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Abstract: Generalisation propetties of support vector machines, orthogonal least
squares and other variants of the orthogonal least squares algorithms are studied in
this paper. In particular the zero-order regularised orthogonal least squares
algorithm that has been proposed in (Chen et al. 1996) and the first-order
regularised orthogonal least squares algorithm which can be obtained using the cost
function from support vector machines will be discussed.

Simple noisy sine and sinx functions are used to show that overfitting in the
orthogonal least squares algorithm can be greatly reduced if the free parameters of
the algorithm are selected properly. Results on three chaotic time series show that
the orthogonal least squares algotithm is slightly inferior compared to the other
three algorithms. However the strength of the orthogonal least squares algorithm
lies in the ability to obtain a very concise or parsimonious model and the algorithm
has the fewest number of free parameters compared to the other algorithms.

1. Introduction

Recently, Support Vector Machines (SVM) have been employed for classification and prediction in
pattern recognition and regression problems. Vapnilk and other co-workers (Boser et al. 1992, Cortes
and Vapnik 1995 and Scholkopf et al. 1995) developed the theory of support vector machines. The
algorithm is based on statistical learning theory or VC (V apnik-Chervonenkis) theory (Vapnik 1995),
which was developed over the last three decades. Support vector machines are believed to be able to
generalise well on unseen data. Many outstanding results (Muller et al. 1997, Drucker et al. 1997 and
Mukherjee et al. 1997) have been reported which use support vector machines for time series

prediction.

The idea of generalisation ability can be linked to the principle of parsimony. With a parsimonious
structure, the problem of overfitung can be avoided and the constructed model can be expected to
generalise well. The Orthogonal Least Squares (OLS) algorithm (Chen et al. 1989 and Chen et al. 1991)
has been shown to be an efficient procedure for learning parsimonious structures. Recently it has been

shown (Drezet and Harrison 1998) that support vector machines ate not always able to construct



parsimonious structures in system identification. However the use of the parsimonious principle alone
may not totally eliminate overfitting (Chen et al. 1996). Small models may stll fit to the noise and the
use of the zero-order Regularised Orthogonal Least Squares (ROLSY) algorithm has been proposed.
Besides using the zero-order regularised cost function to obtain the zero-order regularised orthogonal
least squares algorithm, other cost functions can also be employed to obtain other variants of the
orthogonal least squares algorithm. Using the cost function from support vector machines, the first-
order Regularised Orthogonal Least Squares (ROLS?) algorithm will be introduced in the present study.
Simulation results on simple noisy sine and sinx functions and three well-known chaotic ime series will

be used to assess the performance of the different algorithms.

The paper is organised as follows. Section 2 briefly introduces support vector machines and the
orthogonal least squares algorithm. The use of a zero-order tegularised cost function to obtain the
zero-order regularised orthogonal least squares algorithm is then discussed. Using the cost function
from support vector machines, the first-order regularised orthogonal least squares algorithm is then
derived. Empirical studies using noisy sine and sinx functions and three choatic time series, the Henon,
Lorenz and Mackey-Glass time series are presented in section 3. Finally, conclusions are given in

Section 4.

2. Support Vector Machines, the Orthogonal and the Regularised Orthogonal

Least Squares Algorithms

In this section, support vector machines, the orthogonal, and the regularised orthogonal least squares
algorithms are briefly discussed. Interested readers are referred to (Vapnik 1995, Burges 1998 and
Smola and Scholkopf 1998) for support vector machines, (Korenberg et al. 1988 and Chen et al. 1989)
- for the orthogonal least squares algorithm and (Chen et al. 1996) for the zero-order regularised

orthogonal least squares algorithm,

2.1 Support vector machines

Given 2 set of data {(xl Vi (X5, ¥,) Xy, vy )} where X, €R™,y, € R, the nonlinear Support
Vector Machines (SVM) first map the input data {x] " S, }into a high dimensional feature space F'

by using 2 nonlinear mapping CI)(-), and then perform a linear regression in this feature space so that

f(X)=w-O(x)+b (1)




where w € F', b is the threshold and w-fb(x) denotes dot product of w with d(x).

To determine the two unknowns (w,b) in equation (1) the following functional is minimised

Minimise: %”w”l + CZV:‘ [c)+¢(&)] @)
subject to y, - f(x,)Se+¢&, ©)
Jx)-y <e+&f )
.6 20 &)

where ”” denotes the Euclidean norm, € is the e-insensitive loss zone introduced by (Vapnik 1995), C

is a positive constant, &£ are training errors and () is the loss function. A squared loss function

will be used in the present study
]. )
¢ = 55‘ ©)

Note that with the use of the e-insensitive loss zone, errors Q ¥, — (X ,)l) which are less than € will

not contribute any cost to the optimisation function of equation (2) because the training errors are zero

in this case, &; or £ is zero in equations (3) or (4).

However the optimisation problem is difficult to solve in the form of equation (2) and the problem can

be reformulated in Lagrangian form (Fletcher 1987) as

L=tp eSS @ e Sl -y, + )

—Za,"[s +& +y, - f(Xf)l—Z(mﬁf +?7,-*§.-*) )

where ,,a; ,n,,n =0.
The partial derivative of L with respect to w,b,&,,&" must vanish, hence substituting equation (1) into

equation (7) and carrying out the necessary operations gives

g_i:w“g(ar_a: (XI.)=O ®
L E.

g_;(a: _ai)_o 2
dL

s Cé;(“ _aj(*) __ni(*) — O (10)




L dL S
where equation (10) represents the short form of ~a— =C& —a,-n, =0 and— =C¢ -a -n =0.

9¢, ¢,
Using equations (8), (9) and (10), the dual formulation of equation (7) can be expressed as

Maximise : —% i (a{. - Xaj —(x;}b(xf) ~P(x )

~i,=l

Rl Sole-ak Sl eay) o

subject to i(a o ) (12)

i=1
oo m,m 20 (13)
The dual variables (1,,7,") only appear in the last term of equation (11) and are subject to the constraint
of equation (13), therefore the maximum of equation (11) can only be achieved if
n,=n; =0 (14)
Using both equations (10) and (14) gives

al”
7(*) — 15
S ~ (15)

By reformulating the problem into Lagrangian form the optimisation function only involves the dot
product of the training data, CD(X ; )-(I)(x j) and this is 2 very important property. In general the mapping
(I)() may not be known explicitly but using Mercer kernels (V apnik 1995) which satisfy

tl x, )= 0l o, a6
the problem can be solved without ever mapping explicitly to the feature space F. The polynomial

kernel k(x,,x;)=(x, x ;T1D?, where pis the degree of nonlinearity, and the Gaussian kernel

=X —X.
k(x‘.,xj):exp( “ i leo_z} where ¢ is the width, are some typical kernels which satisfy the

Mercer condition.

Finally, with equation (14) and using Mercer kernels, the optimisation function can be expressed as

Maximise : ——Z(cx -, X(x o )((xi,x )

=1, 4=l

—EZ(O! +o )+iy,( .)—Li(a +a?) (17)

i=l i=l C =]
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N

subjectto " (07 )= 0 (18)

i=1

a0 20 (19)
A standard optimisation package can be used to solve the quadratic maximisation problem and the

values of the Lagrange multipliers @, and @ can be found. With the use of the e-insensitive loss Zone,

only a number of coefficients &, ~ a; will be different from zero and the data points X, associated to

them are called support vectors. The use of the interior point algorithms to solve the optimisation
problem is preferred (Smola and Scholkopf 1998) because the algorithms solve both the primal and
dual of equation (17) simultaneously. Note that the dual of equation (17) is the dual and dual of
equation (2) and the value of the threshold term b can be obtained directly (Smola et al. 1998). The

value of b can also be computed using the Karush-Kuhn Tucker (KKT) conditions (Fletcher 1987).
Applying the KKT conditions give

"7 =0 20)
@ (e+& ~y +w-B(x,)+b)=0 21)
(X:(8+§:+yi—w-@(xi)—b)ZO 22)

Using support vectors such that @, or &, is nonzero, the right hand bracket term of the equation (21)

or (22) is zero. Using equation (15) the value of b can then be calculated as
. N . O_{* N )
b=y, —E—-E‘—z(aj “ij)k(xi,xj) orb=y +¢ +?’—Z(Odj -Cij.)k(xi,xj) (23)
J=1 j=l

In this study the package LOQO (Vanderber 1994) which is based on the interior point algorithms was

used.

2.1.1 Structural risk minimisation

If there was no control on the capacity/ complexity of the machine (the term “w“2 In equation (2)), a

regression function w with zero empirical risk (error) can always be found by increasing the complexity
of the machine such as using a higher number of centres for the Gaussian kernel. However zero
empirical tisk does not imply zero expected risk on unseen samples, and a bound on the expected risk

has been derived in Vapnik (1995). The expected risk can be calculated with probability (1 = 1)) as

n(log, 2N+ 1y~ 10g. (%)
R<R, + b = = 24)

wn

1

e A e e




where Ris the expected risk, R, s the empirical risk, N is the number of training samples and £ is

the Vapnik-Chervonenkis (VC) dimension. The VC-dimension depends on the chosen class of
functions such as Gaussian or polynomial kernels, whereas the empirical risk and the expected risk
depend on the particular function chosen by the training procedure. The idea of Structural Risk

Minimisation (SRM) is to arrange the entire class of functions into nested subsets with each subset
having a VC-dimension of h, where h <h, <Ah,... For each subset the goal of training is simply to

minimise the empirical risk. Finally, the particular trained machine (function) with minimal expected

risk as calculated from equation (24) is selected.

However the VC-dimension of a chosen class of functions is independent of A where “w”2 =4, A i
a positive constant and the VC-dimension can be infinite if the dimension of the feature space is
infinite. Therefore an extension of the VC-dimension known as the V. -dimension has been developed
(Alon et al. 1997 and Evgeniou et al. 1999) and the V, -dimension is dependent on A and is finite even

if the feature space dimension is infinite. The extended structural risk minimisation principle (Evgeniou

et al. 1999) can then be formulated as

Minimise: Z(y, - f(x,)) (25)
subject to ”W”2 =4y (26)

where A;is a monotonically increasing sequence of positive constants.

Unfortunately the above formulation is difficult to solve as this involves a constrained minimisation

with nonlinear constraints. The Lagrangian form of equation (25) is
N
2 2
L= (v = fx)} —C, (4, | 27)
i=l
where C, 20

If the optimal value of the Lagrange multiplier is known and is noted as C ; then equation (27) can be

simplified as

N

Minimise: ' (y, - £(x,)}' +C’

W’ (28)

with respect to w. This is in the same form as the formulation for support vector machines. Therefore

support vector machines implement the structural risk minimisation principle and hence many excellent




results have been reported using support vector machines. In practical situations, the optimal value of

C: is rarely known and this has to be estimated using techniques such as cross-validation.
2.2 Orthogonal least squares type algorithms

Assume that a training set of N samples {(x,, ", )Xy, ¥y ) Jhere X, €R" and y, € R is available

and a regression model can be obtained as
N
fx)=Y6.0,(x) (29)
i=|

where 0, is the unknown parameters and @,(X) is assumed to be the nonlinear Mercer kernels in this

study, ¢@. (X) =k(x,x.), but other nonlinear expansions such as a polynomial expansions are also

possible (Chen and Billings 1989). Therefore the output ¥; can be expressed as
N
Y= Fx)+E =30 k(x,.x,)+E, (30)
=

where &, is again the training error. The model equation (29) can be referred to as the “full’ model since

all the training samples are used to construct the model. The use of the ‘full’ model is highly
undesirable due to the overfitting problem and a longer time will be needed to train and to test large
models. An efficient subset selection procedure has been derived based on the orthogonal least squares

method (Chen et al. 1989). Equation (30) can be rewritten in matrix form as

Y=PO+Z (31)
k(x.,X,) - k(x,,Xx,)

whete P = 5 : (32)
k(xN,xl} wae  RIR s )

An orthogonal decomposition of P is given as

P=TQ (33)
where Q is an N x N upper unit triangular matrix.
1 jb12 j‘w
1 ... Aw
0= ¢ ] (4
0 1

and T is a N x N matrix with orthogonal columns satisfying

T'T =diag{k, ,K,,...K, }, kK, =17t (35)

I ¢




Rearranging equation (31) yields

Y=(PO7')QO)+E=Tg +E (36)
The total squared error cost function

J=2"% 37)

can be used to estimate the unknown parameters g, as

'Y
8 =7 (38)
t! Ii
With Q6 = g and knowing Q and g, 6 can be determined through back substitution.
Using equations (36) & (38), the cost function can alternatively be expressed as
N
J=YTY =Ygl (tt,) (39)
i=l
The Error Reduction Ratio (ERR) (Korenberg et al. 1988) due to P, can be expressed as
g Spiy
ERR, =——— 40
i YTY ( )

Using the ERR ratio, significant model terms can be selected in a forward-selection procedure. At the
[ iteration, the term which gives the largest value of ERR. is selected and added to the previously

selected (7 — 1) terms model. The selection procedure can be terminated using cross-validation. Full
details of the forward regression version of this algorithm are available in (Chen et al 1989). Empirical
results have shown that parsimonious models can be obtained using the orthogonal least squares

algorithm.

2.2.1 Zero-order regularised orthogonal least squares algorithm
If the samples are highly noisy, small models constructed using the orthogonal least squares algorithm
may still fir to the noise and the use of the zero-order Regularised Orthogonal Least Squares (ROLS?)
algorithm has been proposed (Chen et al 19906).
The zero-order regularised cost function used for the ROLSY algorithm is

J=Z"E+Cg"g ()
where C is a positive constant.
The corresponding expressions for g; and the zero-order Regularised Error Reduction Ratio (RERR? )
can be derived as

o rl'TY
&= e +C *+2)




tis. 2
RERR® =41 +C)8; inl (43)
YTy

Similarly, the term which gives the largest RERR; at each iteration i is selected and cross-validation
can be used to terminate the selection procedure.

The constant C can also be lumped together with the tralning error term in order to be consistent with

the cost function used in support vector machines and hence the subsequent cost function is
J=CE"E)+g"g (44)

and the resulting g, and RERR, are
ik (45)
8§ =7 17
2L+ %?

1t + 1/ )a?
RERR! :E’_IJQE

) i 59)

2.2.2 First-order regularised orthogonal least squares algorithm

As well as considering the total squared error (equation (37)) and zero-order regularised (equation (41))
cost functions, other cost functions may also be employed. In particular the structural risk minimisation
principle is well founded in statistical learning theory and the cost function used in support vector
machines may be useful. This is investigated below.

The cost function is

J=CEE)+w™w

N
where w= ZBJCD(X[.)

i=l

Let Ay(x)=[®(x,) - ®(x,)] and hence
w=A,(x) 0
and P in equation (32) can be written as
P=A,(x)A,(x)
Consider the expression
O"PPO =07 (A, (A, ) ] (A, (0A,(x)7)B
=O"A,(x)DA, (x)"©
=Dw'w

where D=A, (x)" Ay (X) is a positive constant.




Therefore minimising w'w is equivalent to minimising ®" P" PO and knowing that PO =gT , the
cost function equation (47) can be re-expressed as

J=CE'E)+0"PTPO=CE"Z)+g"T Tg (51)
The matrix 77T is diagonal and the corresponding g, and first-order Regularised Error Reduction

Ratio (RERR!) can easily be derived as

C ¥
iy v el 52
8 (C+l)tfrf 62)
171 o2
RERR, = g_ﬂ _‘_.;:_g‘_ (53)
C Y'Y

This approach will be referred to as the first-order Regularised Orthogonal Least Squares (ROLS?)
algorithm and a similar selection procedure of choosing the largest value of RERR! at each iteration
can be performed. Regardless of the value chosen for the constant C the same terms as the original
orthogonal least squares algorithm will be selected with a scale value of the parameters g; (compare

equations (38) and (40) with equations (52) and (53) respectively). Therefore the performance of the
first-order regularised orthogonal least squares algorithm should be similar to the orthogonal least
squares algorithm. To increase the performance and the flexibility of the first-order regularised
orthogonal least squares algorithm, an optimisation procedure will be performed after M important
terms have been selected. At this optimisation step, the direct support vector machines cost function

with the e-insensitive loss zone will be used and the optimisation operation will then be performed to

obtain a global solution of the parameters ..

After the M important terms have been selected, the regression model can be expressed as
M
F()=30,k(x,x)) (54)
i=1

& . . .
where X;,i=1..M are the sclected terms from X;,1=1..N using the orthogonal least squares
algorithm.

The optimisation cost function will be

P i CH pa
Minimise: — VZIBik(xl X8, +EZ(§; FE) (55)
== i=1

10



Y

subject to y, — iﬂjk(xi X e gl (56)
J=1
M
Zejk(xi,x’}. -y, <e +& (37)
j=l
and £,&° > 0.

Standard optimisation packages such as LOQO (Vanderber 1994) can be used to obtain the values of
6 . With the introduction of the extra parameter £ (the e-Insensitive loss zone), the resulting first-order
regularised orthogonal least squares algorithm is more flexible but with more parameters to be

determined during cross-validation.
3 Experiments

In the first experiment, similar examples to those used in Chen et al. (1996) were conducted. In Chen et
al. (1996), the first example was used to show that the orthogonal least squares algorithm can fit to the
noise whereas using the regularised orthogonal least squares algorithm the overfitting problem is less
likely to occur. An RBF network with a gaussian kernel and a width of & =02 was used to

approximate the scalar function

Sine () =sin(27x;), 0< x, £ 1 (58)
One hundred training samples were generated where X; was taken from the uniform distribution [0 1]
and zero mean white gaussian noise e, with standard deviation 0.4 was added to the function output to

obtain the output y, as

Vi = fine (X)) T e, (59)
The noisy data and the true noise-free data are plotted together in Figure 1. Following Chen et al.
(1996), the constant C was chosen to be 1, and 15 centres were selected from the training samples for
both the OLS and zero-order ROLSY algorithms (using equations (42) and (43)). The resulting
approximation functions obtained from both algorithms are shown in Figures 2a and 2b. Cleatly,
overfitting can be seen in Figure 2a using the OLS algorithm whereas in Figure 2b using the ROLS?

algorithm, visually the overfitting problem is much reduced. However a simple check with the total

15

15
sum of the error reduction ratio showed that (2 ERR,.]:O.SZl whereas [2 RERR1°]=O.76. A
=1 i=l
higher value of the total sum of the error reduction ratio implies higher chances of overfitting. Since
this was a rather simple example two centres were sufficient to approximate the sine function. The

resulting approximation functions obtained by OLS and ROLS? using two centres are shown in Figures

11




3a and 3b. Visually, no overfitting has occurred for both approximation functions. The values of

k k
ZERR,, and Z RERR! | are plotted in Figure 4 for the number of centres (k) from 2 to 15.

i=l =1
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Figure (1) Noisy training data (crosses) and the true noise-free data (asterisks).
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Figure (2) Approximation functions constructed by (a) orthogonal least squares and (b) zero-order regularised orthogonal

least squares algorithms using a Gaussian kernel with 15 centres and a width of 0.2.
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Figure (3) Approximation functions constructed by (a) orthogonal least squares and (b) zero-order regularised orthogonal

least squares algorithms using a Gaussian kernel with 2 centres and a width of 0.2.
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Figure (4) The total sum of the error reduction ratio (asterisks) and the zero-order regularised error reduction rato (circles)

for the number of centres (k) from 2 to 15.

Another problem associated with the use of the OLS algorithm is that missing data in interoir regions
of the sample space could produce opportunities for local overfitting as shown in (Orr 1993 and Orr
1995). Consider the following scalar sinx function,

_sinx

frrue -

(60)
X

Sixty four samples from four different regions of x were drawn and corrupted by Gaussian noise of
zero mean and standard deviation 0.05. A Guassian kernel of width 2 was used and the OLS algorithm
was employed to select a subset of 10 centres from a total set of 201 points equally spaced between (-

30,50). The function obtained by OLS is shown in figure 5.

15 T T T T T T T

-5 L L L L I L
-30 -20 -10 0 10 20 30 40 50

Figure (5) Approximaton function constructed by OLS using a Gaussian kernel with 10 centres and a width of 2. The

centres are chosen from a set of 201 points equally spaced between (-30,50). The centres chosen are shown in circles and the

data points are plotted in crosses.
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It can clearly be seen that the approximated function obtained by OLS algorithm can perform poorly in
areas where there are no data samples. This is because the OLS algorithm may select centres in these
regions where there are no data and for such centres to influence the reduction in data error, large
weights will result. As shown in Orr (1993), this problem can be solved if regularization is used because
regularization will avoid choosing centres with large weights. However 2 much simpler solution is to
create the potential set of centres solely from the data, hence giving no chance for the OLS algorithm
to select centres from a region where there are no data. With the centres chosen solely from the data
points, the resulting function obtained by the OLS algorithm is shown in Figure 6. It can clearly be
seen that the local overfitting problem is now avoided. This is because the Gaussian kernel belongs to
the set of local basis functions. Therefore each centre will have decreasing influence as the distance gets
further away from the centre. Since no centres are selected in the empty data region, the influence of
the nearby data point centres selected by OLS should diminish in this region and hence local overfitting

1s avoided.

1.2 T T T T T T

£, |

02f
- / e

o g |

-02f ﬂf -

-04 L L L L L . L
-30 -20 -10 0 10 20 30 40 50

@

Figure (6) Approximaton function constructed by OLS using a Gaussian kernel with 10 centres and a width of 2. The

centres are chosen from the data points which are shown in circles and the data points are plotted in crosses.

Another factor which plays an important role in this situation is the width of the Guassian kernel. If
too large 2 width is chosen, the influence of the selected centres will not diminish rapidly and a local

overfitting problem may still occur as shown in Figure 7.
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Figure (7) Approximation function constructed by OLS using a Gaussian kernel with 12 centres and a width of 5. The

centres are chosen from the data points which are shown in circles and the data points are plotted in crosses.

Therefore in order to avoid the problem of local overfitting, the OLS algorithm can still be used but

proper selection of the width of the Gaussian kernel is required and the set of potential centres for

selection has to be generated from the data points. The problem of local overfitting is likely to occur if

a global basis is employed such as a polynomial function or a thin-plate spline kernel, so that the use of

regularization may be preferable in these cases.

Several observations can be drawn from these two simple examples.

i)

The comparison would favour one algorithm rather than another if the centres were fixed at a
certain number. Instead the number of centres should vary and the different optimal number of
centres for each different algorithm should be propetly selected. The comparison will then be more
meaningful. This applies not only to the number of centres but also to all the free parameters
associated with the algorithms such as the constant C in ROLSY.

The approximation functions constructed by ROLS? are less sensitive to the number of centres
selected after a minimal number of centres have been included in the model and
(i RERR! ]reaches 2 plateau for large values of k as seen from Figure 4. Hence ROLS? is less

=1

prone to overfitting. On the other hand, if the required number of centres of the OLS algorithm is
properly selected, the overfitting problem may also be avoidable.

Although the computational effort is the same for both OLS and ROLS? algorithms if the constant
C is known, in practical situations the optimal value of C is rarely known and this has to be

estimated by techniques such as cross-validation. Therefore the advantage gained by ROLS? in not

15




requiring to select the precise optimal number of centres is offset by the requirement to determine

the optimal value of C.
iv) The problem of local overfitting by the OLS algorithm can be avoided if local basis functions are

used with the width of the basis properly selected and the centres are chosen from the data.

The problems associated with the use of the OLS algorithm can be greatly reduced if the algorithm is
used properly. However it is expected that the performance (one step ahead prediction error on unseen
data) of the OLS algorithm may be worse than ROLS?. This is because the OLS algorithm is a subset of
the ROLS algorithm. By setting the value of C in equation (41) equal to zero in/(ﬁ'gisﬂ algorithm, the
OLS algorithm is obtained. The predictive capability of the four algorithms (support vector machines,
orthogonal least squares, zero-order regularised orthogonal least squares and first-order regularised
orthogonal least squares algorithms) on three well-know chaotic time series benchmarks, Henon,

Lorenz and Mackey-Glass time series are examined next.

The Henon equation is

X =14-x7+0.3x,_ (62)
A total of 1500 points of x, were generated and white Gaussian noise e; with zero mean and a noise
level of 10% was added to the values of X; to obtain a noisy y, as

Y, =X te (63)
The noise level is defined as the ratio of the standard deviation of the noise with respect to the standard
deviation of the clean noise-free signal in percentages. The first 500 noisy data points of y, served as

the training data set and the next 1000 noisy points were used as the testing set. The embedding

dimension m used was 4, that is f(}riI )= FOn YY), with m=4

The Lorenz equations are
Xp = lO(yT -5 )
Yr =28x; T Yr —Xp % o)

_ 8
ZT z_EZT +}CTyT

A fourth order Runge-Kutta algorithm was used to integrate the equations with a step size of 0.01. A

total of 1500 points of X; were collected with a sampling rate of 0.05. Zero mean white Gaussian noise

of 13% noise level was added to obtain the nojse corrupted outputs y,. Similarly, the first 500 noisy
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data were used as the training set with the remaining 1000 data points as the testing set. The embedding

dimension used was m =6 (Casdagli 1989 and Mukherjee et al. 1997).

The Mackey-Glass equation is

0.2
% ==0.1x, + — T8 (65)

10
1+ - i

with A=17.

A fourth order Runge-Kutta algorithm was used again to integrate the equation with a step size of 0.01
and 1500 data points were collected with a sampling rate of 6. Zero mean white Gaussian noise was
added to the data with a 23% noise level. The first 400 noisy points were used as the training set and

the next 1100 noisy points were used as the testing sect. The embedding dimension used was

m =4 (Casdagli 1989 and Mukherjee et al. 1997).

For the four different algorithms, the Gaussian kernel was used on all three time series. The free
parameters of each algorithm were varied and the (near) optimal values which gave the minimum one
step ahead mean squared error on the test set were selected. For example, the free parameters of the

support vector machines are 0 (Gaussian kernel width), € (e-insensitive loss zone) and C (the positive
constant). The smallest step size chosen for & was 0.05 and Ce {107I 16, i0f } Note that the

equations employed for the zero-order regularised orthogonal least squares algorithm were equation

(45) and equation (46). The results are presented in Tables 1, 2 and 3.

o B C No of centres Mean squared error on test set
SVM 1 [010] 10 297 0.0388
OLS 1 - --- 33 0.0399
ROLSY 1 -—- 10 30 0.0392
ROLS! 1 1010] 10 47 0.0387

Table 1 Comparison of the minimum one step ahead mean squared prediction error on the test set of the Henon time series
between Support Vector Machines (SVM), Orthogonal Least Squatres (OLS), zero-order Regularised Orthogonal Least

Squares (ROLSY) and first-order Regularised Orthogonal Least Squares (ROLS') algorithms. Note that ---- implies not
applicable,
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o £ C INo of centres Mean squared error on test set
SVM 23 1090 100 254 2.067
OLS 46 --- --- 16 2.157
ROLSY | 24 | - | 1000 33 2.059
ROLS! [ 28 | 0.40 | 100 48 2.071

Table 2 Comparison of the minimum one step ahead mean squared prediction error on the test set of the Lorenz time series
between Support Vector Machines (SVM), Orthogonal Least Squares (OLS), zero-order Regularised Orthogonal Least
Squares (ROLSY) and first-order Regulanised Orthogonal Least Squares (ROLSY) algorithms. Note that ---- implies not

applicable.
(o} £ i No of centres Mean squared error on test set
SVM 0.5 ] 0.0 10 400 0.005087
OLS 05 | - - 14 0.005119
ROLSY | 05 | — [ 100 25 0.005101
ROLS' | 0.5 | 0.0 | 1000 28 0.005087

Table 3 Comparison of the minimum one step ahead mean squared prediction error on the test set of the Mackey-Glass
time series between Support Vector Machines (SVMM), Orthogonal Least Squares (OLS), zero-order Regularised Orthogonal
Least Squares (ROLSY) and first-order Regulanised Orthogonal Least Squares (ROLS?) algorithms. Note that -—-- implies not
applicable.

From the above three Tables 1, 2 and 3, the performance of the one step ahead prediction error on the
test set of the orthogonal least squares algorithm was slightly inferior when compared to the other
algorithms for the three chaotic time series. The best algorithm in terms of the smallest prediction error
in cach case was less than 5% better than the orthogonal least squares algorithm. However the
orthogonal least squares algorithm has the fewest number of free parameters which implies fast training
times and the constructed models are usually much smaller (having fewer number of centres) than the
other algorithms which in turn produces fast testing times. In support vector machines, although the
number of centres is found automatically, this number is usually much larger than the other algorithms.
This shows that orthogonal least squares type algorithms can construct parsimonious models. Note that
the performance of the first-order regularised orthogonal least squares algorithm based on the one step
ahead prediction errors was very similar to support vector machines for all three cases but more concise

models were obrained.
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The iterated multistep mean squared prediction errors on the test set for the three time series using the

four different algorithms were computed and the results are shown in Figures 8, 9 and 10. As an

example, the two step ahead prediction can be calculated as

j\}i+2 = f(j)i-i-l’ yi""’ :Vi—m+2)

where y,,, is the one step ahead prediction.

(66)

From Figures 8, 9 and 10, the performance of the four different algorithms were comparatively similar,

especially for small step ahead predictions.

Mean squared
error

25

05

1

10 15 20

prediction step

Figure (8) The mean squared multistep ahead prediction error for the test set of the Henon time series using support vector

machines (crosses x), orthogonal least squares (asterisks), zero order regularised orthogonal least squares (circles) and first-

order regulansed least squares (crosses +) algorithms.
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Figure (9) The mean squared multistep ahead prediction error for the test set of the Lorenz time series using support vector
machines (crosses x), orthogonal least squares (asterisks), zero order regularised orthogonal least squares (circles) and first-

order regularised least squares (crosses +) algorithms.
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Figure (10) The mean squared multistep ahead prediction error for the test set of the Mackey-Glass time series using
support vector machines (crosses +), orthogonal least squares (asterisks), zero-order regularised orthogonal least squares

(circles) and first-order regularised least squares (crosses x) algorithms.

4 Conclusions

Using a simple noisy sine function example, it was shown that if the free parameters of the orthogonal

least squares and the zero-order regularised orthogonal least squares algorithms are fixed at a pre-
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specified value, the results obtained tend to favour one algorithm rather than another. To get a useful
comparison, the free parameters of each different algorithm should be properly selected. Proper
selection of the free parameters also reduces the overfitting problems associated with the orthogonal
least squares algorithm.

Support vector machines achieve good generalisation properties using the structural risk minimisation
principle. The orthogonal least squares algorithm uses the principle of parsimony to construct small
models and hence the constructed models are less likely to fit to the noise and may result in better
predictions. The zero or first-order regularised orthogonal least squares algorithms use the same
parsimonious principle but with slight modifications to the cost function. Both the square of the errors
and the square of the weights or the norm of the regression function are minimised. The performance
of the four algorithms was compared based on three well-known chaotic time series with moderate
noise levels (10~20%) and the results have shown that the prediction errors of the four algorithms
were relatvely similar. If the objective is to obtain minimum prediction error on 2 test set, then support
vector machines or regularised orthogonal least squares algorithms should be employed. Otherwise the
use of the orthogonal least squares algorithm is preferred since there are less free parameters to

determine and a very concise model is usually obtained.
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