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Abstract

Introduction: The American Heart Association (AHA)/American College of

Cardiology (ACC) guidelines for the classification of heart failure (HF) are

descriptive but lack precise and objective measures which would assist in

categorising such patients. Our aim was two fold, firstly to demonstrate

quantitatively the progression of HF through each stage using a meta-analysis of

existing left ventricular (LV) pressure-volume (PV) loop data and secondly use the

LV PV loop data to create stage specific HF models.

Methods and Results: A literature search yielded 31 papers with PV data,

representing over 200 patients in different stages of HF. The raw pressure and

volume data were extracted from the papers using a digitising software package

and the means were calculated. The data demonstrated that, as HF progressed,

stroke volume (SV), ejection fraction (EF%) decreased while LV volumes

increased. A 2-element lumped parameter model was employed to model the mean

loops and the error was calculated between the loops, demonstrating close fit

between the loops. The only parameter that was consistently and statistically

different across all the stages was the elastance (Emax).

Conclusions: For the first time, the authors have created a visual and quantitative

representation of the AHA/ACC stages of LVSD-HF, from normal to end-stage. The

study demonstrates that robust, load-independent and reproducible parameters,

such as elastance, can be used to categorise and model HF, complementing the

existing classification. The modelled PV loops establish previously unknown

physiological parameters for each AHA/ACC stage of LVSD-HF, such as LV

elastance and highlight that it this parameter alone, in lumped parameter models,
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that determines the severity of HF. Such information will enable cardiovascular

modellers with an interest in HF, to create more accurate models of the heart as it

fails.

Introduction

To model LV performance, quantitative data, such as pressure and volume, is vital

to ensure that any model is an accurate representation of reality. As such, a

computational model of the LV cannot be built on single parameters alone such as

left ventricular end-diastolic volume (LVEDV), subjective symptoms such as

dyspnoea, nor surrogate markers such as natriuretic peptides (NP’s) but direct

measures of the system being modelled, both anatomical e.g. volume and

physiological e.g. pressure.

Previous attempts to model the HF, and the effect of potential therapies, have

applied hypothetical haemodynamic states according to symptomatic New York

Heart Association (NYHA) class rather than actual patient data, from individuals

or populations. The NYHA class, whilst useful clinically, correlates poorly with

even non-invasive measures of LV performance [1, 2]. Current computational

models of HF, regardless of complexity, choose arbitrary parameters for the LV

such as reducing contractility by 50% or boundary conditions such as resistance

and compliance from healthy populations. Clearly, it is not just the ‘‘pump’’ that

fails during HF, but also the vasculature, among other systems, and each may

augment the decline of the other. The authors aimed to provide specific LV

performance and systemic vascular data on a population basis, to track the

progression from a healthy to a failing heart. In doing so, for the first time, give

the modelling community access to disease and severity specific variables derived

from real patients, to enable the creation of more accurate models.

In 2001, the joint American Heart Association (AHA)/American College of

Cardiology (ACC) guidelines categorised for the first time HF and its progression

in terms of pathophysiology (see table 1). This was intended to ‘‘complement’’ the

pre-existing NYHA functional classification and the development of HF, from risk

e.g. hypertension (Stage A) to end-stage e.g. requiring transplant (Stage D) [3].

Whilst the guidelines have subsequently been updated, the classification remains

qualitative and is often misunderstood [4, 5]. The addition of quantitative

measures for each stage could be used to more accurately chart the

pathophysiology and enable the development HF models based on objective

parameters. Such measures may also improve risk stratification and predict

response to clinical interventions. To date, attempts to categorize patients into

individual AHA/ACC stages have focussed on indirect measures, such as NP’s,

which nonetheless improve prognostication [6].

The authors wished to define quantitatively each AHA/ACC stage of HF and so

for the first time define the risk and the onset and progression of left ventricular
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systolic dysfunction heart failure (LVSD-HF) according to objective changes in

left ventricular physical properties represented by the left ventricular pressure-

volume loops. The choice of the pressure-volume (PV) loop is based on its direct

description of the performance of the LV in real-time and for reasons mentioned

above, quantifying LVSD-HF by other parameters such as LV volume or

symptoms is insufficient for modelling purposes.

For this study, we concentrated on the chronic LVSD-HF population based on

both pragmatic approach, and a more therapeutic consideration since only

patients with LVSD-HF have interventions that are associated with significant

impact on morbidity and mortality. There have been many studies looking at LV

PV loops in patients with heart disease, but this is the first time they have all been

collated, compared and modelling parameters derived. For comparision and

completeness, a healthy normal group (stage O) was created also, not contained in

the AHA/ACC guidelines,

Methods

PV loops

The methodology for PV loop acquisition has been described in detail previously

[7, 8]. Briefly, a specialised catheter is inserted via the femoral artery to the apex of

the LV cavity under fluoroscopy (see figure 1). Real-time measurement of

pressure is performed using a micro manometer on the catheter, and of volume,

using the conductance method. The conductance method refers to the usage of

linearly placed electrodes on the catheter, each measuring segmental volumes, this

utilises excitation and recording electrodes, the former generate an electric field,

and the latter measure a change in voltage proportional to resistance. A

mathematical formula is then used to calculate the total volume of the LV cavity,

which takes into account the distance between the electrodes and the blood pool

resistivity.

An online literature search of Pubmed, Web of Knowledge, Medline and

Google, using the search term ‘‘pressure volume loop’’ was conducted and the

references were studied to check that they met criteria to be included in the final

analysis (see figure 2).

Table 1. The American Heart Association/American College of Cardiology Heart Failure classification From Jessup et al. (2009) [4].

Stage Description Examples

A Risk of heart failure but without structural heart disease e.g. Hypertension

B Structural heart disease without signs or symptoms e.g. Previous myocardial infarction

C Structural heart disease with prior or current symptoms e.g. Patients requiring routine drugs

D Refractory heart failure requiring specialist intervention e.g. Heart transplant

doi:10.1371/journal.pone.0114153.t001
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Inclusion criteria

Studies with complete LV PV loops in adult humans in English.

(and) Studies representing any AHA/ACC stage including healthy normal

subjects.

(and) HF, if present, due to chronic LVSD-HF only.

Exclusion criteria

Diastolic HF or HFPEF.

HF secondary to an uncommon cause such as Chagas’ disease.

An unclear past medical, symptom or drug history, meaning HF stage was

vague.

No pictorial representation of an entire loop, such as a diastolic limb only.

Acquisition during experimental treatment only without a baseline measure

Of the papers identified, 97 were potentially useable, but only 31 met the

inclusion, and not the exclusion, criteria and so were included in the final analysis,

accounting for 203 patients [9–38].

Engauge digitizing software (http://digitizer.sourceforge.net/) was then used to

upload the graphical PV loop images from the original studies and convert them

into numerical data, as seen in figure 3 [39]. This freeware allows users to upload

a graphical image, such as a PV loop, in variety of formats such as a Joint

Photographic Experts Group (JPEG) file, and convert a pictorial image into

numerical data. After loading the file, the parameters of the axes (red crosshairs)

were chosen, with X corresponding to 80–280 ml and Y 0–150 mmHg

respectively. The PV loop is then digitised automatically (blue crosshairs), turning

the PV loop picture into a series of individual pressure and volume data points, 10

points per limb of the curve, giving a total of 40 data points for each PV loop. The

LV PV loops from each LVSD-HF stage were converted into digital values and

these were then tabulated and the mean for each calculated.

Figure 1. Combined pressure-volume catheter (in black) positioned in the left ventricular cavity. The
micromanometer can be seen at level 3 and the 6 electrodes (white markers) mapping the volume of each of
the 5 segments (reproduced with permission, from Steendijk et al. (2004)).

doi:10.1371/journal.pone.0114153.g001
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Figure 2. Flow diagram demonstrating inclusion and exclusion criteria for left ventricular pressure-volume loop studies. HFPEF 5 heart failure with
preserved ejection fraction, LV 5 left ventricle, LVSD 5 left ventricular systolic dysfunction, PV 5 pressure volume,

doi:10.1371/journal.pone.0114153.g002

Figure 3. Screenshot from Engauge - on the left, the pressure volume loop is seen, with red cross hairs denoting X and Y axes, and blue
crosshairs which correspond with the numerical values of pressure and volume seen in the table on the right. LV 5 left ventricle.

doi:10.1371/journal.pone.0114153.g003
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Modelling the PV loops

Various computational models exist in the engineering literature of the

cardiovascular system, from simple lumped parameter to more complex 3

dimensional models. The purpose of the lumped parameter models is to describe

the changes in pressure, volume and flow that occur over the cardiac cycle as a

function of cardiac performance and systemic afterload. This paper presents the

numerical values of the four parameters in the simplest possible representation of

the heart and systemic circulation; LV elastance (maximum and minimum), total

peripheral resistance and systemic vascular compliance, the components of which

are described below. The progression of LVSD-HF is thus expressed in terms of

the evolution of these four parameters. Furthermore it is suggested that the values

of the components that represent the systemic afterload might be used to

determine appropriate boundary conditions for the modeller who is interested in

using such representations for complex 3D models of the left ventricle, which still

rely on a specific afterload for the LV to ‘‘push’’ against.

A lumped parameter model represents complex systems such as the

cardiovascular system as a hydro-electrical analogue. In particular, the Windkessel

model (meaning ‘‘air chamber’’ in German) contains a two element afterload, a

capacitor representing the elastic property of the large arteries which determines

systemic vascular compliance (C) and a resistor representing the frictional loss in

the smaller vessels e.g. arterioles which determine the total peripheral resistance

(R). The LV is represented by a variable elastance (E) model, where by the LV

pressure is a function of the LV elastance and the change in LV volume from its

resting state, in this model E is represented by 2 values, Emax being representative

of peak systolic LV contractility and Emin being representative of end diastolic LV

stiffness. Using software such as OpenCell, (http://www.cellml.org/tools/opencell)

such models can be run and the input variables of E, R and C manipulated, for

example, to model hypertension one could reduce the compliance and increase

the resistance of the vasculature, whilst leaving the value of E unaltered. The

resulting outputs of LV pressure and volume can be exported to a database,

extracted from one cardiac cycle and then converted into a PV loop.

For this study, a lumped parameter model with a variable elastance LV and 2

element (R and C) Windkessel afterload was chosen to model the LV in LVSD-HF

[40]. It was chosen due to its elegance in representing the cardiovascular system,

simplicity in manipulation, low computational demands and experience within

the research group. This was downloaded from the CellML (http://www.cellml.

org/) model repository, which is a free to access store of computer based

mathematical models, and run using OpenCell, an open source platform for

working with CellML models, see figure 4 [41]. In this model the left atrium (ELA)

and left ventricle (ELV) are represented by variable capacitors to model the

pumping action of the left side of the heart, the mitral (mi) and aortic (ao) valves

are represented by diodes to model unidirectional flow, the total peripheral

resistance by a resistor, systemic vascular compliance by a capacitor and blood

vessels by wire allowing for flow of electrons, representing the flow of blood.
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To model the mean AHA/ACC PV loops, the Matlab (Mathworks, MA, USA)

optimisation toolbox was used to find the combination of parameters that best

fitted the data. This toolbox enabled running the lumped parameter model as an

iterative process, whilst varying each variable (Emax, Emin, R and C) until the

best-fit model for the patient derived mean LV PV loop for each stage was created.

The resulting model PV loop data was exported to a spreadsheet and compared

against the mean loops (see below).

Statistics

Statistical analysis was carried out using Microsoft Excel 2010 software (Microsoft,

CA, USA). Parametric data is given as mean (¡ SD). Comparison of data between

LVSD-HF stages using an unpaired 2 tailed Students t-test and p values of ,0.05

were considered significant.

Results

Mean PV loops

The majority of the patients making up each category are males in their late fifties

(see table 2). Some AHA/ACC LVSD-HF stage groups have more patients than

others and group A is dominated by ischaemic heart disease (IHD), rather than

other risk factors such as obesity or diabetes. However, there is a balanced

distribution of LVSD-HF aetiologies in both groups C and D, with both ischaemic

Figure 4. Schematic diagram of Zero-D model of the cardiovascular system, with the heart comprised
of variable capacitors representing elastance of the LA (ELA) and LV (ELV) and the aortic (ao) and mitral
valves (mi) by diodes. The systemic loop is comprised of a systemic arterial compliance represented by a
capacitor (CV) and total peripheral resistance by a resistor (RV).

doi:10.1371/journal.pone.0114153.g004
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and idiopathic dilated cardiomyopathy (DCM) accounting for approximately

50% each.

Figure 5 demonstrates all of the individual patient loops together with the mean

loops from each stage. As one can see from figure 6, there is a conformational

difference not only between all stages O-D but also between those asymptomatic

or at risk groups A-B and those in symptomatic LVSD-HF groups C-D. Table 3

shows that as one progresses from normal LV function to symptomatic LVSD-HF

due to left ventricular systolic dysfunction: the LV volumes and diastolic pressures

rise, and the stroke volume (SV), ejection fraction (EF%) and systolic pressure

fall. Furthermore, the maximal elastance of the LV falls, as the disease progresses.

For clarity, we have just shown the raw and mean loops from one stage, AHA/

ACC D (figure 7). It is evident that even within AHA/ACC stages there is

individual variation, both in terms of LV pressure and volume. Figure 8

demonstrates the standard error for each of the PV points derived from patients in

this stage, reflecting this large spread. Table 4 demonstrates, that there is no

statistically significance differences between stages O and A or B, but together they

are significantly different from stages C and D in all variables, other than other

than minimal elastance. There are no significant differences between stages C and

D.

Modelled PV loops

For the modelled PV loops (see figure 9) there is a more accurate fit for the loops

representing the earlier AHA/ACC LVSD-HF stages, which reduces as the LV

contraction deteriorates and the stage progresses. Table 5, shows how the

modelled LV elastance falls from a normal LV to end-stage HF due to LVSD; the

volume of the LV increases but yet the resistance and compliance of the systemic

vasculature remain unchanged.

Table 6 demonstrates, that there is no statistically significance difference

between model parameters between stages O and A or B, but they are significantly

different from stages C and D in Emax only. There were no significant differences

between stages C and D.

Using Matlab (Mathworks, MA, USA), we compared the area error for the

modelled loops to the mean, to give a measurement of accuracy (see table 5 and

figure 10). This method compared the area occupied by the mean PV loop

derived from the patient (white) data against the mean PV loop created from the

lumped parameter model (black) to give an overlapping area (grey). Because the

modelled loops are based on mean data, modelling the size, rather than the shape

of the PV loops is important. Thus we compared the overlapping area of the mean

and modelled loops as a measure of closeness of fit against that area which did not

overlap. The area, which was not overlapping e.g. the error, was calculated as a

percentage of the total, giving an overall mean error for all stages of less than 10%.

Comparing the mean and modelled PV loop data statistically; there were no

significant differences at any stage (not shown).

Closing the Loop
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Table 2. Demographic information on the patients comprising the left ventricular pressure volume loops.

AHA/ACC HF Stage O A B C D

Demographics Number of patients Total population 20 144 88 62 129

Patients with loops 2 65 6 42 92

Gender % male 75 65 77 88 84

Age mean 29 56 59 60 58

Aetiology HTN % 7

IHD % 93

MI % 100

Ischaemic DCM % 50 54

Idiopathic DCM % 50 46

HTN – hypertension, IHD – ischaemic heart disease, MI – myocardial infarction, DCM – dilated cardiomyopathy.

doi:10.1371/journal.pone.0114153.t002

Figure 5. Graph showing the progression of HF by individual PV (thin, pale lines) and averaged (thick, dark lines) loops for all the American Heart
Association (AHA)/American College of Cardiology (ACC) heart failure (HF) stages including stage O (blue), A (red), B (green), C (yellow) and D
(purple).

doi:10.1371/journal.pone.0114153.g005
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Discussion

This is the first meta-analysis of all of the existing literature on PV loops in LVSD-

HF, stratified by AHA/ACC stage. This study demonstrated that the pressure-

volume data in the literature supports the existing theoretical ACC/AHA

physiological paradigm for LVSD-HF, whereby as the left ventricle fails, it dilates.

Thus, the contractile force is impaired and the volume it ejects with each beat is

reduced. This study showed quantitatively the changes between each AHA/ACC

stage. As the AHA/ACC stages are descriptive and qualitative, particularly stages C

and D, it is remarkable how the stages could be delineated quantitatively in this

study. Indeed, it demonstrates the strength of the EF, although typically used in

echocardiography or cardiac magnetic resonance, as it is the only variable in the

patient data, that is statistically and significantly different across all the stages,

other than between O and A.

For the first time, a LPM has been used to model all the existing PV loop data

across the entire spectrum of heart disease, from healthy normal individuals to

patients with end-stage LVSD-HF. The model, whilst simple, performed well, with

Figure 6. Graph showing the progression of HF by mean PV loops for all the American Heart
Association (AHA)/American College of Cardiology (ACC) heart failure (HF) stages including stage O
(solid black diamonds), A (black crosses), B (white circles), C (solid black squares) and D (white
triangles).

doi:10.1371/journal.pone.0114153.g006

Table 3. Mean left ventricle parameters for each stage of heart failure (with standard deviation in brackets).

AHA/ACC HF Stage O A B C D

LV parameters LVESV (ml) 48 (21) 66 (52) 93 (48) 166 (61) 210 (96)

LVEDV (ml) 138 (7) 154 (33) 161 (49) 237 (62) 273 (98)

SV (ml) 89 (14) 88 (29) 68 (23) 71 (21) 63 (30)

EF (%) 0.65 (0.01) 0.57 (0.10) 0.45 (0.16) 0.32 (0.10) 0.25 (0.10)

Elastance (mmHg/ml) 2.23 (0.26) 2.27 (0.29) 1.32 (0.73) 0.63 (0.36) 0.55 (0.23)

Stiffness (mmHg/ml) 0.17 (0.01) 0.09 (0.06) 0.10 (0.03) 0.06 (0.04) 0.08 (0.04)

LV 5 left ventricle, LVESV 5 left ventricular end systolic volume, LVEDV 5 left ventricular end diastolic volume, EF 5 ejection fraction.

doi:10.1371/journal.pone.0114153.t003
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a mean error of less than 10% and gives insight into how the heart, and the

systemic vasculature fail.

The lumped parameter model is true in physiological sense. Predictably, the

pump function of the left ventricle deteriorates as LVSD-HF progresses, the left

ventricular chamber dilates, the afterload and plasma volume increase, which will

affect both R and C. The pressure-volume loops showed each stage as expected,

thus: Stage O is indeed healthy, with normal left ventricular parameters that we

would expect from a disease-free population. Patients in Stage A, the vast majority

of whom have IHD, the systolic pressure rises reflecting increased afterload and

the EF% and SV fall. However, all these parameters are still within normal limits.

Following an ischaemic insult to the myocardium in Stage B, there is a rise in

LVEDP reflecting increased stiffness, a fall in systolic pressure due to impaired

Figure 7. Graph showing mean pressure volume loop for American Heart Association (AHA)/American
College of Cardiology (ACC) heart failure (HF) stage D (white triangles) and the spread of the raw loops
sourced from the literature (grey lines).

doi:10.1371/journal.pone.0114153.g007

Figure 8. Graph showing mean pressure volume loop for each American Heart Association (AHA)/
American College of Cardiology (ACC) heart failure (HF) stage (shown as white triangles) and
standard error (shown black lines).

doi:10.1371/journal.pone.0114153.g008
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contractile force and corresponding reduction in both the ejection fraction and

the stroke volume. What is somewhat surprising is that whilst there is an increase

in volume from stage C to D, both the systolic and diastolic pressures rise. This is

not necessarily surprising as the process is not a simple mechanical process but it

reflects the contribution of the compensatory mechanisms driven by the

sympathetic drive and by the endocrine responses driven by the rennin-

angiotensin-aldosterone system as well as the sympathetic system.

The patients in stages A-B are asymptomatic from the LVSD-HF viewpoint, this

is despite an increase of R and C, and decrease in LV Emax, by 60% (relative to

Stage O). However, the remaining contractile force is sufficient to meet the

demands of the body. The difference between the asymptomatic patients with

structural heart disease (Stage B) and those with symptoms of (Stage C) is the

reduction in LV Emax by a further 50%. The difference between symptomatic and

Table 4. Statistical comparison of parameters from the patient data for each American Heart Association/American College of Cardiology heart failure stage,
using 2-tailed Student’s T-Test.

AHA/ACC HF
Stage Parameter Unit O A B C D

O LVEDV (ml) p50.31 p50.27 p,0.05 p,0.05

LVESV (ml) p50.22 p50.13 p,0.01 p,0.05

SV (ml) p50.49 p50.13 p50.11 p,0.001

EF (%) p50.19 p,0.05 p,0.001 p,0.001

Emax (mmHg/ml) p50.48 p50.05 p,0.001 p,0.001

Emin (mmHg/ml) p50.29 p50.19 p50.08 p50.39

A LVEDV (ml) p50.37 p,0.001 p,0.001

LVESV (ml) p50.05 p,0.001 p,0.001

SV (ml) p,0.05 p,0.01 p,0.001

EF (%) p,0.01 p,0.001 p,0.001

Emax (mmHg/ml) p,0.05 p,0.001 p,0.001

Emin (mmHg/ml) p50.47 p,0.001 p50.21

B LVEDV (ml) p,0.01 p,0.01

LVESV (ml) p,0.01 p,0.001

SV (ml) p50.39 p,0.001

EF (%) p,0.01 p,0.001

Emax (mmHg/ml) p,0.01 p,0.001

Emin (mmHg/ml) p,0.001 p50.29

C LVEDV (ml) p50.09

LVESV (ml) p50.08

SV (ml) p50.40

EF (%) p,0.05

Emax (mmHg/ml) p50.38

Emin (mmHg/ml) p50.18

AHA 5 American Heart Association, ACC 5 American College of Cardiology EF 5 ejection fraction, LV 5 left ventricle, LVESV 5 left ventricular end systolic
volume, LVEDV 5 left ventricular end diastolic volume, SV 5 stroke volume.

doi:10.1371/journal.pone.0114153.t004
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refractory LVSD-HF is a further modest (13%) reduction in Emax (which

translates into an absolute fall of 75% compared to Stage O). This is an important

observation that illustrates the delicate tipping point between physiological

compensation and decompensation. Indeed, as seen statistically, stage C and D

were not significantly different from one another, but they were on almost every

single variable compared to stages O-B. This information, whilst logical and

perhaps inferred, was previously unknown. Also, there was no significant

difference between any of the groups in Emin, representing LV end-diastolic

stiffness, as one might expect, as this was a study investigating LVSD-HF, not

HFPEF, although diastolic dysfunction can co-exist with systolic.

Importantly, the creation of the lumped parameter model variables for the

various LVSD-HF stages (see table 4), will satisfy both the academic and clinical

communities. From simple lumped parameter to 3D models of the LV, all use pre-

defined boundary conditions, such as elastance, resistance and capacitance,

regardless of their complexity. From a clinical perspective, a model of the failing

heart, should utilise as much patient derived data as possible, not simply use

arbitrary measures. From a modelling perspective, a model must be based on

robust, repeatable and high fidelity measures of the system one seeks to represent,

not symptoms or biomarkers. For the first time in LVSD-HF, this novel work

enables both parties to use data that is academically rigorous, clinically

meaningful and enable the creation of patient and disease specific models.

Depending on the stage of the LVDS-HF, the modellers can choose the variables

to fit their theoretical cohort.

Previously, it was felt that the LV afterload, comprising total peripheral

resistance and systemic vascular compliance had an important role in modelling

the LV performance accurately. However, this body of work, comprising the

largest cohort of LVSD-HF models based on real patients to date, demonstrates

there is no significant different in compliance or resistance between even healthy

normals and end-stage. This is important as it demonstrates, that in LVSD-HF

and in this this model at least, the most important factor is Emax or peak

Figure 9. Graph showing the progression of heart failure by mean pressure volume loop for all
American Heart Association (AHA)/American College of Cardiology (ACC) heart failure stages from
O-D (various markers) along with the modelled loops (solid black lines).

doi:10.1371/journal.pone.0114153.g009
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contractility of the LV. Of course, in reality, it is well known that increased

afterload on the heart, due to diseases like hypertension, leads to increase LV wall

shear stress, left ventricular hypertrophy and if untreated LVSD and eventually

LVSD-HF. Afterload and compliance will also be influenced by other disease

processes and medications, which were impossible to control for and very few of

this patient cohort, particularly in stage A had hypertension. Our findings

however, further strengthen the importance of using load-independent, repeatable

and robust measures of LV performance such as elastance when modelling LVSD-

HF.

There is wide distribution of the PV loops within each stage, as demonstrated in

Stage D by figure 6 (other stages are similar, but for brevity they were not shown),

which means that there is difficulty stratifying the disease condition based on

current measures of LV function, such as LVEDV or SV. The mean loops from

stages B-C would also fit within the data range of stage D and the AHA/ACC

classification. This probably due to the lack of standardisation of LV volume

against body surface area e.g ml/m2 as undoubtedly in a cohort of over 200

patients, there will be large variations in patient size and anatomy. Hence, there is

overlap amongst the disease stages and accounts for the non-significance

difference in LV volume between the 5 stages. This further highlights the

importance of objective differentiation of patient LVSD-HF stages, when creating

models, rather than being based on the patient’s subjective assessment (although

the latter is clinically important) and objective echocardiographic measurements

used in current clinical practice.

Future work

It would be interesting to compare the PV loops of patients with HF of different

aetiologies, such as ischaemic versus idiopathic DCM, and to model the effects of

various therapies on the different parameters, such as cardiac resynchronisation

therapy (CRT). Furthermore, comparing those PV loops of patients with different

isolated risk factors for HF, such as obesity or essential hypertension or with

differing structural heart diseases such as asymptomatic aortic stenosis or left

ventricular hypertrophy to see how they progress from symptomless risk to

symptomatic HF would also be of interest. Unfortunately, such data are not

Table 5. Lumped parameter model variables and calculated error for each stage.

Parameter Unit AHA/ACC HF Stage

O A B C D

Emax (mmHg/ml) 2.50 2.20 1.14 0.55 0.52

Emin (mmHg/ml) 0.08 0.06 0.15 0.04 0.06

LV Volume (ml) 468 522 771 579 726

Resistance (mmHgNs/ml) 1.15 1.51 1.50 1.65 1.58

Compliance (ml/mmHg) 3.19 2.90 5.34 3.87 4.33

Percentage error (%) 7.5 3.0 7.5 15.0 10.6

doi:10.1371/journal.pone.0114153.t005
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currently available. More PV loops are needed to inform stages O and B, as the

mean loops and therefore the models, are based on a small number of cases.

However, it is unlikely that ethical approval for invasive PV loop analysis would

be granted for healthy subjects.

Drawbacks

Most of the information given about patients was not specific to the loop and so

we were unable to control for age, body mass, sex, medications and other relevant

co-morbidities (both cardiac, such as mitral regurgitation and non-cardiac, such

as renal failure), which could have an impact on the loop shape, size and position

[42]. Some curves were averaged already from a patient population (hence the

number of patients represented is greater than the number of loops) and what

may have been AHA D in previous decades, may be considered AHA C today. We

could not control for any differences in methodology across the papers. Most of

the PV loops are from middle-aged, probably white, male patients, reflecting the

fact the women are under-represented in HF clinical trials. We should not assume

women, ethnic minorities, or patients with conditions not represented e.g.

obesity, will be the same. As can be seen from figure 6, averaging the means that a

lot of the raw data is lost and the curves smoothed accordingly, thus a real patient

Table 6. Statistical comparison of the lumped parameter variables for each American Heart Association/American College of Cardiology heart failure stage
model, using 2-tailed Student’s T-test.

AHA/ACC HF
Stage Parameter Unit O A B C D

O Emax (mmhg/ml) p50.76 p50.81 p,0.001 p,0.001

Emin (mmhg/ml) p50.71 p50.65 p50.98 p50.77

LV Volume (ml) p50.76 p50.81 p50.17 p,0.001

Resistance (mmhgNs/ml) p50.06 p50.25 p50.48 p50.37

Capacitance (ml/mmhg) p50.67 p50.93 p50.71 p50.80

A Emax (mmhg/ml) p50.63 p,0.001 p,0.001

Emin (mmhg/ml) p50.06 p,0.05 p,0.001

LV Volume (ml) p50.27 p,0.05 p50.53

Resistance (mmhgNs/ml) p50.36 p50.21 p50.08

Capacitance (ml/mmhg) p50.41 p50.06 p50.07

B Emax (mmhg/ml) p,0.01 p,0.001

Emin (mmhg/ml) p50.16 p,0.001

LV Volume (ml) p50.88 p50.35

Resistance (mmhgNs/ml) p50.88 p50.35

Capacitance (ml/mmhg) p50.63 p50.35

C Emax (mmhg/ml) p50.43

Emin (mmhg/ml) p50.25

LV Volume (ml) p50.25

Resistance (mmhgNs/ml) p,0.05

Capacitance (ml/mmhg) p50.9

doi:10.1371/journal.pone.0114153.t006
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in stage D will not necessarily meet the mean values, but may fall within the range

of values given. Digitizing the PV loops was employed to allow access to the data

underlying each loop. Due to the duration of time that has passed since the

original publication of many of the papers, only a small number of authors were

contactable.

Conclusions

For the first time, the authors have created a visual and quantitative

representation of the AHA/ACC stages of LVSD-HF, from normal to end-stage.

The study demonstrates that robust, load-independent and reproducible

parameters, such as elastance, can be used to categorise and model HF,

complementing the existing classification. The modelled PV loops establish

previously unknown physiological parameters for each AHA/ACC stage of LVSD-

HF, such as LV elastance and highlight that it this parameter alone, in lumped

parameter models, that determines the severity of HF. This is the largest collection

of LV PV loop data, which has been used to create stage specific HF models, and

as such, will enable cardiovascular modellers to create more accurate models of

the heart as it fails and should be used as a reference for future work in this field.

Supporting Information

Checklist S1. Search yield according to the Preferred Reporting Items for

Systematic Reviews and Meta-Analyses.

doi:10.1371/journal.pone.0114153.s001 (DOC)

Figure 10. Graph demonstrating the PV area comparison of the mean loop for American Heart
Association/American College of Cardiology heart failure stage O (shown in white), the modelled loop
(shown in black) and the intercepting area (shown in grey).

doi:10.1371/journal.pone.0114153.g010
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Diagram S1. Flow diagram for search results according to the Preferred

Reporting Items for Systematic Reviews and Meta-Analyses.
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