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QUANTIFYING BOUNDED RATIONALITY:
MANAGERIAL BEHAVIOUR AND THE SMITH PREDICTOR

C.E. Riddalls and S. Bennett

ABSTRACT: The concept of bounded rationality in decision making and research on
its relation to aggregate system dynamics is examined. By recasting one such example
of a dynamic system, the Beer Game, as a Smith predictor control system a natural
measure of the level of bounded rationality in the system is derived. A stability
analysis is then employed to support and qualify the assertion that the level of
bounded rationality can adversely affect the aggregate dynamic behaviour of such
supply chains. The analytical basis of these calculations enables the quantification of
the potential cost improvements resulting from more desirable supply chain dynamics.
This approach is designed to inform the strategic investment decision to purchase
computational aids in order to overcome the level of bounded rationality in the
system.

1) Introduction

The disciplines of Management Science and behavioural psychology have produced a
lot of evidence supporting the assertion that there are severe limitations on the
thinking and reasoning power of the human mind [Simon, 1979; Hogarth and Reder,
1987]. Since many companies today still rely substantially on human decision
making, both with and without the use of computational aids, a method for moving
from the micro-level of the individual actor to the resultant behaviour of the macro-
system should enlighten understanding of undesirable system behaviour. A seminal
piece of work [Sterman, 1989] accomplished this task by generating the macro-
dynamics of a multi-echelon production-distribution system experimentally in a role
playing exercise nicknamed ‘The Beer Game’. An anchoring and adjustment heuristic
for stock management was found, statistically, to reproduce the actual dynamics well.
The parameter values thus calculated were taken as evidence of the cognitive
characteristics of human decision making in this scenario. A useful insight into the
causes of the dysfunctional performance of the overall system was achieved and
supply chain thinking was subsequently influenced by this work (see [Riddalls and
Bennett, 2000] and the references therein).

The complexity of Sterman’s discrete time model militated against the quantitative
analysis of the dynamic properties of the system and so the influence of model
parameters on system performance was gauged only through observations based on
the empirical results. Although these proved to be insightful in the context of
management science, they neglected some important factors. For instance, the effect
of different lead time delays was not examined. By considering a linear continuous
time delay differential equation model of the beer game we aim to redress this
analytical deficit and investigate the impact on the system dynamics of all the
pertinent model parameters. This work enables a more detailed quantification of the
influence of the various components of the decision making heuristic and their
interaction with external parameters like lead time delays.

In the next section we introduce the model postulated by Sterman and enumerate his
conclusions. These relate to the theory of bounded rationality [Simon, 1979] which
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we set forth, as related to this area. In section three we develop our delay differential
equation model of the beer game and recreate the characteristic dynamics observed by
Sterman, which thus serve to validate this approach. We then undertake a detailed -
analysis of the dynamic properties of the system and relate these back to Sterman’s
conclusions. Consideration of the model as a control system yields particular insight
since a little manipulation recreates the system as a Smith predictor, a well known
mechanism for controlling time delay systems [Marshall, 1979]. The new
interpretation of a particular model parameter as the degree of model mismatch in the
Smith predictor explains the poor system performance and supports the theory of
bounded rationality. Similarly, knowledge of general properties of Smith predictors
prompts simple remedies for improving the system’s performance.

In section four we use the ideas thus quantified in a method to reconcile cost based
trade-offs designed to improve the performance of the system by overcoming
bounded rationality.

2) The Beer Game and Bounded Rationality

Before the advent of the notion of bounded rationality classical economic theory was
underpinned by the assumption that human behaviour is rational and optimising
[Sterman, 1987]. The invariable axioms of omniscience and optimality attributed to
humans in effect obviated their consideration in aggregate system models which,
incidentally, were rendered much simpler as a result. One of the first researchers to
question this approach was Herbert Simon, a recipient of the Nobel prize for his work
in this area, among others [Simon, 1979]. Simon defines bounded rationality in the
following way [Simon, 1957]:

‘The capacity of the human mind for formulating and solving complex
problems is very small compared with the size of the problems whose solution
is required for objectively rational behaviour in the real world or even for a
reasonable approximation to such objective rationality.’

Behavioural Decision Theory (BDT) was developed to identify the cognitive
limitations in the perception and processing of information [Sterman, 1987]. It also
seeks to illuminate how decisions are made and highlight systematic deviations from
objective rational behaviour. What has become known as the Carnegie School of
Thought [Morecroft, 1983] contends that the behaviour of complex organisations can
only be understood by taking into account the psychological and cognitive limitations
of its members. However, Sterman points out that ‘Discovering and representing the
decision rules of actors is subtle and difficult’ [Sterman, 1987]. Direct experiment
offers a means of elucidating these rules and simultaneously creating a link with the
consequent aggregate performance of a system.

One such experiment, a stock management problem, is documented in [Sterman,
1989]. The stock management problem is an archetypal dynamic decision making task
in which the stock level (system state) is regulated about a desired target in response
to an external demand. Typically, there is a lag between the initiation of the control
action and its effect and some mechanism to account for this delay is desirable. In the
beer game a four echelon production-distribution system is simulated and each
echelon can be described in two parts, by (i) the equations governing the physical
stock and flow structure of the system and (ii) the decision rule used by the manager
to regulate the stock level. Using Sterman’s variables, the stock and flow structure
equations are
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whereS(t) is the stock level, which is the accumulation of the acquisition rate, A(t).,'
over the loss rate, L(t), all at time ¢. Losses arise from demands being placed upon

the inventory stock and acquisitions constitute arrivals of stocks from the suppliers. In
a manufacturing echelon acquisitions would comprise production of the finished
good. S(t,) and SL(t,) are the values of the inventory stock and supply lines at the

initial time,z,. The control variable is O(t), the orders placed on the supplier. One of

the consequences of bounded rationality is that humans recognise their computational
limitations and rely on rules of thumb to make decisions [Cyert and March, 1963;
Kleinmuntz, 1985]. Sterman postulates the following rule of thumb for determining
orders

0()= L)+ ars 18" (1)~ SO+ o, L (1) - SLO)} 3)
In addition, a cut-off comes in to effect when orders reach zero so they never go

negative. This rule of thumb is known as an anchoring and adjustment strategy
[Tversky and Kahneman, 1974]. It estimates an unknown quantity by first recalling a

known reference point, (the anchor, f,(t)) and then adjusting for the effects of less
salient factors whose calculation requires some ‘mental simulation’. In this case the
anchor is a forecast for demand based on recent levels. § *(t) and SL'(¢) are the
desired stock level and supply line, respectively. The parameters ¢t; and o, are the

proportions of the discrepancies between the actual an desired stock level, and the
actual and desired supply lines, respectively, that are fed back into oeders at any one
time. It is these equations which create a negative feedback structure in the model and
prompted the Authors’ consideration of it as a control system. Indeed, Morecroft
[1983] asserts that bounded rationality is embodied in the feedback structure of such
systems. Expounding this idea, Cyert and March [1963] observe that bounded
rationality causes decisions to be based on relatively few sources of information of
low uncertainty and which are the focus of symptoms. This creates feedback loops in
the sense that decision makers favour using information based on the current
conditions of the local environment.

In Sterman’s experiments groups of players constituting a four echelon supply chain
make ordering decisions in isolation based on local information. The simulation is
split into weeks and the experiment is thus regarded as discrete time system. The
parameters &, and oy , amongst others, are estimated for each echelon from the role

playing, which is carried out many times with different participants. Certain notional
costs are attached to holding stocks and to stockouts and players are told to minimise
these following a step increase in demand at the retailer echelon.

The trials are characterised by instability, oscillation, phase lag and amplification.
Inventory levels oscillate wildly and with increasing amplitude and lag away from the
retailer. This behaviour would be undesirable in a real system because it implies there
are alternating periods when inventory stocks are surplus to requirements, which
increases the storage and handling costs and risks of obsolescence. Similarly it
increases the risk of stockouts when inventory is depleted, thus damaging service
levels. For the factory echelon wildly varying production rates inhibit the most
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economical scheduling of jobs on machines. Similarly, uncertain demand may
increase the frequency of ordering, which in turn may increase costs if each order
incurs a fixed charge or quantity discounts are not exploited. Wildly oscillatory -
inventory levels and order rates also make the implementation of the rules of thumb
decision policy more difficult since volatility reduces the timeframe during which
data is accurate and thus hastens the calculation of policy decisions, which may

therefore be impaired.

Observations of the dynamics highlight a strong correlation between poor system
response (as outlined above) and the ratio of the two feedback parameters. Sterman
thus defines a new variable, f§ = o, /o which, through experimentation, is found to
be less than one. This is a plausible result since managers may be expected to pay
more attention to their inventory stock, which has a direct and immediate impact on
profitability, than on the supply line, which is often hard to perceive and quantify. In
an attempt to explain the influence B on the system dynamics Sterman interprets f3
as the fraction of the supply line taken into account by each decision maker. If =1
he asserts that subjects fully recognise the supply line and do not over order. If f§ =0
the amount of goods on order is ignored. This is an appealing interpretation since it is
intuitively reasonable that an imperfect accounting of the supply line should lead to
transient periods of over-ordering when demand increases and an eventual surfeit of
stocks which triggers cuts in ordering rates which are similarly disproportionate. This
would lead to oscillation and amplification (along the supply chain) of both ordering

rates and inventory levels. However, it is clear that o, not [, represents the

proportion of the supply line taken into account, by definition. If o, <1 but =1,

this does not mean the supply line is fully accounted for, merely that it is accounted
for in the same proportion as the inventory discrepancy. Hence when o, is small

managers are still prone to over-ordering, following the sequence of events
enumerated above, and yet, through observations of the beer game paper, if a; = o, ,
this does not lead to oscillations. An explanation is not intuitively accessible. Also,

Sterman offers no opinion on the influence of &, or the delay magnitude on the
dynamics. In the next section, by recasting the system as a Smith predictor we show
that B has a natural interpretation as a direct measure of the level of bounded
rationality evinced by decision makers. In this light, an explanation for its influence
on the system dynamics accrues from the well known theory of Smith predictors and
is consistent with the thesis that bounded rationality impairs the aggregate
performance of complex systems [Morecroft, 1983]. We shall also investigate
analytically the influence of «; on the dynamics and interactions with the magnitude
of delivery lead time delays.
Sterman’s statistical analysis supports the conclusion that in the absence of a calculus
to determine optimal inventory targets, subjects aim to anchor their stocks at their
initial levels. The resulting estimates (using (5)) of SL' are observed to be smaller
than that needed to sustain an adequate supply of arriving goods during the order lead
time. The desired supply line should be

S = 1@ (r) @)
where 4 is the estimated order leadtime and ®*(t) the desired throughput. Sterman

attributes low values of SL' to a misperception of time lags but, in fact, it is not clear
from the analysis whether this is instead due to inadequate estimates of ®*(¢), or a




combination of both. We shall see in the next section that f itself also has an effect
on this calculation.

3) Derivation of the Beer Game Model

In this section we develop a continuous time model of a single echelon in the discrete
time beer game system. Continuous systems are analytically more tractable than
discrete systems and under certain circumstances can approximate the behaviour of
the latter. We have run a beer game simulation model in its original form and a
continuous approximation and found the dynamics to be similar for systems with
significant delays. The nonlinearity of the beer game model constitutes an impediment
to progress in its analysis and understanding. Recognising this we shall adopt a few
tricks to circumvent the introduction of nonlinearities into our model and thus
facilitate analysis based on linear system theory. The first nonlinearity arises in (3)
when the order rate falls below zero, which is physically unrealisable. By simply
restricting our attention to high volume systems and defining the time unit in the ‘per
unit time’ variables (e.g. orders per unit time) to be sufficiently large we eliminate the
nonlinearity. Indeed, in all but one of the typical responses plotted by Sterman, order
rates never reach zero, even without using this device. The second nonlinearity
emanates from stockouts and a subsequent inability to supply all that is demanded of a
particular echelon. Negative inventory itself is acceptable if we define S (t) to be the
excess of stock on hand over backorders (orders not yet satisfied). Yet interruptions to
the supply line caused by stockouts constitute a nonlinearity which may instead be
mimicked by transient increase in the delay magnitude, thus preserving the linearity
of the system at a cost of introducing non-stationarity. We shall see in the next section
that stockouts can push the system into regions of instability.

To close the loop in the system we must define the time delay for which orders are
satisfied. In many supply chains this is contractually fixed between partners, but may
vary in the event of stockouts. This means that

Alt)=0(-A) (5)

where A is the delay between placing an order on an upstream echelon and receiving
it. Now the supply line can be measured thus

SL(t)= [O(s)ds (6)
-4
Using (4), (5) and (6), (3) becomes
O(r)=L(t)-a,S(t )+a5{2@ jo )ds} (7)

where we can assume, without loss of generality since the system is linear, that
S™ = 0. Now differentiate (2) and (7) then combine and use (5), to get

2000 o - Yol -2+ Ly 120
Or, equivalently, 5
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This delay differential equation forms the basis of the subsequent analysis of a single
echelon system. Figure two shows a representation of the system as a control system
in the Laplace domain.

L

Demand from downstream
2 echelon

Desired
mventory

Inventory

Goods on
order

F Demand transmitted to upstream echelon

ST

Figure 1. Representation of a single echelon in the beer game.

One of the most realistic ways to calculate both L and @ is thus:
o 1
Li)== IL(S)dS (10)
r =T

i.e. an average of the past T weeks of demand. Using the same method for both
calculations yields

d_gt(ﬂ = —aSLO(t)_ (as —Og )O(t _A)

(11)
+%(055L;{ +1+aST)L(r)—%(ocSLi +1)L(r -T)

Figure 2 shows the response of the system with the following parameters and various
combinations of ¢, and g, .

A =6 weeks, A =6weeks, T =10 weeks, 7 = 200 units.
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Figure 2. Dynamics of a single echelon in the beer game.

As one can see, the demand is a step function (as used by Sterman) of 20% of the
initial rate. Since the system is linear, the superposition principle ensures that step
functions can be used to approximate any integrable signal and so its choice is entirely
general and not calculated to achieve any particular kind of pathological behaviour.

The top graphs show the ‘optimal’ response, when o =a, =1, ie. each
discrepancy is entirely accounted for. Notice this simulation exhibits the swiftest
response yet the smallest peak and inventory depletion and no oscillatory behaviour.
Looking at all the responses one concludes that it is not the specific values of « and
O in isolation that cause oscillatory behaviour, rather their ratio, f3. Perhaps this is

why it is specifically defined by Sterman in terms of the other parameters. In each
case when o; =@ or =1, the response is swift and non-oscillatory. For smaller

values of ¢ the response is slower and the inventory discrepancy thus greater, yet
these effects are small compared to the behaviour engendered by even a small
difference between «; and g . In the top two graphs a discrepancy of f8=0.5

results in slight oscillation, but as this ratio decreases in the lower graphs to 0.25 and
0.33, so too does the amplitude of the oscillation. Sterman concludes that small values
of B reflect an incomplete accounting for the ‘supply line’ leading to transient

periods of overordering when demand increases and an eventual surfeit of stock




which triggers cuts in ordering rates which themselves are similarly disproportionate.
This leads to oscillation both in ordering rates and inventory levels. However, given

our assertion that o, itself, not f directly measures the level of accounting of the -
supply line (by definition), it is not intuitively clear why this disruptive behaviour
occurs irrespective of the particular values of o and o and is only sensitive to
their ratio. Given our interpretation, when «;, is small the manager is still prone to
over-ordering and yet if o, = g, then this does not lead to oscillation. In the next

section we shall quantify the influence of f through a stability analysis and offer a

consistent and intuitively attractive explanation for this that relates to the bounded
rationality of the decision makers.

4) Analysis of the Beer Game Model

The preservation of linearity in the beer game system enables the consideration of the
dynamics of each echelon in isolation with the understanding that the global dynamics
are composed additively of those of each echelon. The asymptotic stability of a single
isolated echelon in the beer game is determined by the unforced part of (9):
dO(t
# = -0 fO(t)- o (1- BO(t - 1) (12)
The stability properties of such a system were derived in [Bellman and Cooke, 1963]
for constant delays and [Niculescu et al., 1997] for varying delays, and result in the
following:
The system (12) is asymptotically stable independent of the delay magnitude (IoD) if

and only if f3 2%.
If, on the other hand, f <%, then the maximum delay for which (14) is
asymptotically stable is

B
arccos|
7 = (A_J, g Pe— T (13)
as4/1-2p7

for constant and varying time delays, respectively.

Contstant Delay Varving Delay

E &
& Y
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o= =
g 24
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i B

Figure 3. Stability regions for (12) and various parameter combinations




The stability regions for various ¢, and varying 8 are shown in figure 3, for both
fixed and varying delay systems, as the area to the right and below each curve. The
curves become straight lines when the system is stable IoD. It is apparent that S

plays the most important role in determining stability, especially stability IoD. For
small values of S the range of delays resulting in a stable system is severely

restricted given a particular @. When delays vary this range is reduced further as

shown in the right hand plot. We can conclude that for robust stable systems (i.e.
those which cope well with interruptions to the expected supply line), managers
should attach at least half as much importance to the supply line as the inventory
level. For good dynamic behaviour (i.e. swift response, no overshoot, small inventory
discrepancy) we have seen that systems with f =1 perform best and are ‘most’ stable
(i.e. furthest away, in the parameter space, from unstable systems). Having quantified
the significance, already qualitatively known, of [, we now offer an intuitive
interpretation of its role based on well known principles from control theory. Some
block diagram manipulation renders figure one as a Smith predictor control system as
shown in figure four [Marshall, 1979].

Desired l%s lL
4

inventory Inventory

»le- % > S

Process

Regulator

Figure 4. Single echelon as a Smith predictor system.

Smith developed a delay compensation technique in which the regulator (shown in the
left hand box in figure 4) uses a mathematical model of the actual process (shown in
the right hand box). What this means in our application is that the production manager
subconsciously uses his own cognitive model of the system to guide decision making.
When his cognitive model and the actual process are identical the time delay is
removed from the characteristic equation and control can be based on the delay free

part of the process (in this case a pure integrator, ys)' With this interpretation o

fulfils the role of the controller gain, which accords with its influence over the speed
of response, as demonstrated in figure 2. More importantly, f now has a natural
interpretation as the measure of the mismatch between the process model and the
model use by the regulator (i.e. subconsciously by the production manager). When
B =1 the two models are equal, but lower values of f signify a degree of mismatch.
It is well known [Marshall, 1979] that significant mismatch causes instability via the
introduction of a time delay component in the characteristic equation. Thus, contrary
to Sterman’s interpretation of [, we now see that it is a direct measure of the level of
bounded rationality inherent in decision making since it measures the difference




between the model of the process used for decision making and the actual process.
Furthermore, for this application, we have quantified and calibrated how bounded
rationality can lead to poor performance in a dynamical system, as outlined in -
[Morecroft, 1982]. Regarding the system in control theoretic terms, it is now apparent
why bounded rationality can be overcome by a regulating rule with a; =g : If

o, <1 reflects uncertainty over the supply line, then one way to compensate for this-

‘model uncertainty’ is to reduce the gain, o so that g = or f=1. This is a

standard procedure in control system design.
Returning to figure 4, the load disturbance, L(t) is compensated for in the usual way

with an additional input to the controller, L(% . However, unlike most Smith
hy

predictor regulation systems, ours demands a nonzero steady state error to ensure a
pipeline of orders which are not yet in receipt. Therefore an addition input, ﬁicf) is

required in the controller. Since we actually require a supply line of A® , we see that
low values of B affect desired levels for the supply line in exactly the same way as it
does their variations.

5) Overcoming Bounded Rationality

We have seen how bounded rationality impairs the dynamic performance of each
echelon in the beer game and have justified the choice of f as a direct measure of its

extent. Relating the stability characteristics of each echelon to f and the other system

parameters (figure 3) encourages the investigation of steps to overcome the level of
bounded rationality and so improve system performance. However, these steps may
be costly, perhaps involving training or the purchase of computational aids. So
managers may be forgiven for their reluctance to embark on such steps without an
idea of the potential rewards. As we shall see in one example, it may be that
managers’ existing rules-of-thumb are already suited to the cost structures in the
system and the other dynamic factors (like the delay length). This section aims to
indicate when change may be necessary and quantify the potential rewards and so
furnish managers with a dynamic supply chain trade-off methodology. It might seem
obvious from the preceding results that poor system performance can be mitigated
through steps which lead to an ordering policy with B =1. Since then bounded
rationality is eliminated and oscillations are suppressed. As we shall see, however,
although low values of f do reflect a mismatch between the manager’s mental model
of the supply chain and the actual supply chain, this may reflect genuine variability.
Furthermore, the particular cost structure of an echelon may favour slight oscillation
(in order to achieve a swift response) at the expense of more inventory costs.

The methodology proceeds as follows:

i) Estimate oy andag, .
ii) Locate parameter values on a stability chart.
i)  Simulate step response for alternative o; and @ and use stability chart to

rationalise best choice. Calculate cost improvement of this step response.
iv) Estimate cost of effecting improved parameter values.
V) Carry out cost trade-off.

10




Step (1)

o andcg (and thus ) may be calculated from historical data using least squares
estimation in much the same way as the beer game experiment. '

Step (ii)

Figure 5 shows the stability regions in the -, plane, as calculated from (13), for
various delay values. The utility of such a diagram lies in its qualitative description of
the current stability characteristics (point P, say) and possible improvement options
(indicated by the arrows) and therefore the potential for dynamic improvements. For
each system the degree of oscillation is most strongly influenced by the delay
magnitude and the proximity of P to the unstable parameter region (the grey area), as
measured by the ‘distance’d. The smaller the distance, the more oscillatory the
response, other things remaining equal. We illustrate this idea by simulating the step

responses in figure 6 of two systems with the same o, and B (as shown in figure 5)
but different delay values (A =4 weeksand A =10 weeks). Since d is much smaller

for the larger delay there is much more oscillation in inventory levels and orders made
and thus arrivals.

o5 =g By =ty

Oy g
0.8 0.89
0.6 0.6
0.4

0.4

0.21 0.24

02

Cig = Digy Qg = Crgr
14 1
5 %L
0.8 0.8
057 057
0.4 0.4
0.2 . 0.21
02 04 06 08 1
o

Figure 5. Stability regions for various delay values.
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Figure 6. Step responses for different delay values.
Step (iii)

The stability charts in figure 5 can be used to suggest the best ways to improve the
dynamic response of the system. On the basis of these indicators, this step quantifies
the cost improvements resulting from these suggestions. The system response depends
on the current parameter values and the delay magnitude. We have seen that one of
these parameters, f3, is a direct measure of the level of bounded rationality implicit in
decision making. In terms of system stability, high values of B are desirable since
then oscillation is eliminated. The cost implications are clear: Periods of excessive
and depleted inventory levels are reduced. Order variability is also reduced cutting
fixed order costs and transportation costs. Therefore we shall concentrate on steps to
increase 3 . On the stability diagram well behaved systems with high values of B (i.e.

near 1) can be found near the 45° line. There are various ways to increase f since it

is the ratio of two constituent variables. We now pick three of them and, in order to
evaluate the gains achievable, simulate the step response of each, attaching costs to
excessive and depleted inventory holdings as follows:

ta
Total cost = C = [ [e,u(S(¢))+ cou(- S (), (14)

o
where u is the unit step function, [tG,tm] is the time interval of the transient dynamics,
¢, is the cost penalty per unit per week of holding excess inventory (over zero,
without loss of generality) and c, is the cost penalty per unit per week of inventory
depletions. More complicated cost structures may be used, for instance by increasing
c, as a quadratic in S to penalise actual stockouts more than depletions below a

safety stock level. A term accounting order variability may also be explicitly included
since this affects fixed ordering and deliver costs. However (14) tends to account for
this implicitly since variations in inventory levels usually imply variations in orders
(since demand is a step response). Figure 7 shows the percentage cost change, over

12




the standard system response as shown in figure 6, resulting from 3 methods used to
increase . The top plots use the cost structure ¢, =1,¢, =2 and, for comparison, the
bottom plots use ¢, = ¢, =1. Note that the qualitative results are relatively insensitive
to the cost assumptions made and thus are primarily influenced by the changing
values of f. This supports the applicability of this methodology even when detailed
costings are unavailable. '
Decreasing o; slows the responsiveness of the system to demand changes. This may
be desirable when damping down oscillations but increases the risk of stockouts
through greater inventory depletions. The leftmost plots in figure 7 show that such a
policy marginally reduces costs for the system with the longer delay. Figure 5
demonstrates why: the distance, d, from the instability region increases, damping
volatility. The concomitant loss of responsiveness is partially offset because the
oscillatory nature of the original system (as shown in figure 6) contributes to the
responsiveness. This highlights the complex interactions between stability,
oscillations and responsiveness. Were the system at the point P’ , reducing o, would
prove even less effective since the large instability region (figure 5) implies that d

can only be increased marginally. Decreasing «; for the smaller delay system
increases costs because there was very little oscillation to start with (d is relatively
large and the delay magnitude small) and so all the additional costs emanate from a
greater inventory depletion. Reducing & can be regarded as a negative step since it

reduces the agility of the system. Since it delivers only small cost savings in some
instances, we do not recommend it.
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Figure 7. Percentage cost changes with different parameter combinations.
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A more obvious way to increase f is by increasing o, , the results of which are

shown in the central plots of figure 7. Again, for the longer delay, costs are reduced
since d is increased from a small value to a relatively large one and oscillations are
therefore diminished. However, for the smaller delay value, increasing «;, adds costs

to the step response of our standard system. Simulations show that again the small
amount of oscillation in the original response is eliminated but again this was quite
minor and its reduction has slowed the response speed thus incurring greater
inventory discrepancy costs. Put simply, the system with A =4 is behaving pretty
well to start with.

This conclusion is supported by the rightmost plots in figure 7, which show the effects
of increasing both «;, and oy whilst increasing their ratio, , until it is 1. For the

larger delay the original small value of d is increased substantially and hence
oscillation is eliminated, thus reducing costs substantially. However, for the smaller
costs actually increase slightly, for the reasons just noted. In his paper, Sterman
asserted that the optimum system parameters were both unity, since then all
discrepancies are fully accounted for in decision making. However, we have seen that
even for a relatively simple cost structure, there is a subtle trade-off between volatility
and the speed of response which implies that other parameter choices may be more
suitable. For real inventory systems fixed ordering and transportation costs may imply
that lower values of «; are more desirable. In the light of our interpretation of ¢ as

the controller gain in a control system, it is directly related to the responsiveness of
the system to varying demand. When o =1 the system corrects for inventory

discrepancies as fast as possible given the delay and other parameter values. However,
it may not be cost effective to follow a varying demand signal with a similar order
pattern if this implies placing more frequent orders (each perhaps incurring a fixed
charge) and increased transportation costs through having to deliver more one week
(perhaps requiring 2 lorries) and less the next (the lorry being half empty). Hence it
may be more cost effective to smooth orders and hold more safety stocks.

Step (iv)

Steps (i) and (iii) indicate, for a particular system, whether overcoming bounded
rationality has the potential to secure cost savings. We saw that for systems with
relatively small delays discounting both supply line and inventory discrepancies was
more efficient to an extent since it smoothed orders and inventory fluctuations whilst
retaining a degree of responsiveness. In a real system we could not tell whether these
parameter choices resulted from bounded rationality or the intuitive reasoning by
managers as the correct choice. It may be in this case that bounded rationality has
fortuitously resulted in acceptable behaviour. In any case, no action need be taken.

It is, however, intuitively reasonable that longer delays create more uncertainty and
that therefore more mental effort is required to generate desirable dynamics. In these
cases figure 7 shows that oy =ay =1 is the best parameter choice. Thus the
improvement option is to train staff to make decisions via the heuristic (3) and (4)
with these parameter values. The purchase of a computational aid to record
unreceived orders and perhaps carry out this calculation itself may be required
especially if there are many product lines to track.
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Step (v)

The cost trade-off is relatively straightforward. To link the current cost scenario with -
the potential benefits shown in figure 7, we need an estimate of the total current
yearly inventory costs of the company. Reducing these by the various percentages
indicated in figure 7, for different combinations of @ and o produces a yearly

saving which we can compare to the cost of effecting such a change as outlined in
step (iv). In this way one can calculate the yearly saving (if any) accruable by
overcoming bounded rationality. If there is no saving in year one it would be easy to
calculate over what period an investment might pay off.

The use of percentage cost improvements based on the step response is justified by
the observation that any demand signal can be approximated by a sum of step
functions and, since the system is linear, the superpostion principle ensures that the
system response is composed of the individual responses. When stockouts in the
upstream echelon significantly affect the supply line this can be incorporated in the
calculation by weighting the results with a step response using a longer delay. In the
absence of long term demand predictions, this is the best way to gauge the potential
benefits.

Example

Returning to the system with A =10 and observing that the lowest costs result from
o =a, =1, we make the following trade-off: Suppose the current annual inventory

cost is £10,000. It is postulated that bounded rationality can be overcome by the
purchase of a PC to record goods on order and calculate orders to ensure a steady
supply of goods. Figure 7 show that a step response cost saving of 20% can be
secured in this manner (using cost structure 1) therefore an estimate of the potential
inventory cost savings per year is £2000. If the cost of purchasing a PC and training
staff to use it is less than this amount then the investment may be expected to pay off
within a year.

6) Conclusions

By recasting the beer game as a Smith predictor control system we have found a
natural measure for the level of bounded rationality in the system. We then used a
stability analysis to support the assertion that the level of bounded rationality can
adversely affect the aggregate dynamic behaviour of the system. The analytical basis
of these calculations enabled the reconciliation of the trade-off calculation concerned
with overcoming the level of bounded rationality in the system and thus improving
supply chain dynamics.
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