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Abstract

This paper presents an approach to solve the parsimony, or tree size growth, problem in
Genetic Programming (GP). The approach is formulated as a multiobjective optimisation
problem where parsimony is included as one of the objectives. This Multi-Objective Genetic
Programming (MOGP) method is tested using the 6-Multiplexer benchmark problem. The
MOGP is shown to consistently perform better than approaches which include parsimony
pressure, a penalty to the program size, as part of a single objective function. The approach
also results in a considerable reduction in computational processing time as the population
evolves toward more parsimonious tree-structured representations.
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Controlling Tree Size Growth in Genetic
Programming

Katya Rodriguez Vazquez and Peter J. Fleming'

Abstract—This paper presents an approach to solve the
parsimony, or tree size growth, problem in Genetic
Programming (GP). The approach is formulated as a
multiobjective optimisation problem where parsimony is
included as one of the objectives. This Multi-Objective
Genetic Programming (MOGP) method is tested using the 6-
Multiplexer benchmark problem. The MOGP is shown to
consistently perform better than approaches which include
parsimony pressure, a penalty to the program size, as part of
a single objective function. The approach also results in a
considerable reduction in computational processing time as
the population evelves toward more parsimonious tree-
structured representations.

Index terms-- Genetic Programming, Multiobjective
Optimisation, Parsimony.

I. INTRODUCTION

The adaptive search algorithm called Genetic
Programming (GP) was designed bv Koza [14]. GP is an
evolution-based search model that is a subclass of Genetic
Algorithms  (GAs) which evolves populations of
hierarchically structured computer programs according to
their performance on a previously specified fitness
criterion. The main difference between GP and its
predecessor GA is the fact that GP genotypes. or
individuals. are programs which are not fixed in length or
size. The maximum depth height of the parse tree of the
program is specified a priori to constrain the search space
but all solutions up to and including this maximum are
considered. When genetic operators operate over the
population of computer programs. the new genotyvpes differ
from their parents in structure (size. shape and contents).

Usually. GP assigns fitness values by evaluating each
computer program over a number of different fitness cases.
These fitness cases are typically only a small finite sample
of the entire domain space. However. for Boolean functions
with a few arguments, and this is the case in this paper. it
is practical to use all possible combinations of values of
arguments as the fitness cases. Thus, GP should be able to
generate a 100% correct solution. that is. when the
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program returns the correct value for all given fitness
cases.

Because the structure of the program is not known a priori,
different executions of the GP approach may produce
correct solution programs differing in size and content. All
these solutions are syntactically valid programs but some of
them may possess a more complex structure. Therefore, the
principle of parsimony plavs an important role. This
principle is founded on the fact that “things should be
explained and expressed in a simple way”. In the context
of GP. parsimony means that a correct program is
expressed in its simplest form using the shortest parse tree
structure.

However, parsimony in GP has not been fully addressed.
The aim of this research is to introduce and describe a
means of dealing with the evolution of parsimonious
computer programs. The GP approach described here is
based upon a multiobjective Pareto-optimal fitness function
formulation.

II. MULTIOBIECTIVE OPTIMISATION

Ofien. optimisation problems are characterised by more
than one objective and cannot be adequately solved by a
single objective optimisation technique. Such optimisation
problems involving multiple objectives are called

Multiobjective (or Multicriteria) optimisation problems.

Although Vilfrido Pareto (1848-1923) [17], a French-
Italian economist and sociologist, established an optimality
concept in the field of economics based upon multiple
objectives, only recently has this concept (called Pareto-
optimality) been applied effectively in numerical
optimisation. A definition of Pareto-optimality and other
general concepts arising in multiobjective optimisation
problems are given below.

A. Definition 1. Multiobjective Optimisation

Multiobjective (also called multicriteria, multiperformance

or vector) optimisation is defined as the problem of

finding:

' a vector of decision variables which satisfies
constraints and optimises a vector function whose
elements represent the objective functions. These




functions are usually in conflict with each other.
Hence. the term “optimise” means finding such a
solution which would give values for all the objective
functions acceptable to the designer.

Expressing this definition mathematically. it can be stated
as:
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Find the vector x =[x T A ] which satisfies

the m inequality constraints,
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and optimises the vector function
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where x=[x1,x2_..._,x”] is the vector of decision

variables.

Constraints (1) and (2) define the feasible region X and
any point ¥ in X defines a feasible solution. The k

components of the vector i (J‘r) represent the non-

commensurable criteria which must be considered. The
constraints g;(¥) and 4, (%) represent the restrictions

, 4 %
imposed on the decision variables. The vector X denotes
the optimal solution set.

Keeney and Raiffa [13] have pointed out that optimisation,
in the traditional mathematical sense. is impossible where
multiple objectives are involved. Hence. the solution is a
set of alternative solutions rather than a single optimal
solution. This is known as the Pareto-optimal or non-
dominant set.

B. Definition 2. Pareto-Optimality or Non-Dominance.

The concept of Pareto-optimality (or non-dominance)
constitutes by itself the origin of research in multiobjective
optimisation. In a multiobjective_minimisation problem. a

vector ¥ eX is Pareto-optimal (or non-dominated) if
and only if there is no vector ¥ € X with the characteristic
5HE®< f(F) Y ie{l..k} 4)

and. there is at least one i € k such that
SiF*)< fi(%). (5)
The set of all Pareto-optimal decision vectors is called the
Pareto-optimal or admissible solution set of the problem.
No member of this set is dominated by any other point, that

is. no other point has a better set of objective function
measures.

1II. EVOLUTION-BASED MULTIOBJECTIVE DECISION
MAKING METHODS

Thus. from the definition of Pareto-optimality it is seen
that there is no unique solution to the multiobjective
optimisation  problem. Multiobjective  optimisation
problems involve two different tasks: the search for the
non-dominated solutions set and the multiobjective
decision making part [9]. A single objective problem itself
can exhibit a complex search space due to a multimodal or
non-linear problem solution space. In multiobjective
problems. the actual objectives to be considered may be in
conflict, thus adding an extra degree of complexity to the
problem.

Traditionally, these two aspects of multiobjective
optimisation are treated separately and most of the existing
approaches do not work on large search spaces. In contrast,
evolution-based miethods afford a means of addressing both
search and multiobjective decision making parts of the
problem.

A number of researchers have wused evolutionary
algorithms to simultaneously optimise multiple objectives.
Goldberg [7] pointed out that Rosenberg [20] was involved
in the first attempt at multiobjective optimisation. using
evolutionary algorithms. He suggested a mulfiple
properties function for the simulation of a population of
single-celled organisms. Although he only considered a
single property in his simulation, it was the beginning for
further multiobjective evolutionary approaches.

Since Rosenberg’s work, different multiobjective
evolutionary optimisation approaches have been proposed.
All of these methods retain the same representation and
evolution mechanisms (reproduction, crossover and
mutation) as conventional single-objective evolution-based
methods. The main differences between MO approaches
are associated with the objective functions and fitness
assignment. A classification of MO evolution-based
methods shown in Figure 1, which is based upon how
methods evaluate and assign the fitness to each individual.
Hwang and Masud [10] provide a survey of existing
multicriteria decision making methods. In the context of
evolution-based methods, Fonseca and Fleming [4] and
Horn [9] give an extended review of multiobjective
approaches. Here. a brief description and some examples of
the classification given in Figure 1 are discussed.

In approaches where multiobjective decision making takes
place before the search, the DM expresses preferences by
means of an aggregating function which combines
individual objectives in a single utility function translating
the problem into a single objective problem before

- performing the optimisation. Examples of this class of

multiobjective  evolution-based  techniques are the
approaches proposed by Syswerda and Palmucci [23] and
Jacob, Gorges-Schleuter and Blume [12]. These are based




upon a linear combination of the objective functions
(weighted sum method) in order to determine a preferred
solution. The weighted sum method is defined as

k
min o, f;(¥) (6)
1=]

where @, are the weighting coefficients representing the
relative importance of the objectives and it is usually stated
as
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Multiobjective Evolution-Based
Methods

MO Decisions Before Search
{A Priori Articulation of Preference)

Use of Aggregating
Functions

Search Before MO Decisions
(A Posteriori Articulation of Preference)
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Approaches Approaches

| | Integrate Search and MO Decisions
{Progressive Articulation of Preference)

™

Fig. 1. Evolution-based multiobjective decision making taxonomy.

Horn and Nafpliotis [8] have proposed a different approach
founded on a AMultidrribute Utilin: Analyvsis (ALALA4). The
individual utility " functions are here combined by
multiplication rather than addition. The multiobjective
approaches of Goldberg [7] and Richardson er al. [18] have
their foundations in the concepts of handling constraints
and penalty functions. Here. when a solution fails to meet a
constraint. its utility function is assigned a large penalty,
Nevertheless. quantifying or aggregating such a variety of
objectives into a single criterion of choice. gives an
undesirable reduction of reality.

In the case where the search is performed before the
decision making. a set of candidate non-dominated
solutions are identified. Non-Pareto (population-based) and
Pareto approaches belong to this class of multiobjective
methods. Here, the first attempt of treating objectives
separatelv was proposed by Schaffer [21]. He introduced a
method where appropriate fractions of the next generation,
or sub-populations. were separately selected according to
each objective. Genetic operations were performed after
shuffling all the sub-populations together identifving non-
dominated individuals. This approach is known as the
Vector Evaluated Genetic Algorithm (VEGA). Fourman

[5] suggested a multiobjective approach based upon a
lexicographic ordering. The basic idea was to rank the
objectives by assigning different priorities and lexically
comparing individuals [2].

On the other hand. Pareto approaches are founded on a
Pareto-ranking scheme. Goldberg [7] introduced a non-
dominated sorting to rank the population according to
Pareto-optimality. Non-dominated individuals are given
rank one and then removed from the population. After this,
the newly non-dominated individuals in the reduced
population are assigned rank two and again, removed. This
process continues until all individuals in the population are
ranked. Using the concept of Pareto-optimality, Fonseca
and Fleming [3] proposed a slightly different Pareto-
ranking scheme. They ranked the population according to
the degree of domination. Several Pareto-ranking
approaches have been proposed but all of them have the
basic principle of Pareto-optimality. A detailed description
of the existing multiobjective Pareto-based evolutionary
methods is given in Horn [9].

Finally, methods which integrate search and MO decision-
making work by first searching to give the DM some
knowledge about the possible trade-off range of the
conflicting objectives. The DM then makes some
multicriteria decisions to restrict and therefore, reduce the
search space. The iterative process of
searching/decision/searching continues until a single or
small set of solutions is lefi. '

Attempts at this iterative MO method have been carried
out, but this area is still being explored. For example,
Fonseca and Fleming [4] have extended the Pareto-based
approach by combining it with a decision making stage.
Their iterative multiobjective evolution-based technique is
named the Multiobjective Genetic Algorithm (MOGA)
which will be described in detail in the next section and
extended into a Multiobjective Genetic Programming
approach.

1V. MULTIOBIECTIVE GENETIC ALGORITHM

The Multiobjective Genetic Algorithm (MOGA) (Fonseca
and Fleming [4]) covers three fundamental points in order
to integrate a iterative search and multiobjective DM
technique. These three aspects are described as follows.

1) Pareto-Ranking
Firstly, MOGA uses a rank-based fitness assignment,
where the rank of a certain candidate individual x; at
generation ! corresponds to the number of individuals p,(t)
in the current population by which it is dominated. This is
expressed by
rank(x,,t)= p,(1) (8)
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All non-dominated individuals are assigned rank O and
remaining individuals are penalised according to the above
equation. Figure 2 expresses graphically this scheme by
considering a  bi-objective minimisation problem.
Combining both objectives, the possible alternative
solutions (Pareto frontier) are assigned a rank value of
zero. It is seen that, for solutions with rank equal to zero.
there is no other solution which is better in both objectives.

2) Preference Information as Goal I'ector
In many practical optimisation problems. the solutions are
constrained by a number of restrictions imposed on the
decision variables. These constraints can often be seen and
defined as hard objectives which need to be satisfied before
the optimisation of the remaining "soft" objectives takes
place.

A rank(f, t) =0
f2 |, rank(f, t) =3
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Fig. 2. Pareto-ranking scheme.

The introduction of goals enables us to address
multiobjective problems which deal with constraints. Here.
the constraints are incorporated into the vector function

J G

Introducing a desired level as preference information
provides a means of evolving only a specific region of the
search space. Figure 3 demonstrates this: the goal values g
and g, delimit the feasible solution area. reducing the
search space and allowing the DM to focus on a region of
the Pareto frontier. Hence. the rank-based fitness
assignment is altered by preferring individuals inside the
feasible space over those outside this region. This scheme
allows discrimination between individuals (solutions) even
though they are non-dominated but non-feasible solutions.
In Figure 3. the same candidate solutions as shown in
Figure 2 are considered but their rank positions are now
modified under the assumption of preference (or goal)
values. The light and dark areas determine the number of
solutions that dominate f, and . respectively.

2 rank(f,, t)=0
$ rank(f,. t) =5
+ | (

Fig. 3. Pareto-ranking with preference information: f1 and f2 have the same
priority.

3) Priority Information as Lexicographic Ordering
Fonseca and Fleming [4] have also added to this approach
a lexicographic ordering which has the aim of assigning
different priority degrees. This means, the order in which
the objectives will be optimised. Figure 4. shows, based
upon the same bi-objective example, how the individuals
are ranked when different priority levels are considered for
each objective. Here, f, (objective 2) possesses a higher
priority than f;. Then, the individuals located inside the
feasible region are ranked based on f; because the goal
value of f;, the objective with the higher priority, has
completely been reached. In contrast, the rank assigned to
non-feasible individuals is based on f, and the number of
feasible solutions. Thus, from Figure 4., f, has a ranking
position equal to 2, whereas the rank assigned to f, has
been increased to 7. Again, the light and dark areas show
the number of solutions that dominate the points u and v.
Based on this bi-objective example, it can see that
lexically ordering the objectives, a single optimal solution
may emerge. However. when more than two objectives are
considered, the optimisation becomes more complex and a
single solution can no longer be obtained. The solution to
the problem is then a reduced set of alternatives.

A rank(f,, 1) = 2
2| rank(, ) =7

Fig. 4. Pareto-ranking with preference information: f1 and f2 exhibit different
priority degrees (using Jexicographic ordering).

Because the rank-based fitness assignment, including
preference information and a lexicographic ordering
scheme. take place in the objective function domain instead
of the parameter domain, it can directly be applied to
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genetic programming. Thus. the structure of MOGA can
map into genetic programming by substituting the string-
based and. gemerally. fixed-length representation with a
hierarchical tree encoding.

V. MULTIOBIECTIVE GENETIC PROGRAMMING

This section gives a review of initial attempts to develop
multiobjective genetic programming and the alternative of
combining genetic programming with the Pareto-ranking
scheme. This multiobjective tool is also introduced as a
means of controlling the growth tree problem.

A. Correctness and Parsimony

GP is an evolutionary method designed to evolve and breed
a population of individuals that consist of computer
programs. Koza [14] states that when “getting computer
programs to solve problems without being explicitly
programmed. the size. the shape and the structural
complexity of the solution should not be specified in
advance”. GP, which is a method of program induction’,
should be able to generate a 100% correct program.

The explanation of correct and parsimonious (defined in
the introduction) program induction is the basis of the first
attempts  of multiobjective  genetic programming
approaches. :

B. Previous Approaches Involving AMeasures of
Parsimony

In the previous Section a review of the existing
multiobjective evolution-based techniques. mainly based on
multiobjective genetic algorithms. has been described.
However. the field of GP and multiobjective optimisation
has hardlv been explored. A few approaches have been
developed to control the problem of trec growth of
compuler programs. Most of these approaches are
formulated as an aggregating function with the aim of
generating parsimonious computer programs.

Koza [14] considered parsimony as a factor in determining
the fitness value of a tree-structured  individual. He
included the number of nodes (tree size) and the number
of correct fitness cases returned by the individual in the
fitness function. and aggregated them in a weighted sum
approach resulting in a percentage of the total fitness
value.

Iba et al. [11] proposed a method for controlling tree
growth by means of a Minimum Description Length
(MDL) principle. The MDL for a GP tree is defined as:-

1 . g 3 3 :
Program induction 1$ seen as the generation of a computer program from a
given set of input-output pairs or formal specification of the behaviour.

mdl = (Tree_Coding _ Length)+ (Exception_Coding _ Length),

©)
where Exception_Coding_Length contains a measure of
performance. Thus. the fitness function of each program
individual considers the MDL component and the
component related to the fitness function (number of
correct fitness cases).

A similar approach based on the MDL principle has been
proposed by Zhang and Miihlenbein [25]. They describe an
adaptive method for fitness evaluation to dynmamically
guide the GP to grow and prune (restrict or cut) program
trees. Their approach evolves parsimonious solutions
without incurring premature CONVErgence. This MDL
principle-based approach dynamically grows and prunes
the program size by balancing the ratio of training
accuracy to solution complexity.

As is known. the evaluation of the fitness function
consumes most of the computation process time in GP.
This is the basis of the Siegel and Chaffe [22] approach.
They use computation time 10 influence selection in the GP
process through the introduction of an "aggregate
computation time ceiling".

C. Multiobjective Genetic Programming

Langdon [15] has used GP for evolving data structures
using a Pareto-based approach, however this work has no
bearing on the treatment of parsimony. In our approach,
Multiobjective Genetic Programming (MOGP), we have
the facility to control the search process by introducing
goals which restrict the solution space and promote the
search inside the feasible solution problem area.
Multiobjective genetic programming combines the Pareto-
ranking scheme with the concept of genetic programming.
The MOGP approach: a) addresses multiobjective
optimisation problems which are formulated as program
induction. and b) controls the growth of tree-structured
individuals. which is reflected in a reduction of the
computation time by evaluating shorter structures and
avoiding redundant nodes. ;

The MOGP approach differs from MOGA in that the
representation of an individual is now expressed as a
hierarchical tree. In order to demonstrate how MOGP can
be applied to control the tree growth problem, the 6
Boolean-multiplexer problem is studied.

V1. MOGP 1N PRACTICE

For the purpose of experimental analvsis, the 6-multiplexer
problem has been selected. Motivations for it are based
upon the fact that i) it is a well-understood problem in
electronic circuit design, ii) the search space for this




problem is finite and well understood due to its logical
nature, and iii) it is a benchmark problem that has been
used by several GP researchers (Koza [14]: O'Reilly [16]).

A. 6-Boolean Multiplexer Problem.

Definition: The problem of learning the 6-multiplexer
function is the task of decoding an address encoded in
binary and returning the binary data value of a
‘register at that address. The input consists of & (equal
to 2 in this case) address bits .4; and g (22 = 4) data
bits D; (see Figure 5).

Output

Fig. 5. The 6-multiplexer problem.

Terminal Set: The terminal set consists of the two address
variables (Ag and A;) and the four variables (Do, D),
Ds and D3) representing the data registers. Then,

T={ Aq, A1, Do, Dy, D2. D3}
Function Set: The set of functions used in this problem are
as follows.
° The conditional operator IF (condition, true-
* branch, false-branch) which takes three
arguments. If the condition is true, it evaluates
the true-branch. otherwise it goes to the false-
branch.
e  The logical OR (ARG1. ARG2) operator,
e  The logical AND (ARG1. ARG2) operator.
e The unary NOT (ARG) operator.

B. Multiobjective Fitness Evaluation.

The 6-multiplexer problem described here is a case study to
demonstrate how MOGP may be. used to produce correct
and parsimonious Boolean programs. The problem is
formulated as a multiobjective program induction problem
where the objectives are defined as follows.

Correctness: There are 2° = 64 possible outcomes (fitness
cases) for the logic function represented in Fig.5,
given the 6 input variables, as defined for the
terminal set. The degree to which a MOGP individual
or ‘"program" correctlv represents the correct
behaviour is determined by counting the number of
correct fitness cases arising from the 64 truth table
combinations. Objective 1, Objj.. .is thus expressed

as.
Obj = 2y Number_of _Correct_ Fitness _Cases

where N. the sum of address and data lines, is given
bv

N=k+2*
Objyis to be minimised. A program individual with
an Obj; value equal to 2" is the least fit. On the other

hand, an individual with a value equal to zero is the
most fit and is 100% correct.

Input Variable: This objective is introduced in order to
give preference to such programs which involve all
the address and data variables necessary to produce a
correct program. In GP, many of the initial random
individuals are not valid proesrams. An example is,
(IF (NOT D3) Ao A1)

Here, GP does not make any distinction between an
address or data variables. Another example is,

(IF (IF (IF Do Ag A;) D3 D)) Do),

where a data variable is placed instead of an address
variable and vice-versa. Nevertheless, this structure is
preferred over the first example because it involves all
the variables. The objective is concerned with the
number of input variables used and we wish to
maximise it. The syntactical validation of a program
can be introduced as an objective in this
multiobjective approach. However, it is not
considered here. :

Parsimony: This objective is defined as the number of
nodes that comprises the parse tree.

These three objectives are summarised in Table 1. Their
priorities are also given. The MOGP tool allows three
different priority levels which are ignore, objective
and consiraint. In fact, only one level is exercised in
this example.

TABLE 1. DESCRIPTION OF THE OBJECTIVES CONSIDERED FOR THE 6-
MULTIPLEXER PROBLEM.

Objective Description Priority

1 | Correctness | Number of correct answers (fitness | Objective

: cases)
Number of variables involved in the | Objective
hierarchical solution individual

2 | Variables

3 | Parsimony Size of hierarchical tree (number of | Objective

nodes)

C. Results Analysis

This study demonstrates the capability of multiobjective
genetic  programming to  simultaneously address
correctness and parsimony aspects of the 6-multiplexer
problem. This approach® is run for 6 different cases which
differ in the population size and the mutation rate used.

. Population sizes of 100, 200 and 400 tree individuals and

mutation rates of 0% and 10% were considered. In each

? This approach is implemented in MATLAB [23].




case. 50 runs of MOGP with different initial conditions
were performed. The performance of single objective (SO)
and multiobjective (MQ) approaches are also compared. as
shown in Tables II and IIl. In the single objective
approach. the fitness function was defined (o be simply the
number of fitness cases that produce correct answers (see
objective 1 from the Afultiobjective Fitness Evaluation
section above for more details).

First, note that the the single objective approach has not
produced a single representation of the fully efficient
parsimonious solution. Also. the frequency of generating a
correct (non-parsimonious) solution is also lower for the
single objective approach.

In contrast with the MO case, which addresses correctness
and parsimony problems better with zero probability of
mutation, the SO approach performs better when a non-
zero mutation rate is used. In both cases, the success rate
improves as the population size is increased. and the
average number of generations needed 1o obtain a
successful solution tends 1o be lower.

In the context of the MO approach and the average number
of evaluations to obtain a successful solution, it is seen that
when mutation is emploved. the MO approach produces a
lower number of average evaluations for a population size
of 400 than 200.

In this example, the correct and fully efficient
parsimonious solution consists of 10 nodes given by,

(IF Aq (IF A; D3 D2) (OIF A; Dy Dg))
expressed hierarchically as.

B
/1IN /TN
At Ds D2 A1 D1 D

Fig, 6. Hierarchical encoding of the 6-multiplexer
function.

0

Note that this is a simple benchmark problem where no
preference information and priority levels have been
considered. The multiobjective genetic programming
approach has only been based upon the Pareto-ranking
scheme.

D. Population Diversity

In nature. diversification is a necessary condition for
natural selection, and it is also important in artificial
evolution.

For this 6 Boolean Multiplexer case study. two aspects of
the problem have been analvsed: correctness and
parsimony. This problem has been formulated in a Pareto-
optimal form and, therefore. the analysis of how population
diversity behaves is defined in terms of both correctness
and parsimony, as shown in Figures 7 and 8. These graphs
are based on a run that considers a population size of 200
individuals, crossover and mutation probabilities of 90%
and 10%, respectivelv. For this particular run, a 100%
correct solution is reached at generation 87, and the fully
efficient parsimonious solution at generation 108.
However, the stopping criterion was set at 200 generations
in order to observe how the population evolves.

As stated by Banzhaf er al. [1]. genetic diversity is a

necessary condition for rapid detection of a high-fitness

individual and for efficient adaptation of the population to
a changing environment. As seen from Figure 7, a set of
individuals with a lower correctness fitness value appears
before the population evolves to a 100% correct solution.
After reaching the optimal solution, subsequent
generations also maintain a certain degree of
diversification.

With regard to the parsimony issue (Figure 8), it is seen
that, at the first generation, complex tree representations
are presented. However, more parsimonious trees emerge
but complex ones remain at every subsequent generation.

Computational time is also measured and plotted as shown
in Figure 9. Computational time expended for each
generation rapidly falls to approximately one-third of the
time spent evaluating the initial (randomly generated)
population due to the pressure to seek out parsimonious
solutions.

E. Performance Comparison with Other Approaches

The 6-multiplexer problem is a well-known benchmark
problem. Koza [14] used it in order to test approaches
which include parsimony as a factor in fitness evaluation.
He studied two different fitness functions which involve a
parsimony factor. These have been formulated as
aggregating functions differing only in the definition of the
weights for performance (correctness) and parsimony.
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Fig. 7. Evolution of correctness.
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Fig. 9. Evaluation of computational processing time.

In a first approach, Koza defined the fitness to be the
number of fitness casesfor which a tree individual gives the
incorrect Boolean value plus the number of nodes in the
hierarchical tree. From a 1otal of 60 runs with a population

of 1000 tree expressions using this approach. no fully
efficient parsimonious expression emerged. The most
parsimonious solution was an expression with 13 nodes
and the probability of success was 38% for 50 generations.

In a second approach, the fitness was defined as the
number of incorrect fitness cases when the best of the
present generation scored fewer than 58. The fitness was
redefined 1o be that of the previous approach when the best
of the generation scored 58 or more correct fitness cases.
Based on 30 runs, a correct expression containing 10 nodes
emerged. However, the probability of success was even
smaller, 27%.

The results provided using the MOGP approach (Tables 11
and I11) has shown that, for the case of a population size of
400, there was a 95% success rate and, even for smaller
population .sizes, . the success rate is higher than that
obtained by either of Koza's approaches. There is also a
higher probability of generating fully efficient
parsimonious expressions, although the MOGP approach
has been run for a larger number of generations.
Nevertheless, Gathercole and Ross [6] have demonstrated
that GP can perform even better with small populations
over many generations than a small number of generations
of large populations. )
O'Reilly [16] has also worked on the 6-Multiplexer
problem but she has focused her study on the effects of
different genetic programming operators and hybrid
genetic approaches. However, the success rate is still
higher for the MOGP technique.

VII. CONCLUSIONS

A Multiobjective  Genetic  Programming (MOGP)
framework has been described, with particular attention
paid to the generation of parsimonious solutions. To
demonstrate its capability, MOGP has been tested on a
simple problem and compared with existing genetic
programming approaches which deal with parsimony
within a single-objective (SO )approach.

The Boolean 6-multiplexer problem was the focus of the
test study and MOGP was found to out-perform SO
approaches. When compared with SO approaches which
introduce parsimony pressure as a weighting fitness
function, MOGP consistently produced correct and fully
efficient parsimonious solutions. The SO approaches failed
to produce a single representation of the fully efficient
parsimonious solution.

While the MO approach treated the parsimony objective

. separately from other objectives, it was configured such

that all objectives were addressed simultaneously in the
evolution of improved solutions. Its treatment of parsimony
also led to reduced computational effort as parsimony




pressure encouraged the generation of parsimonious (and.
hence, computationally efficient) trees.

In the example considered here. no clear view emerged on
appropriate settings for parameters such as crossover and
mutation probabilities. population size and number of
generations. For example. zero probability of mutation
produced the best MOGP performance for the Boolean 6-
multiplexer problem studied here. Future work will seek to
extend this research. and that of [19], to generalise this
means of controlling tree growth using MOGP, by testing
it on a set of different benchmark problems.
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TABLE 1. EFFECTS OF POPULATION SIZE WITH A 0%0 MUTATION RATE. 90% CROSSOVER PROBABILITY, AND 500 GENERATIONS FOR THE 6-MULTIPLEXER PROBLEM
(AVERAGED OVER 50 RUNS).

Single Objective Maultiobjective
Population Size 100 200 400 100 200 400
Successes (Maximum = 50) 22 26 27 39 43 49
No. of Generations required | 139.82 131.31 155.23 173.69 142.65 95.96

to produce success
Average No. of Evaluations 15982 26262 62 092 17 369 28 530 38 384
Parsimony 0 0 0 11 12 22

TABLE I11. EFFECTS OF POPULATION SIZE WITH A 10% MUTATION RATE. 90% CROSSOVER PROBABILITY, AND 500 GENERATIONS FOR THE 6-MULTIPLEXER
PROBLEM (AVERAGED OVER 50 RUNS).

Single Objective Muliobjective
Population Size 100 200 400 100 | 200 400
Successes (Maximum = 50) 25 36 37 34 48 48
No. of Generations required | 135.00 131.22 75.11 202.47 191.96 84.625

to produce success
Average No. of Evaluations 13500 || 26244 30 044 20 247 38 392 33 850
Parsimonyv 0 0 0 5 12 17




