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Abstract
A new method for the identification of nonlinear Coupled Map Lattice (CML) equations
from measured spatio-temporal data is introduced. The application of the algorithm is demon-
strated using chaotic two dimensional spatio-temporal patterns generated from interacting pop-
ulations and the resulting models are validated by computing the attractors and the largest
Lyapunov exponents.

1 Introduction

Complex spatio-temporal patterns can be observed in a variety of spatially extended systems
in fields as diverse as chemistry, biology, engineering and ecology [14, 5, 3, 10]. In recent years,
there has been a growing interest in the study of pattern formation phenomena driven in part by
the large number of practical applications which would benefit from understanding and possibly
controlling the formation of spatio-temporal patterns.

Normally the study of the formation and evolution of spatio-temporal patterns requires
a model. In most cases such a model would be derived based on theoretical considerations,
starting from the basic laws of phyvsics or chemistry for example. Very often however finding
the equations which describe the phenomena using an analytical modelling approach will fail
to produce a good model because either the interactions involved are too complex (when the
system is highly nonlinear for example) or when there are no established laws on which to base
the choice of the model (as in most socio-economic phenomena for example).

The Coupled Map Lattice (CML) has been originally introduced as a spatial counterpart
of lumped discrete dynamical systems and can be used to represent spatio-temporal phenomena
which is discrete in time and space. CML can also provide approximate finite-dimensional models
of infinite-dimensional systems which are normaly represented in terms of Partial Differential
Equations (PDE’s) [15, 2, 4]. The study of CML’s has revealed a wide range of spatio-temporal
behaviours including spiral waves, spatio-temporal intermittency and chaos [7, 8, 6, 9, 12].

This paper proposes a new approach of identifying a CML model from data that describes
the dynamics of the observed spatio-temporal system. The method is applied to identify al-
ternative equations for a CML model proposed by Solé and Valls (1992) to describe the the
spatio-temporal dynamics of interacting (predator-prey) populations. For different choices of
parameters this model exhibits various spatial patterns including spiral waves, chaotic and pe-
riodic dynamics. In the present study the CML model is identified in the chaotic domain and
then validated by computing local phase plots and the largest Lyapunov exponents.
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2 The CML Model

Consider the d-dimensional lattice 7 consisting of the set of all integer coordinate vectors i =
(T1y.0eyiq) € Z%. A general CML model defined over 7 can be writen as

zi(t) = fila™™zi(t), g ™u(t)) + (1)
fela ™™ z(1), g ™uy(2), s™ q ™ zi(1), s™uq ™ u,(t))

where 7™ is a (temporal) backward shift operator

and s™ is a multi-valued spatial shift (translation) operator

§Me — (Spi, §7Pe, .. &PE" Sﬂ-p?’) (3)
g™ = (spi, §TF L., &P s_p“mu) (4)

such that
q " zi(t) = (2i(t — 1), ey @it —ng)) (5)
q_nuui(t) = (ui(t - 1)3 ey ui(t - nu)) (6)

and

szﬂl'.,; = (l‘i+‘P§;‘ ‘ri—pév ey 331:__?:1:::, .L‘,H_p;ﬂ-:) (7)
sy, = (“iﬂ’i‘ Ui pl s wony Ygppiu s 'u,,:_p:iu) (8)

where p?, pl, € Z% are spatial translation multi-indexes.

In equation (1) f: Af=*™= x Y™*+™ _ ¥, is a differentiable map depending on the local
state and input variables at node i, z; € A} and u; € i) and on the variables at neighbouring
sites. The function f(-) is assumed symmetric or anti-symmetric with respect to the coupling
variables such that

—n oy —m
fc(q z"ri(t)vq uui(t)azi-f-p;:xi—p;s ves LigppMma, Ty _pMa, Uiy pl s Up_pl s "'1ui+p;”“sui—pz‘u) = (9)

tf(a = zi(t), g ™ ui(t), By by Bifpk yorn Bfsgity Tyt Ul o Uil womy Ui gy Uy oy (10)

u

Diffusion processes for example, are generally modelled using symmetric coupling functions
while anti-symmetric coupling is associated with the modelling of open flows. Note that the
CML described by equation (1) is very general and includes most common CML’s described
in the literature as special cases. In many examples for instance the coupling function f.(-)
depends only of the coupling variables. However, the inclusion of local variables (usually in a
multiplicative manner) in the coupling function ensures that the CMIL can represent a wider
range of nonlinear spatio-temporal phenomena.
Consider the CML model proposed by Solé and Valls (1992).

zi(t) = pei(t— 1)1 - zi(t - 1)]exp[-Buy:(t — 1)] + D1 Vay(t - 1)] (11)
yi(t) = z4(t = 1){1 — exp[-Byi(t — 1)]} + D2V2yi(t — 1) (12)




Here i = (i1,45) € Z% and

Viaalt-1) = s ipli-1)4 Tay 41,5 (T = 1) + 24, 551 (2 = 1) (13)
+ Ii1‘i2+1(t"l)—‘;l‘{l]i2(f—1)

This corresponds to the following spatial translation operator
2 = (5P, 7P, s 577 (14)
with p' = (1,0), p* = (0, 1).

This model can exhibit various spatial patterns including spiral waves, chaotic and periodic
dynamics. The data used for the identification was generated by simulating the CML model
with o = 4,8 = 5, D; = 0.001. Dy = 0.20 for 6000 steps over a 256 %256 lattice starting
from randomly generated initial populations with 50 initial seeds [14] and periodic boundary
conditions.

For this choice of simulation parameters the CML model is chaotic. Although in such
case no well-defined patterns are expected to appear, the mode] exhibits robust spiral waves
which move through the lattice. The largest Lyapunov exponent, calculated using the global
populations [14]

X(1) = 3 ayt) (15)
1€l
was used to characterise the dynamics of the system. The calculations were performed using
4000 points after 2000 transients. The value found was A ~ 0.01643 (assuming a sampling
frequency of 1Hz).

3 CML identification

It is important to consider first the measurement system for the spatio-temporal system de-
scribed by the CML model (1). In practice this concerns the number, spatial distribution of
the measurement sensors and the form of measurement equation associated with the state-space
CML model. Depending on the measurement function the resulting input/output equations
May or may not preserve the regularity of the CML model. This aspect has been investigated
in Billings and Coca (2000).

A reasonable assumption is that the same measurement devices are used at each spatial
location so that the measurement functions are identical at each lattice node. It is also natural
to expect that the measurement function will depend only on a finite number of state and
input variables in the neighbourhood of the measurement location. For simplicity here the
measurement functions are assumed to be

() = 24(t) (16)
#it) = wt) iez

The CML equations can be recovered in this case using only a finite number of measurement
locations. The identification of the CML equations (1) requires in fact only the output mea-

surements at the ith lattice site :L‘EN) ={zi(1), ..., 2:(N)}, yt-(N) = {%:(1), ..., %:(N)} and from
neighbouring lattice nodes sszN) = {s%z4(1), ..., s%z;(V)} and 52y§N} = {s®w(1), ..., s’y (N)}.
In this case the minumum measurement vector required is

z = (24, 8%2;, 11, 8%y) (17)




In practice, if the exact coupling variables are not known in advance. a larger measurement
vector which includes coupling variables from a larger neighbourhood can be considered initially.
The identification algorithm can then be used to select the true coupling variables.

If the measurements szn:l(N) and 52y§N) are viewed as inputs, equation (1) is equivalent to
a multivariable NARX model [11]

()= F2'(t = 1)y 2(t = my)y u(t — 1), oy u(t — ny)) (18)

where 2/(t) = (24(t), %(t)) and u(t) = (s%z;(t), s?4(t)). It follows that the lattice equations
(1) can be identified using a modified version [2] of the standard nonlinear system identification
algorithm [1].

Assuming that the form of the function f is not known, the input output equation can be
approximated from the available data using a known set of basis functions or Tegressors (g

2'(1) = Z Oror(2'(t = 1)y ey 2( = my), u(t — 1), ooy u(t — ny)) + e(t) (19)
keK

normally selected from a considerably larger regressor set M. In equation (19) © = {Or}rex
denotes the parameter vector. Typical regressor classes used in nonlinear system identification
include polynomial and rational functions, radial basis functions (RBF) and wavelets. In this
particular case the CML equations were approximated using polynomial functions. The selection
of the relevant terms in the model (structure selection) and the estimation of the model param-
eters was performed using the Orthogonal Forward Regression Algorithm which is detailed in
[1].

In order to enforce the symmetry of the coupling topology and of the coupling functions
during the selection stage, the polynomial regressor set has to be modified accordingly in order
to ensure the symmetry of the coupling function f. in (1). That is. the standard polynomial
regressors which include the input variables (which correspond to the coupling variables at site
i) are replaced with symmetric combinations of the respective polynomial terms.

The identification was performed using 1000 data points recorded after 2000 transients from
the site : = (10, 10) and the four nearest neighbours namely i — p' = (9,10), i + p' = (11,10),
i—p®=(10,9),i+p* = (10, 11) where as before p' = (1,0) and p? = (0.1). This corresponds to
the output vector given in (17). By setting n, = ny = 1, the model set consisted of all possible
polynomial terms corresponding to a fourth-order polynomial with four variables. In this case
the coupling variables have been replaced by the aggregated variables

2;(t=1) = Ti-1(t— 1)+ @51t — 1)+ 25 14, — 1) + Ti+14,(t—1)  (20)
FE=1) = 10t = D4 Yiipra(t — 1)+ gy m15(E— 1) + gi, 404, (2~ 1)

The final model identified from the data, which includes only 10 polynomial terms in each
equation, is detailed in table (3). Notice that the identification algorithm has determined that
ouly 10 polynomial terms are required in each equation. The algorithm has therefore selected
the most significant 10 terms from a total set of 70 possible model terms. The resulting model
is structurally different from the original model which included exponential functions. However,
the simulation results below show that the original and the identified CML models exhibit very
similar dynamics. The algorithm can also deal effectively with noise corrupted observations.
The identification of a stochastic equivalent of the CML model (1) has been addressed in a
previous study [4].




The estimated model was simulated for 6000 steps using the same set of initial conditions
as the original model. To avoid negative populations z;(¢) and i(t) are set to zero whenever
(1) < 0 and 3;(t) <0 respectively.

The identification data superimposed with the estimated model one-step-ahead predictions

at that location are plotted in Figure 1. The fact that the
accurate than for the variable, especially

y lattice after 6000 steps are shown for both t

3a.b) model.

Figures 4a,b show the phase-
i = (10, 10) site for the original
Lyapunov exponent computed fr

predictions for the y variable are less
in the lower part of the graph, is due to resetting
the value of y to zero whenever jt becomes negative. For comparison. snapshots of the z and
he original (Figs. 2a.b) and the identified (Figs.

plots computed using the prey and predator populations at the
and the estimated model respectively. In addition, the largest
om 4000 data points of the global pop

Aest = 0.0161, which is in good agreement with the original value of A = 0.01643

Output Terms Estimates [ERR); Std. Dev.
22t —1)° 0.18681E~3 0.76254E+0 0.16803E — 3
Zi(t —1)%(t — 1) —0.20811E+2 0.69328F — 1 0.15646E + 0
const 0.48373E -2 0.56845E—1 0.52838E — 3
yi(t — 1) —0.11080E -1 0.48190E -1 0.36903F — 2

z5(t) zi(t — 1)yt — 1)2 0.31777TE +2 0.16287E —1 0.10095F + 0
zi(t —1) 0.39354E+1 0.12106E—1 0.40197E — 2
zi(t — 1)° —0.38672E+1 0.23609E -1 0.58973E — 2
Tit=1)yi(t—1)  —0.18105E+2 0.76011E—2 0.35284F — 1
zi(t — 1)%y;(t — 1) 0.16419E 42 0.28314E -2 0.59870F — 1
zi(t— )gi(t = 1)*  —0.18773E+2 0.62059E — 3 0.13397E 40
yi(t—1) 0.62376E -2 0.81236E+0 0.75436E — 2
yr(t-1)*% 0.I9113E+0 0.11457TE+0 0.61833E — 3
const 0.50163E —2 0.34781E — 1 0.17464E — 2
yi(t —1)3 —0.99424E 10 0.21724E -1 0.44305E + 0

(1) zi(t = 1)%y(t — 1) 0.188654E + 1 0.10787FE — 1  0.33320E + 0
yi(t - 1)? 0.69317E+0 0.54517E—2 0.24352E + 0
zi(t - )yi(t - 1) 0.46409E+ 1 0.23674E—2 0.14133F — 1
zi(t — 1)yt — 1)° 0.85255E +1 0.96791E —3 0.44567E + 0
yi(t - 1) —0.80802E + 0 0.42886E—3 0.38111F — ]
zit = Dyi(t 1) —0.11015E +2 0.25205E — 3 0.76680F + 0

‘zi(t—1) = Togaa—1(t—1) 4 Tiyip+1(t— 1) + zy,
by:(z - 1) = yll.’-:—l(t - 1) 5 y11.12+1(t = 1) + ¥i,

—1,i3 (t . 1) + If1+1.i:(t - 1)
“1ia(t = 1) + 9, 41,5, (t — 1)

ulation was found to be




4 Conclusions

The results in this paper open up a new avenue of investigation in the study of spatio-temporal
systems. It has been shown that it is possible to extract the local evolution equation for a
spatially extended system using only measurements from a limited number of spatial locations
and, assuming the equations are space-invariant, to reconstruct the global dvnamics of the
system. This is extremely useful where practical limitations preclude access to the full state of
the system.

The identification procedure has been illustrated using a CML model of interacting (predator-
prey) populations which exhibits chaotic spiral waves. Phase-plots and the largest Lyapunov
exponent were used to compare the dynamics of the original and the identified models.
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Figure Captions

Figure 1: Original (circles) and Estimated Model (crosses) One-Step-Ahead Predictions: (a)
Z10,10(%) (b) ¥10,10(¢)

Figure 2: Original CML Model Predicted Populations: (a) Prey zi(t) and (b) Predator vi(t)

Figure 3: Estimated CML Model Predicted Populations: (a) Prey z;(t) and (b) Predator yi (1)

Figure 4: Local Attractors at site (10,10): (a) Original CML Model, (b) Estimated CML Model
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