
energy distribution function (EEDF) [129, 137]. Despite the
multitude of work that has been conducted to diagnose and
characterize the RONS produced [126–128] in addition to
the ionization processes and mechanisms that occur in LTPs,
these are not yet comprehensively understood.

3.2. Supporting Evidence for LTP as a Therapeutic Medical
Device. As already mentioned, the potential of LTPs has
been explored in many different medical areas. One highly
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active division of research is in the area of bacterial inacti-
vation and surface sterilization. It has been shown that LTPs
can damage the membranes of bacterial cells, through the
interaction of reactive species, leading to the bactericidal
effect [138]. Survival has been shown to be greatly reduced
following LTP treatment, with a clearly defined voided region
forming on the irradiated surface [139], suggesting that the
interaction is mediated by short-lived reactive species [140,
141]. LTPs do not cause thermal or chemical damage to the
treated surface, presenting an advantage over conventional
sterilization techniques [140, 142]. Furthermore, LTPs have
also been shown to be effective in the treatment of biofilms,
minimizing bacterial formation posttreatment [101, 143] and
greatly reducing cell viability even at short plasma-exposures
[144]. These attributes give potential for applications in
dentistry [145, 146].

Plasma-based bacterial inactivation has also been applied
to the sterilization of chronic wounds in order to improve
the rate of healing. This was shown in a recent phase II trial,
which reported a significant reduction of bacterial load in
the plasma treated area versus control [147, 148]. Crucially,
plasma effects were localized, with no side effects (such
as pain due to plasma application) reported. Another trial
provided further agreement that LTP does not damage the
surface of skin nor lead to dryness through exposure, with
a view to antimicrobial applications [149]. It has also been
found that when LTP was applied to surface wounds on
the skin of mice, vastly improved blood coagulation and
consequential accelerated healing resulted versus untreated
wounds [106]. It was perceived that plasma-produced NO
may be responsible for the improved wound response, which
is in agreement with other work on NO as the key RONS
in cell proliferation and wound healing [150–154]. Another
study showed improved clotting of wounds on the surface of
pig skin, in addition to establishing safe operating parameters
for LTP exposure [107].

Despite LTPs being earmarked as a technology for future
healthcare, plasmas have been used for a range of surgical
applications in the field of electrosurgery since as long ago
as 1991 [155, 156]. Though not technically a LTP, the argon
plasma coagulator (APC) has been employed in various
surgical disciplines for the purposes of tissue removal and
wound cauterization [155] and is perceived as an improve-
ment on existing laser-based techniques [157]. Recently,
plasma vaporization has been applied to benign prostate
hyperplasia (BPH), with the hope of reducing the common
side effects of conventional transurethral resection of the
prostate (TURP) procedures [158]. Early results show that the
concept of plasma vaporization could prove to be a significant
improvement over current TURP techniques [159] for BPH,
with reduced complications [160].

In recent years, investigations have been performed
into the interaction of LTPs with different types of cancer
cells, includingmelanoma [161–163], ovarian [164], colorectal
[165], liver [166], lung [110], breast [167], and brain [168]
amongst others.Thegold standard for LTP as a cancer therapy
has to be the selective cytocidal targeting of cancerous tissue,
whilst leaving healthy tissues unaffected.The effect of reactive
species produced by plasma treatment has been extensively

studied in vitro, with plasma induced DNA damage and
apoptosis has been investigated [108, 169]. Another investi-
gation showed the same response due to cellular detachment
[170]. A considerable reduction in cell viability has been
demonstrated using the MTT assay, as a result of high nitric
NO and ROS concentrations [109]. It has also been suggested
that immediate cell death can be caused by sufficiently high
plasma doses, following minimal cell survival after extended
plasma exposure [171]. LTP has also been applied in vivo to
treatmice with tumours derived from glioma cell lines, where
a preliminary study showed a reduction in tumour volume
of over 50% at six days following initial plasma treatment
[172]. Survival rates of plasma-treated mice increased by
over half, compared with the control group who received
no treatment [172]. In a follow-up study, ROS produced by
the plasma were earmarked as the main antitumour agents,
with evidence for cell cycle targeting [173] and apoptosis
also presented [174–176]. LTP has also been recently applied
to ablate tumours in mice subcutaneously injected with
neuroblastoma cells, with a reduction in the rate of tumour
growth observed versus control. In addition, survival time
posttreatment almost doubled [177]. Another means of LTP-
cellular interaction is the electric field that is generated at
the effluent tip of DBD jet devices. This may lead to the
phenomenon of irreversible cellular electroporation, which
has been shown to cause tumour regression and cell death in
its own right [178–180] andmay aid the transport of RONS to
the cell nucleus.

Despite LTP-based approaches demonstrating consider-
able promise in cancer treatment, further focussed work
on the exact mechanisms of plasma-cellular interaction is
required before such a technique could be used therapeu-
tically. This includes primarily the quantification of which
reactive species are causing adverse cellular effects, tailoring
the plasma to deliver maximum damage to the cancer, before
developing practical apparatus for patient treatment in the
operating theatre. This process may be aided by the use of
plasma in combination with radiological and chemothera-
peutic techniques [181], in order to increase efficacy.

4. Low-Temperature Plasma as a Focal
Therapy for Prostate Cancer

At the time of writing, no published study exists on the
application of LTP to prostate cancer. The following section
outlines how LTPs could be utilized as a focal therapy in
practice, how LTPs might compare to other conventional
focal therapies for prostate cancer in terms of efficacy, and
what might be the upper limit of disease stage for treatment
of localized cancer with LTP.

4.1.Methods of TreatmentDelivery and Plasma “Dose”. Appli-
cation of LTP to a patient has been successfully applied
clinically by treatment of the skin with the FE-DBD system
mentioned earlier [125]. Clearly, delivery to the prostate
represents a more complex technical challenge. Probably
the most efficient means of application would be to follow
the approach of PDT and brachytherapy by inserting the
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Figure 3: Proposed treatment approach for LTP treatment of localized prostate cancer. The LTP device is administered transperineally to an
organ confined prostate cancer. Supporting image guidance from aTRUS probe, alongwith high-voltage (HV) power supply and gas flow-rate
control are shown.

plasma transperineally to provide a focal treatment of organ
confined cancers. In reality, whichever way LTP is applied,
there is an obvious commondependence on accurate imaging
techniques, as discussed in Section 2.5. With simultaneous
image guidance by means of TRUS, following prior MRI
scan, it is conceivable that LTP could be applied to localized
tumours. A representation of one potential treatment delivery
system is outlined in Figure 3.

DBD configuration plasma jet devices have already been
fabricated and delivered via flexible optical fibres for the
treatment of carcinoma, with outer diameters as fine as 60 𝜇m
[110].

One of the most important factors for LTP as a cancer
therapy is a thorough understanding of the species produced
and their concentration for each particular type of device.
Correlating the concentration of produced species to a known
plasma “dose” is crucial, as lower doses and exposures can
stimulate a proliferative response in cells [182, 183]. For LTP
therapy to be accepted clinically, there first needs to be
agreement on what constitutes the units of plasma “dose.” At
present, independent research groups use different devices
with different operating parameters (such as those outlined in
Figure 1, amongst others), with varying exposure times. Such
an agreement would lead to directly comparable data across
institutions, which may accelerate the route to the clinic, and
thus the patient.

4.2. Proposed Efficacy as Compared to OtherTherapies. Given
that plasma induces ROS, one obvious comparison to current
cancer therapies is with radiotherapy, in that both are forms of
ionizing radiation that produce reactive species. Besides the
lack of a need for radioactive materials, another advantage
that LTP possesses over radiotherapy is the production of

reactive nitrogen species (RNS) in addition to ROS. As
mentioned in Section 3.2, high concentrations of NO have
been shown to have a considerable detrimental effect on cell
viability, induce apoptosis [184], and have the potential to
cause cytostasis in tumour cells [185]. In addition, the produc-
tion of peroxynitrite (ONOO−) formed as a result of reactions
between superoxide (O2

−) and NO has been shown to cause
DNA damage and oxidation of proteins [186, 187]. Some
recent diagnostic studies have demonstrated the production
of the radical singlet-delta oxygen by LTPs [188–190], which
suggests similarities between LTP treatment and PDT. LTP,
however, has the advantage of SDO production in addition
to a range of other reactive species with cytotoxic effects.

There is some evidence to suggest that LTP may offer
a selective kill of cancerous cells [164, 191–193], which
offers a potential advantage over conventional radiological
techniques, where unwanted damage to surrounding tissues
is the main concern. However, this selectivity is yet to
be definitively proven. Furthermore, due to the ambient
temperature of the plasma, there should be no requirement
for the probes employed by cryoablation (which monitor
and regulate the temperature of the urethra and bladder),
as thermal effects to the neighbouring tissues should not
be of concern. This could offer a more simplified treatment
procedure, targeting the tumour bed preferentially.

4.3.When to Treat with LTP? In terms of patient selection for
treatment with LTP, similar criteria to current focal therapies
would be applied [194]. Patientswith low risk cancer (Gleason
6) are likely to opt for active surveillance to avoid unnecessary
invasive procedures [195]. Patients with metastatic or locally
advanced prostate cancer (typically Gleason 8–10) are not
generally considered for focal therapy, as stated in Section 2.
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Therefore, the final group with intermediate risk prostate
cancer would be candidates for LTP therapy. These patients
are likely to have a predicted life expectancy of more than
five years, with no detection of locally advanced disease using
imaging technologies (clinical stage T2a or lower) [43, 196].
Their cancer is likely to beGleason 7 (although some localized
cancer could be Gleason 8) and their PSA should be low (less
than 10–20 ng/mL). The other consideration for treatment is
whether the tumour is unifocal ormultifocal, thereby perhaps
necessitating more than one treatment probe. 3D mapping
of biopsies should assist in identification of the location,
number, and size of tumour foci [197]. Fewer well-defined
tumour foci would be logistically easier to treat thanmultiple
foci. Ultimately, such focal therapy treatment is a good option
for patients who do not like the uncertainty of watchful
waiting but do not want to suffer the side effects of aggressive
overtreatment for a low risk cancer.

5. Conclusions

In this review we have analysed some of the currently
available focal therapies for localized prostate cancer and
where their advantages and limitations lie. We propose that
the emerging field of low temperature plasmas may offer
an alternative and viable solution to the effective treatment
of prostate cancer, with minimal side effects and improved
treatment efficacy versus other focal therapies. However, for
this promising concept to become a reality, further study
must be undertaken in order to fully diagnose the cellular
interaction mechanisms of the plasma, and also how surgical
administration would occur, a means of which has been
suggested here. In addition, there is a need for continued
development of imaging diagnostics, upon which a plasma-
based approach would rely for precise application.
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gen and nitrogen created in a radio-frequency-driven micro-
scale atmospheric pressure plasma jet usingmass spectrometry,”
Plasma Physics and Controlled Fusion, vol. 54, no. 12, 2012.

[116] L. Packer and H. Sies, Eds., Methods in Enzymology, Singlet
Oxygen, UV-A and Ozone, vol. 319, Academic Press, New York,
NY, USA, 2000.

[117] H. Wiseman and B. Halliwell, “Damage to DNA by reactive
oxygen and nitrogen species: role in inflammatory disease and
progression to cancer,” Biochemical Journal, vol. 313, no. 1, pp.
17–29, 1996.

[118] H. Sies, “Oxidative stress: oxidants and antioxidants,” Experi-
mental Physiology, vol. 82, no. 2, pp. 291–295, 1997.

[119] U. Bandyopadhyay, D. Das, and R. K. Banerjee, “Reactive
oxygen species: oxidative damage and pathogenesis,” Current
Science, vol. 77, no. 5, pp. 658–666, 1999.

[120] D. B. Graves, “The emerging role of reactive oxygen and
nitrogen species in redox biology and some implications for
plasma applications to medicine and biology,” Journal of Physics
D, vol. 45, no. 26, 2012.



BioMed Research International 13

[121] M. Laroussi, PlasmaMedicine: Applications of Low-Temperature
Gas Plasmas in Medicine and Biology, Cambridge University
Press, Cambridge, UK, 2012.

[122] J. Jaroslav, Q. T. Algwari, D. O’Connell et al., “Experimental-
modeling study of an atmospheric-pressure helium discharge
propagating in a thin dielectric tube,” Ieee Transactions on
Plasma Science, vol. 40, no. 11, pp. 2912–2919, 2012.

[123] Q. T. Algwari andD.O’Connell, “Electron dynamics and plasma
jet formation in a helium atmospheric pressure dielectric
barrier discharge jet,” Applied Physics Letters, vol. 99, no. 12,
Article ID 121501, 2011.

[124] J. L. Walsh and M. G. Kong, “Contrasting characteristics of
linear-field and cross-field atmospheric plasma jets,” Applied
Physics Letters, vol. 93, no. 11, Article ID 111501, 2008.

[125] D. U. Silverthorn and B. R. Johnson, HumAn Physiology: An
Integrated Approach, Pearson Education, San Francisco, Calif,
USA, 3rd edition, 2004, contributions by Bruce R. Johnson.

[126] T. Murakami, K. Niemi, T. Gans et al., “Chemical kinetics
and reactive species in atmospheric pressure helium-oxygen
plasmas with humid-air impurities,” Plasma Sources Science &
Technology, vol. 22, no. 1, 2013.

[127] E. Wagenaars, T. Gans, D. O’Connell, and K. Niemi, “Two-
photon absorption laser-induced fluorescence measurements
of atomic nitrogen in a radio-frequency atmospheric-pressure
plasma jet,” Plasma Sources Science & Technology, vol. 21, no. 4,
2012.

[128] K. Niemi, J. Waskoenig, N. Sadeghi, T. Gans, and D. O’Connell,
“The role of heliummetastable states in radio-frequency driven
helium-oxygen atmospheric pressure plasma jets:measurement
and numerical simulation,” Plasma Sources Science and Technol-
ogy, vol. 20, no. 5, Article ID 055005, 2011.

[129] C. O’Neill, J. Waskoenig, and T. Gans, “Tailoring electron
energy distribution functions through energy confinement in
dual radio-frequency driven atmospheric pressure plasmas,”
Applied Physics Letters, vol. 101, no. 15, pp. 154107–154104, 2012.

[130] T. Murakami, K. Niemi, T. Gans, D. O’Connell, and W. G. Gra-
ham, “Afterglow chemistry of atmospheric-pressure helium-
oxygen plasmas with humid air impurity,” Plasma Sources
Science and Technology, vol. 23, no. 2, Article ID 025005, 2014.

[131] K. Niemi, D. O’Connell, N. de Oliveira et al., “Absolute atomic
oxygen and nitrogen densities in radio-frequency driven atmo-
spheric pressure cold plasmas: synchrotron vacuumultra-violet
high-resolution Fourier-transform absorption measurements,”
Applied Physics Letters, vol. 103, no. 3, Article ID 034102, 2013.

[132] J. Waskoenig and T. Gans, “Nonlinear frequency coupling in
dual radio-frequency driven atmospheric pressure plasmas,”
Applied Physics Letters, vol. 96, no. 18, Article ID 181501, 2010.

[133] K. Niemi, S. Reuter, L. M. Graham et al., “Diagnostic based
modelling of radio-frequency driven atmospheric pressure
plasmas,” Journal of Physics D, vol. 43, no. 12, Article ID 124006,
2010.

[134] K. Niemi, S. Reuter, L. M. Graham, J. Waskoenig, and T. Gans,
“Diagnostic based modeling for determining absolute atomic
oxygen densities in atmospheric pressure helium-oxygen plas-
mas,” Applied Physics Letters, vol. 95, no. 15, Article ID 151504,
2009.

[135] V. Schulz-von der Gathen, L. Schaper, N. Knake et al., “Spatially
resolved diagnostics on a microscale atmospheric pressure
plasma jet,” Journal of Physics D, vol. 41, no. 19, Article ID
194004, 2008.

[136] D. Ellerweg, J. Benedikt, A. Von Keudell, N. Knake, and
V. Schulz-von der Gathen, “Characterization of the effluent

of a He/O2 microscale atmospheric pressure plasma jet by
quantitative molecular beam mass spectrometry,” New Journal
of Physics, vol. 12, Article ID 013021, 2010.

[137] G. E. Morfill, M. G. Kong, and J. L. Zimmermann, “Focus on
plasma medicine,” New Journal of Physics, vol. 11, Article ID
115011, 2009.

[138] M. Laroussi and F. Leipold, “Evaluation of the roles of reactive
species, heat, and UV radiation in the inactivation of bacterial
cells by air plasmas at atmospheric pressure,” International
Journal of Mass Spectrometry, vol. 233, no. 1–3, pp. 81–86, 2004.

[139] G. Fridman, A.D. Brooks,M. Balasubramanian et al., “Compar-
ison of direct and indirect effects of non-thermal atmospheric-
pressure plasma on bacteria,” Plasma Processes and Polymers,
vol. 4, no. 4, pp. 370–375, 2007.

[140] R. E. J. Sladek and E. Stoffels, “Deactivation of Escherichia coli
by the plasma needle,” Journal of Physics D, vol. 38, no. 11, pp.
1716–1721, 2005.

[141] S. Perni, G. Shama, J. L. Hobman et al., “Probing bacterici-
dal mechanisms induced by cold atmospheric plasmas with
Escherichia coli mutants,” Applied Physics Letters, vol. 90, no.
7, Article ID 073902, 2007.

[142] M. Moisan, J. Barbeau, S. Moreau, J. Pelletier, M. Tabrizian, and
L. Yahia, “Low-temperature sterilization using gas plasmas: a
review of the experiments and an analysis of the inactivation
mechanisms,” International Journal of Pharmaceutics, vol. 226,
no. 1-2, pp. 1–21, 2001.

[143] Z. L. Petrović, S. Puač, N. Lazović et al., “Biomedical applica-
tions and diagnostics of atmospheric pressure plasma,” Journal
of Physics, vol. 356, no. 1, Article ID 012001, 2012.

[144] M. Y. Alkawareek, Q.Th.Algwari, G. Laverty et al., “Eradication
of Pseudomonas aeruginosa biofilms by atmospheric pressure
non-thermal plasma,”PLoSONE, vol. 7, no. 8, Article ID e44289,
2012.

[145] E. Stoffels, R. E. J. Sladek, and I. E. Kieft, “Gas plasma effects on
living cells,” Physica Scripta, vol. 2004, article 79, 2004.

[146] C. Jiang, M.-T. Chen, A. Gorur et al., “Nanosecond pulsed
plasma dental probe,” Plasma Processes and Polymers, vol. 6, no.
8, pp. 479–483, 2009.

[147] G. Isbary, G. Morfill, H. U. Schmidt et al., “A first prospective
randomized controlled trial to decrease bacterial load using
cold atmospheric argon plasma on chronic wounds in patients,”
British Journal of Dermatology, vol. 163, no. 1, pp. 78–82, 2010.

[148] G. Isbary, J. Heinlin, T. Shimizu et al., “Successful and safe use
of 2 min cold atmospheric argon plasma in chronic wounds:
results of a randomized controlled trial,” British Journal of
Dermatology, vol. 167, no. 2, pp. 404–410, 2012.

[149] G. Daeschlein, S. Scholz, R. Ahmed et al., “Cold plasma is
well-tolerated and does not disturb skin barrier or reduce skin
moisture,” Journal der DeutschenDermatologischen Gesellschaft,
vol. 10, no. 7, pp. 509–515, 2012.

[150] M. B. Witte and A. Barbul, “Role of nitric oxide in wound
repair,”American Journal of Surgery, vol. 183, no. 4, pp. 406–412,
2002.

[151] A. Soneja, M. Drews, and T. Malinski, “Role of nitric oxide,
nitroxidative and oxidative stress in wound healing,” Pharma-
cological Reports, vol. 57, pp. 108–119, 2005.

[152] G. Fridman, G. Friedman, A. Gutsol, A. B. Shekhter, V. N.
Vasilets, and A. Fridman, “Applied plasma medicine,” Plasma
Processes and Polymers, vol. 5, no. 6, pp. 503–533, 2008.

[153] G. Lloyd, G. Friedman, S. Jafri, G. Schultz, A. Fridman, and
K. Harding, “Gas plasma: medical uses and developments in



14 BioMed Research International

wound care,” Plasma Processes and Polymers, vol. 7, no. 3-4, pp.
194–211, 2010.

[154] J. Heinlin, G. Morfill, M. Landthaler et al., “Plasma medicine:
possible applications in dermatology,” Journal der Deutschen
Dermatologischen Gesellschaft, vol. 8, no. 12, pp. 968–976, 2010.

[155] K. R. Stalder, D. F. McMillen, and J. Woloszko, “Electrosurgical
plasmas,” Journal of Physics D, vol. 38, no. 11, pp. 1728–1738,
2005.

[156] J. Raiser and M. Zenker, “Argon plasma coagulation for open
surgical and endoscopic applications: state of the art,” Journal of
Physics D, vol. 39, no. 16, Article ID 3520, 2006.

[157] J. M. Canard and B. Védrenne, “Clinical application of argon
plasma coagulation in gastrointestinal endoscopy: has the time
come to replace the laser?”Endoscopy, vol. 33, no. 4, pp. 353–357,
2001.

[158] B.Geavlete, R.Multescu,M.Dragutescu,M. Jecu,D.Georgescu,
and P. Geavlete, “Transurethral resection (TUR) in saline
plasma vaporization of the prostate vs standard TUR of the
prostate: “The better choice” in benign prostatic hyperplasia?”
BJU International, vol. 106, no. 11, pp. 1695–1699, 2010.

[159] L. P. Xie, J. Qin, X. Y. Zheng et al., “Transurethral vapor enucle-
ation and resection of prostate with TURis button electrode,”
Zhonghua Yi Xue Za Zhi, vol. 92, no. 22, pp. 1558–1559, 2012.

[160] S. Y. Zhang, H. Hu, X. P. Zhang et al., “Efficacy and safety of
bipolar plasma vaporization of the prostate with, “button-type”
electrode compared with transurethral resection of prostate for
benign prostatic hyperplasia,” Chinese Medical Journal, vol. 125,
no. 21, pp. 3811–3814, 2012.

[161] G. Fridman, A. Shereshevsky, M. M. Jost et al., “Floating
electrode dielectric barrier discharge plasma in air promoting
apoptotic behavior in Melanoma skin cancer cell lines,” Plasma
Chemistry and Plasma Processing, vol. 27, no. 2, pp. 163–176,
2007.

[162] G.-C. Kim, H. J. Lee, and C.-H. Shon, “The effects of a micro
plasma onmelanoma (G361) cancer cells,” Journal of the Korean
Physical Society, vol. 54, no. 2, pp. 628–632, 2009.

[163] S. Arndt, E. Wacker, Y. F. Li et al., “Cold atmospheric plasma,
a new strategy to induce senescence in melanoma cells,”
Experimental Dermatology, vol. 22, no. 4, pp. 284–289, 2013.

[164] S. Iseki, K. Nakamura, M. Hayashi et al., “Selective killing
of ovarian cancer cells through induction of apoptosis by
nonequilibrium atmospheric pressure plasma,” Applied Physics
Letters, vol. 100, no. 11, Article ID 113702, 2012.

[165] C.-H. Kim, S. Kwon, J. H. Bahn et al., “Effects of atmospheric
nonthermal plasma on invasion of colorectal cancer cells,”
Applied Physics Letters, vol. 96, no. 24, Article ID 243701, 2010.

[166] X. Zhang,M. Li, R. Zhou, K. Feng, and S. Yang, “Ablation of liver
cancer cells in vitro by a plasma needle,”Applied Physics Letters,
vol. 93, no. 2, Article ID 021502, 2008.

[167] M.Wang, B.Holmes, X. Cheng et al., “Cold atmospheric plasma
for selectively ablating metastatic breast cancer cells,” PLoS
ONE, vol. 8, no. 9, Article ID e73741, 2013.

[168] N. K. Kaushik, P. Attriemail, N. Kaushikemail et al., “A prelimi-
nary study of the effect of DBD plasma and osmolytes on T98G
brain cancer and HEK non-malignant cells,” Molecules, vol. 18,
no. 5, pp. 4917–4928, 2013.

[169] D. O’Connell, L. J. Cox, W. B. Hyland et al., “Cold atmospheric
pressure plasma jet interactions with plasmid DNA,” Applied
Physics Letters, vol. 98, no. 4, Article ID 043701, 2011.

[170] I. E. Kieft, M. Kurdi, and E. Stoffels, “Reattachment and
apoptosis after plasma-needle treatment of cultured cells,” IEEE

Transactions on Plasma Science, vol. 34, no. 4, pp. 1331–1336,
2006.

[171] N. Barekzi and M. Laroussi, “Dose-dependent killing of
leukemia cells by low-temperature plasma,” Journal of Physics
D, vol. 45, no. 42, 2012.

[172] M. Vandamme, E. Robert, S. Dozias et al., “Response of
human gliomaU87 xenografted onmice to non thermal plasma
treatment,” Plasma Medicine, vol. 1, no. 1, pp. 27–43, 2011.

[173] O. Volotskova, T. S. Hawley, M. A. Stepp et al., “Targeting the
cancer cell cycle by cold atmospheric plasma,” Scientific Reports,
vol. 2, article 636, 2012.

[174] M. Vandamme, E. Robert, S. Lerondel et al., “ROS implication
in a new antitumor strategy based on non-thermal plasma,”
International Journal of Cancer, vol. 130, no. 9, pp. 2185–2194,
2012.

[175] G. J. Kim, W. Kim, K. T. Kim, and J. K. Lee, “DNA damage
and mitochondria dysfunction in cell apoptosis induced by
nonthermal air plasma,” Applied Physics Letters, vol. 96, no. 2,
Article ID 021502, 2010.

[176] M. Thiyagarajan, X. F. Gonzales, and H. Anderson, “Regulated
cellular exposure to non-thermal plasma allows preferentially
directed apoptosis in acutemonocytic leukemia cells,” Studies in
Health Technology and Informatics, vol. 184, pp. 436–442, 2013.

[177] R. M. Walk, J. A. Snyder, P. Srinivasan et al., “Cold atmospheric
plasma for the ablative treatment of neuroblastoma,” Journal of
Pediatric Surgery, vol. 48, no. 1, pp. 67–73, 2013.

[178] J. T. Au, T. P. Kingham,K. Jun et al., “Irreversible electroporation
ablation of the liver can be detected with ultrasound B-mode
and elastography,” Surgery, vol. 153, no. 6, pp. 787–793, 2013.

[179] J. Fanta, P. Hora’k, J. Marvan et al., “The NanoKnife and two
successful cases of intracavitary irreversible electroporation of
main bronchus tumours,” Rozhledy v Chirurgii, vol. 91, no. 11,
pp. 625–630, 2012.

[180] G. Onik, P. Mikus, and B. Rubinsky, “Irreversible electropora-
tion: implications for prostate ablation,” Technology in Cancer
Research and Treatment, vol. 6, no. 4, pp. 295–300, 2007.

[181] L. Brulle, M. Vandamme, D. Riès et al., “Effects of a non thermal
plasma treatment alone or in combinationwith gemcitabine in a
MIA PaCa2-luc orthotopic pancreatic carcinoma model,” PLoS
ONE, vol. 7, no. 12, Article ID e52653, 2012.

[182] D.Dobrynin,G. Fridman,G. Friedman, andA. Fridman, “Phys-
ical and biological mechanisms of direct plasma interaction
with living tissue,” New Journal of Physics, vol. 11, Article ID
115020, 2009.

[183] S. Kalghatgi, G. Friedman, A. Fridman, and A. M. Clyne,
“Endothelial cell proliferation is enhanced by low dose non-
thermal plasma through fibroblast growth factor-2 release,”
Annals of Biomedical Engineering, vol. 38, no. 3, pp. 748–757,
2010.

[184] D. Hirst and T. Robson, “Targeting nitric oxide for cancer
therapy,” Journal of Pharmacy and Pharmacology, vol. 59, no. 1,
pp. 3–13, 2007.

[185] D. J. Stuehr and C. F. Nathan, “Nitric oxide: a macrophage
product responsible for cytostasis and respiratory inhibition in
tumor target cells,” Journal of Experimental Medicine, vol. 169,
no. 5, pp. 1543–1555, 1989.

[186] A. Korkmaz, S. Oter, M. Seyrek et al., “Molecular, genetic and
epigenetic pathways of peroxynitrite-induced cellular toxicity,”
Interdisciplinary Toxicology, vol. 2, no. 4, pp. 219–228, 2009.

[187] J. Fraszczak, M. Trad, N. Janikashvili et al., “Peroxynitrite-
dependent killing of cancer cells and presentation of released



BioMed Research International 15

tumor antigens by activated dendritic cells,” Journal of
Immunology, vol. 184, no. 4, pp. 1876–1884, 2010.

[188] J. S. Sousa, K. Niemi, L. J. Cox, Q. T. Algwari, T. Gans, and D.
O’Connell, “Cold atmospheric pressure plasma jets as sources
of singlet delta oxygen for biomedical applications,” Journal of
Applied Physics, vol. 109, no. 12, Article ID 123302, 2011.

[189] V. Puech, G. Bauville, B. Lacour et al., “Micro-plasmas as
efficient generators of singlet delta oxygen—art. no. 700527,”
High-Power Laser Ablation Vii, Pts 1-2, vol. 7005, article 527,
2008.

[190] A. A. Ionin, I. V. Kochetov, A. P. Napartovich, and N. N.
Yuryshev, “Physics and engineering of singlet delta oxygen
production in low-temperature plasma,” Journal of Physics D,
vol. 40, no. 2, article R01, pp. R25–R61, 2007.

[191] M. Keidar, R.Walk, A. Shashurin et al., “Cold plasma selectivity
and the possibility of a paradigm shift in cancer therapy,” British
Journal of Cancer, vol. 105, no. 9, pp. 1295–1301, 2011.

[192] G. J. Kim, S. R. Park, G. C. Kim, and J. K. Lee, “Targeted cancer
treatment using anti-EGFR and -TFR antibody-conjugated gold
nanoparticles stimulated by nonthermal air plasma,” Plasma
Medicine, vol. 1, no. 1, pp. 45–54, 2011.

[193] M. Keidar, A. Shashurin, O. Volotskova et al., “Cold atmo-
spheric plasma in cancer therapy,” Physics of Plasmas, vol. 20,
no. 5, Article ID 057101, 8 pages, 2013.

[194] H. U. Ahmed, R. G. Hindley, L. Dickinson et al., “Focal
therapy for localised unifocal and multifocal prostate cancer: a
prospective development study,” The Lancet Oncology, vol. 13,
no. 6, pp. 622–632, 2012.

[195] L. Klotz, “Active surveillance: patient selection,” Current Opin-
ion in Urology, vol. 23, no. 3, pp. 239–244, 2013.

[196] B. Tareen, G. Godoy, and S. S. Taneja, “Focal therapy: a new
paradigm for the treatment of prostate cancer,” Reviews in
Urology, vol. 11, no. 4, pp. 203–212, 2009.

[197] K. F. Sullivan and E. D. Crawford, “Targeted focal therapy for
prostate cancer: a review of the literature,”Therapeutic Advances
in Urology, vol. 1, no. 3, pp. 149–159, 2009.



Submit your manuscripts at

http://www.hindawi.com

Stem Cells
International

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

MEDIATORS
INFLAMMATION

of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Behavioural 
Neurology

Endocrinology
International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Disease Markers

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

BioMed 
Research International

Oncology
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Oxidative Medicine and 
Cellular Longevity

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

PPAR Research

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Immunology Research
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Obesity
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Computational and  
Mathematical Methods 
in Medicine

Ophthalmology
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Diabetes Research
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Research and Treatment
AIDS

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Gastroenterology 
Research and Practice

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Parkinson’s 
Disease

Evidence-Based 
Complementary and 
Alternative Medicine

Volume 2014
Hindawi Publishing Corporation
http://www.hindawi.com


