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Abstract: The nonlinear discriminant function obtained using a minimum squared error
cost functdon can be shown to be directly related to the nonlinear Fisher discriminant.
With the squared error cost function, the orthogonal least squares algorithm can be used to
find a parsimonious descripdon of the nonlinear discriminant function. Two simple
classification techniques will be introduced and tested on a number of real and artificial
data sets. The results show that the new classification technique can often perform

favourably compared with other state of the art classification techniques.
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Nomenclature

X, Input sample .

C; Class I.

n Total number of input samples.

n, Number of input samples for class I.
w (Non)linear discriminant function.
L Between-class scatter matrix.

Sy  Within-class scatter matrrx.

m, Sample mean of class I.

(D() Nonlinear function.

F High dimensional feature space.

@ i

S Berween-class scatter matrix in feature space.
@ _ .

Sw Within-class scatter matrix in feature space.
®

m, Sample mean of class Iin feature space.
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k(-,') Mercer kernel.

d Degree of nonlinearity for polynomial kernel.

o Width of the gaussian kernel.

(04 Expansion coefficients of the discriminant function.

4 Classification function.

= Error vector.

Y Target vector.

Y, Target value for class i.

I, Column vector of 1, ones.

w, Threshold.

P Kernel matrix.

T nXxXn Orthogonal matrix.

A Upper unit triangular matrix. V/ {,,6% g HE::\*: tﬁ

© Weights of the classification function. I;@ ’ o\
g i =

1. Introduction

Fisher linear discriminant analysis is widely known and used in practice. However, linear discriminant
analysis is certainly not complex enough for most real world darta, hence it is important to develop
nonlinear discriminant analysis methods. Recently, kernel based algorithms (Mika et al. 1999) have been
proposed to define a nonlinear generalisation of the Fisher linear discriminant algorithm for pattern
classification problems. By reformulating the problem into dot product form in a higher dimensional
space and using kernels which satisfy the Mercer condition (Vapnik 1995), a closed form solution of
the nonlinear discriminant function has been obtained. More importantly, very promising results were
reported with the use of the nonlinear Kernel Fisher Discriminant (KFD) algorithm (Mika et al. 1999)
when compared with the other state of the art classification techniques. However one particular
drawback with the method is that the complexity of the nonlinear Fisher discriminant function scales
with the number of training data. This implies that the testing time is going to be very slow for
problems with a large number of training data and the computational cost for storing a large data set is

also going to be high.

By using a minimum squared error cost function for pattern classification problems, the resulting linear
discriminant is directly related to the Fisher linear discriminant (Duda and Hart 1973). With the use of a

nonlinear mapping of the input samples, the above relationship can easily be extended to the nonlinear

y
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case. Therefore the nonlinear discriminant function obtained by minimising the squared error cost
function is directly related to the nonlinear Fisher discriminant. Hence with 2 minimum squared error
cost function, the well-known Orthogonal Least Squares (OLS) algorithm (Chen et al. 1989 and Chen
et al. 1991) can be used to find a parsimonious description for the nonlinear discriminant function. In

addition the resulting algorithm is simpler to compute than the Kernel Fisher Discriminant (KFD).

The paper is organised as follows. In section 2 a brief review of the linear and Kernel Fisher
Discriminant (KFD) algorithms is given. The direct relationship between the nonlinear discriminant
obtained by minimising a squared error cost function and the nonlinear Fisher discriminant is shown in
section 3. A brief review of the orthogonal least squares algorithm is also given in Section 3. Two
simple classification methods will be introduced using the orthogonal least squares algorithm and these
two methods are tested on an extensive number of experiments and the results are presented in section

4. Brief conclusions are provided in Section 5.
2. Linear and Kernel Fisher Discriminants

2.1 Linear Fisher Discriminant Analysis

Given a set of n d-dimensional samples {X,,X,,....X,,X; € R?} with n,samples in Class 1 denoted
C,and n,samples in class 2 denoted C, then the Fisher linear discriminant (Duda and Hart 1973 and

Ripley 1996) is given by the vector W, (WE R?) which maximises the following function

w'S,w
J(w)=——7— 1
() w'S,w M
where S, =(m, —m,)(m, ~m,)" @)
and S, = > Y (x—m)(x-m,)’ 3)
i=1,2xeC;

S, is known as the between-class scatter matrix, Sy, is called the within-class scatter matrix and m, is

the sample mean of the respective classes defined as

m =— 3x C)

B =6
The reasoning behind making J(W)as large as possible is to look for a direction W which maximises
the difference between the two projected means in S, while minimising the variance of the individual
classes S, . Hence samples belonging to two different classes are well separated by projection onto this

optimal direction. This effect is illustrated in Figure 1. Furthermore, by assuming normal distributions
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and equal covariance for the two different classes, the resulting linear discriminant function is in the

same direction as the Bayes optimal classifier.

Figure 1. Projection of 2-dimensional samples onto a line. In direction W, the projected samples are well separated whereas

in direction W, the projected samples are mixed.

2.2 Nonlinear Fisher Discriminant Analysis

However, the usefulness of linear Fisher discriminant analysis Is somewhat limited in real world
problems and a nonlinear Fisher discriminant analysis would be highly desirable. A simple method of
obtaining the nonlinear discriminant is to first map the samples into some high dimensional feature
space F using a nonlinear functon ®(-), then linear discriminant analysis can be performed in this
feature space. The resulting discriminant function will be linear in the feature space F' but nonlinear in

the input space. Hence, the nonlinear discriminant function w € F can be obtained by maximising

w'SPw
Tl ©)
where 57 = (m}? ~m )(m? ~m?)’ ©)
and 5 = 3 3 (S(x)-m? )(@(x)-m?)’ )
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\
& _ 1 @ V --“
m’ =— Y o) ®) «
1, xeC, J‘

Eqn (5) is a well-known expression called the generalised Rayleigh quotient and a vector w which

maximises J(W) must satisfy
®

}/SWW = S?W &)

. 3 @ - :
where ¥ is a constant. Assuming that S, is nonsingular

w=(sy ) spw (10)
then eqn (10) can be solved by finding the eigenvectors of (S, )~ Sy . But this may not be necessary
since

Spw= (mf’ —m:_DmeD —mf)rw

= B(mf’ -m3 ) B is a constant. (11) l
Hence, the discriminant function w becomes '

w=(5p)" (m? ~m?) 12
Only the direction is important, so the constant is dropped in eqn (12). Unfortunately, the mapping
funcdon @(-)may not be known explicitly and if the dimension of the feature space F is very high or 4

infinite, eqn (12) may be difficult to use to solve for the discriminant function. To get around this

difficulty, the problem is reformulated to involve only the dot product of the training samples in the

feature space, that is ®(x, )- (D(x ; ) Furthermore, using Mercer kernels (Vapnik 1995) which satisfy
k(x' X'):q)(xf)'q)(xj) (13)

1? J

The problem can be solved without ever mapping explicitly to the feature space F.

The polynomial kernel k(x,,x ) =(x-x; +1)?, where dis the degree of nonlinearity, and the

—|IX. —X.
Gaussian kernel k(x,,Xx;) = exp{ ” ! ’"4 J, where O is the width are some typical kernels which

satisfy the Mercer condition.

Following (Mika et al. 1999), since the nonlinear discriminant function W& F , this must lie in the span
of all training samples in F according to the theory of reproducing kernels.

Hence w can be CXPfCSSEd as
w=Y ad(x,) (14)
i=1

After some manipulaton of equations, eqn (5) becomes
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a’ Ma
a’ Na

maximising J(a) = (15)

where M =(M, - M,)(M, - M,)" with M, :ii ¥ k(x,,x)

n; Jj=l xeC,

and N = Y K,(I-1, KT

i=1.2

K, is a nXn; matrix with elements (K,) , =k(x_,x, ) x,.x,€C,. Iis the identity matrix and 1, is

the matrix with all elements set to % )

Egn (15) can be solved by finding the leading eigenvector of N™'M and the projection of a new

sample X onto W is given by
®(x)-w= Y e k(x,.x) | (16)
i=1

However, the discriminant function obtained is only an optimal direction which separates the samples
from the two different classes. To solve the classification problem, an optimal threshold needs to be
determined. In (Mika et al. 1999) a linear Support Vector Machine (SVM) (Vapnik 1995 and Burges

1998) was employed to estimate the optimal threshold.

Although very promising results were obtained with the use of the Kernel Fisher Discriminant (KFD)

algorithm, there are a few drawbacks with this method. For problems with a large number of training

samples, it is very computationally intensive to find the leading eigenvectors of N™'M. Also, from eqn
(16), it can be seen that the complexity of the discriminant function scales with the number of training
samples. This is highly undesirable and this approach will be slow in the testing phase. Furthermore,
linear Support Vector Machines (SVM) or other classification techniques have to be used to estimate
the optimal threshold, this introduées an extra step into the method. The use of SVM also means
another extra parameter has to be controlled, the regularisation constant in SVM. Note that

regularisation has already been used in the KED algorithm by replacing N with N B
N,=N+ul (17)
where / is again the identity matrix and W 1s a positive constant.

The above mentioned problems can be avoided by employing a minimum squared error cost function
and using the OLS algorithm (Chen et al. 1991). The new algorithm that is produced using this

approach is discussed in the next section.
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3. Minimum Squared Error and the Orthogonal Least Squéres Algorithm

3.1 Minimum squared error cost function
Given a set of n d-dimensional samples {xl,xz,...,xn X, € R }, with no loss of generality, assume that
the first 1 samples are in class 1 denoted with values y, and the next n, samples are in class 2 denoted

with values y,. A nonlinear map (I)(-)is applied to the samples to give

—1 (D(XI) ] _el_ ’yl‘
1 ®lx ) [w :
el A e 18)
1 q)(xn,+i) | W : Ya
_I (b(xn) _ _enJ _yZJ
where w, is the threshold, w is the discriminant function and e;,i = 1,2...n are the errors.
In matrix form: XW+Z=Y (19)
The task is to find the classification function W which minimises the square of the error
JW)=|g|" =]y -xw| (20) e
A well-known solution is
X'Xw=X"Y 21)
T VlvT
w=(X"X)'X"Y 22)

3.2 Relation to nonlinear Fisher discriminant analysis

The linear discriminant function obtained using a minimum squared error cost function has been
shown to be directly related to the linear Fisher discriminant (Duda and Hart 1973). For the nonlinear
case, the same result should apply since a linear discriminant will still be performed in the feature space
and the nonlinearity will simply be detived from the nonlinear mapping ®(:)of the input data.

Following the linear case by setting ¥, =—and y, =——, it can be shown that the minimum
n, n,

squared error discriminant function W is directly related to the nonlinear Fisher discriminant.

Let u, be 2 column vector of n  ones and (I)(Xl)=[<1>(xl) @(an)]rand

1 i

D(X,)= [(D(an-i—l ) e D(x, )]r , 50 that the matrix X becomes

@(xz)} =




—<—
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Hence eqn (21) takes the form

L’&Tn ) fb(l;i )J[Z ggﬂ[”{cp& P (p(l;i )TJ _;iuu %)

T,
Since m?” is defined as
m’ = L ztb(x) (25)
n;‘ xeC;
and  Sp =Y 3 (@x)-m?® Jox)-m? ) 26)
i=1.2xeC;
Then eqn (24) can be simplified further to give
. rm? +f"’m§)) : {wn}[ . m} @7
("‘1mlcIJ +n2mg’) Sw +n[mf’(mf’) +”zm?(mf) w n(ml =g )
Solving eqn (27) gives
wo =—m® ) w | (28)
w=1(s; ) (m? -m?) @)

where 1)is a constant and m® is the total sample mean in the feature space and is defined as

] ]
nm, +n.m
=2} - 1 1 - 2 2 (30)

Clearly both eqn (12) and eqn (29) are similar except for an unimportant constant. This shows that the

nonlinear discriminant function obtained by using a minimum squared error cost function with

n n . . : ; : Bl oo
Y1 =—and y, =~-—1is identical to the nonlinear Fisher discriminant case.
n, 1,

However, eqn (22) cannot be used to solve for the classification function W since the matrix X may

not be known explicitly. Therefore, a similar trick of transforming the problem into dot product form is
required in this case as well. Substituting eqn (14) into eqn (18) and replacing ®(x, )- (D(x j) with
k(x;,x ;) gives

I ok(xx) o k(x,.x )Tw

+
|

(31)

1 k(x,,x,) - k(x,,x ) o, e e

n
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in matrix form
PO +Z2 =Y (32)
In this case the matrix Pis known explicitly and the problem is to find ® which minimises the

squared error. The solution for © can be obtained as
e=(P"P)'PTY (33)
Typically the matrix (PTP) is highly ill conditioned and one solution is to employ regularisation, where

the matrix (PTP) is replaced by (PTP + Al ) where Ais a positive constant. Therefore the threshold

and the discriminant function can be obtained by solving
o=(PTP+AI)'PTY (34)

Ifn n
Knowing the values of © and letting ¢ be the mid-value of L and —i,c = 5(——-——) , then the
n, n, n, N,

following decision rule will be obtained. For a new sample X, decide class 1 if w, + Za‘.k (x.x;)>c,

i=l
otherwise decide class 2. Hence there is no requirement to use an additional classification technique to

determine the threshold.

This formulation avoids the two problems in KFD, firstly in finding the leading eigenvectors of N ™'M 1
and secondly in using an additional classification technique to estimate the threshold. However this
approach is not pursued in this study since the solution obtained is not sparse, in the sense that all the
training samples are used to construct the classification function.

The answer in obtaining a sparse solution can be provided by using the well-known Orthogonal Least
Squares (OLS) algorithm. This new method of finding the classification function by using a Nonlinear

Fisher Discriminant function combined with the OLS algorithm will be called the NFD-OLS

algorithm.

3.3 The Orthogonal Least Squares Algorithm
A brief review of the Orthogonal Least Squares algorithm (Chen et al. 1989 and Chen et al. 1991) is
given below.
An orthogonal decomposition of P is given as
P=TA (35)

where A is an nXn upper unit triangular matrix.
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A= o (36)

and T is a nxXn matrix with orthogonal columns satisfying

T'T = diag{K,,K,.,...K,}, K, =11, (37)
Rearranging eqn (32) yields
Y = (PA)AG®)+E=Tg+E (38)

With a squared error cost function, the values of g can be obtained easily as

T

g = % (39)
and A@ =g (40)
Knowing A and g, © can be determined through back substitution.
To obtain the Error Reduction Ratio ( ERR ), consider the squared error cost function

J=E"2=(Y-Tg) (Y-Tg) (41)
Using eqn (39), the above eqn (41) can be simplified as

J=Y'Y-g'T'Tg (42)
Hence Error Reduction Ratio (ERR ) due to P, may be expressed as

ERR, = &t (43)

Y'Y
Using this ERR ratio, significant terms (columns of the matrix P) can be selected in a forward-
selection procedure (Chen et al. 1989, Chen et al. 1991). At the i iteration, the term which gives the
largest value of ERR, is selected and added to the previously selected (i-1) terms. The selection

procedure can be terminated using cross-validation. Empirical results in time series analysis have shown

that parsimonious models can be obtained using the orthogonal least squares algorithm.

3.4 A side note on other values of Y

Instead of putting y, = 2 and Yy = _ o differentiate the two classes, y, and y, can simply be
, i,

chosen as +1 and —1 respectively. The task is to find the underlying relationship, which maps the input

data to the correct classes. The following decision rule will be obtained. For a new sample X, decide

class 1 if w, + Eaik(x,xi) > 0, otherwise decide class 2. This is called the Simple OLS method.

i=1
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4. Experiments

The two spirals problem (Lang and Witbrock 1988) is chosen as the first experiment to test the new
Nonlinear Fisher Discriminant with OLS algorithm (NFD-OLS). The two spiral problem is a well-
known benchmark problem and the two dimensional nature of the problem allows easy visualisation of
the classification function learned by the algorithm. The kernel chosen was Gaussian with width equal
to 1. There were 194 training samples and the result is displayed in Figure 2. Clearly, the number of
nodes used to construct the classification function will play an important role. It can be seen that with
120 nodes, the classification function produces large margins between the decision function and the
training samples. This implies a good generalisation propetty. Note that in this two spirals example, the

KFD or SVM algorithms used all the 194 training samples in constructing the classification function.

(b) 90 nodes

(c) 120 nodes

Figure 2 Two spirals classification problem with 194 training samples. The kernel used is the Gaussian kernel with a width
equal to 1. In (a) the number of nodes chosen by OLS to construct the classification function was 50, whereas in (b) and (c)

there were 90 and 120 nodes respectvely.
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In order to test the usefulness of the Simple OLS and NFD-OLS algorithms thoroughly, an extensive
number of experiments were conducted on 13 artificial and real world datasets!. The datasets used in
(Mika et al. 1999 and Ritsch et al. 1998) were chosen. These datasets can be downloaded from
http://www.first.gmd.de/~raetsch/. For each of the 13 cases (except Splice and Image with 20
partitions), a further 100 random partitions were generated. In all cases, Gaussian kernels were used
and the width and optimal number of nodes chosen by OLS were estimated from the first five
realisations of the training and test samples using 5-fold cross validation. The width and the number of
nodes, which gave the minimum total classification error on the first five test sets were chosen to
construct the optimal classification function. This optimal classification function was then used on all
the 100 partitions and the mean classification errors of the test sets for the 13 cases are shown in Table
1

From Table 1, the results obtained using Simple OLS and Nonlinear Fisher Discriminant with OLS
(NFD-OLS) are quite favourable compared to the other existing classification methods. The Nonlinear
Fisher dicriminant with OLS algorithm is slightly superior than the other methods since this approach
produced the best results four times (highest) out of the 13 cases considered. Note that the number of
nodes selected by Simple OLS and NFD-OLS to construct the classification functions for the 13 cases
were in most cases less than 10% of the training data. The exact numbers of nodes used are shown in
Table 2. Hence a very economical solution was obtained using the OLS algorithm in pattern

classification problems and this produced short testing times and a saving in storage costs.

' The Breast Cancer dataset was provided by the University Medical Center. Inst. of Oncology, Ljubljana. Thanks to M.

Zwitter and M. Soklic for the dataset.
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Data Set | No of training samples | No of nodes chosen by | No of nodes chosen by
Simple OLS NFD-OLS
Banana 400 23 29
B. Cancer 200 7 0
Diabetes 468 5 10
German 700 8 8
Heart 170 9 3
Image 1300 280 200
Ringnorm 400 7 9
F. Sonar 666 9 10
Splice 1000 400 330
Thyroid 140 25 23
Titanic 150 10 11
Twonorm 400 10 10
Waveform 400 27 14

Table 2. Number of nodes chosen by the OLS algorithm to construct the classification function.

5. Conclusions

The nonlinear discriminant function obtained using a minimum squared error cost function is directly
related to the nonlinear Fisher discriminant. Furthermore, the threshold is obtained directly by the
algorithm without the need to employ an additional classification technique. With a minimum squared
error cost function, the well-known OLS algorithm can be applied to obtain an economical description
of the nonlinear classification function. Two new methods the Simple OLS and the NFD-OLS were
introduced to exploit these benefits.

These methods have been applied to an extensive number of real and artificial data sets. The results
obtained suggest that the NFD-OLS algorithm performs at least as well and often better than other
state of the art classification techniques. NFD-OLS achieved the best results 4 times out of the 13 cases
considered. Furthermore, very sparse descriptions of the classification functions were obtained for
most of the 13 cases studied in the experiments. This implies a very short testing time for new data.
Regularisation has not been used in this study. This could easily be employed in the algorithm by using
the regularised OLS formulation (Chen et al. 1996). Further improvements in the results may be
obtained using regularisation. Recently another variant of the Kernel discriminant algorithm (Volker

and Volker 2000) has been proposed, which is a more direct extension of the linear Fisher discriminant
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and which is a multi-class classifier. However the strength of the NFD-OLS algorithm lies in the ability
of the algorithm to obtain a very parsimonious structure for the discriminant function and the

algorithm is very simple to use with excellent results obtained.
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