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Abstract. A method for the identifving the structure of non-linear
polynomial dynamic models is presented. This approach uses an
evolutionary algorithm, Genetic Programming. in a multiobjective
fashion to generate global models which describe the dvnmamic
behaviour of the non-linear system under investigation. The
introduction of the validation stage of system identification into the
multiobjective tool is also explored, in order to direct the
identification process 10 a set of global models of the system.
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1 INTRODUCTION

System identification is concerned with building a
model from input-output observations of a system.
creating a mathematical description of the syvstem.
Linear system identification methods have been
widelv covered (e.g. Séderstrém and Stoica. 1989:
Ljung. 1987). However. most real systems are non-
lincar and linear models may not adequately
describe their associated dynamic behaviour (Haber
and Unbchauen. 1990). But. non-linear system
identification remains a difficult task because.
often. no initial information is generally available
about the system structure Also. tvpically. the
derived model should satisfv. in some optimal
fashion. a number of objectives involving. for
example, performance and model parsimony. Here
we describe a multiobjective optimisation approach
to non-linear system identification based on the
genetic programming (GP) paradigm. which is
used to identify NARMAX model structures.

Previous work (Rodriguez-Vazquez et al.. 1997a)
has investigated an alternative identification
approach based on genetic programming (Koza.
1992) and the NARMAX model (Leontaritis and
Billings. 1985). Although it used a single measure
of performance. it proved effective. Recently,
Rodriguez-Vazquez et al. (1997b) have translated

_Programming and - Genetic

this method into a multiobjective genetic
programming (MOGP) approach.

This work is further developed here and applied to
the identification of NARMAX model structures of
a real system, a Rolls-Royce Spey gas turbine
engine. The paper is organised as follows. Section
2 introduces Evolutionary Algorithms (EAs),
focusing on Genetic Programming (GP): Section 3
presents a brief introduction of multiobjective
optimisation and the definition of Pareto-
optimality. In sections 4 and 5, the formulation of
the identification problem as a multiobjective
optimisation problem is described. In section 6,
two identification examples are analysed: a
simulated system and an actual systems. Finally,
conclusions are drawn.

2 EVOLUTIONARY ALGORITHMS:
GENETIC PROGRAMMING

Evolutionary Algorithms (EA) are computing
paradigms which apply the theory of Natural
Selection or survival of the fittest to a population of
individuals (or candidate solutions) in order to
produce fitter individuals (improved candidate
solutions) in pursuit of a prespecified objective.
Different classes of these algorithms (Evolution
Strategies, ES, Evolutionary Programming, EP
and Genetic Algorithms, GA) were simultaneously
developed during the 1960°s. The first work on
developing Evolution Strategies was developed by
Schwefel and Rechenberg in Germany (Schwefel,
1965; Rechenberg, 1973). while around the same
time. Fogel. Owens and Walsh (1966) and Holland
(1975) began work in the field of Evolutionary
Algorithms,
respectively. in the United States.



These three evolutionary approaches have been the
starting point for the development of new forms of
EAs. one of these being the concept of Genetic
Programming (Koza. 1992). which is a subclass of
genetic algorithms. Because this work is based on
GPs. a general description of GAs and GPs
follows.

2.1 Genetic Algorithms

Genetic algorithms, the evolutionary algorithm
proposed by Holland and the most popular of the

. EC methods. consists of a reproductive plan for
‘selecting successful genotypes (individuals) to be

used to create the offspring of a new population,
and a set of genetic operators, crossover and
mutation. The basic GA works on a fixed-length
bit string encoding, where the problem addressed is
defined in an objective function that indicates the
fitness of any potential solution. Here, individuals

.are considered at the phenotypic level, which is the

value in the domain over which the objéctive
function is defined. On the other hand, an
individual’s genotype is the representation of its
phenotype at a lower level, which the computer
stores and the GA manipulates.

The general procedure for a GA is shown in Figure
1. The algorithm starts by creating a random
initial population of individuals or candidate
solutions, (nitialise  P(t=0)). Then, each
individual. x;, where i=/,...,N, is mapped onto the
decision variable domain or phenotypic level,
evaluated according to a specific function and
assigned a fitness measure p(xy), (Evaluate P(t1=0)).

t=0

Initialise P(1)

PY=[x ... xul
Evaluate P()

F(xy o.ox) =[w ...l
while (Termination Criterion not fulfilled) do {
Parent Selection P(t+1)
Crossover P(t+1) -
Mutate P(t+1)

Evaluate P(1+1)
Py=Pit+ 1)

t=t+1

}

Figure 1. Basic structure of a genetic algorithm.

The parent selection process uses this fitness
measure to determine the selection of potential
individuals (Parent Selection _ P(t)) to be
recombined (Crossover P(t)) and mutated (Afutate
P(1)). The crossover operator causes that pair of
individuals  (parents) to exchange genetic

information by selecting a random position along
the string. The mutation process creates a new
individual (offspring) by altering the genetic
information of the parent string according to some
rules. Finally, the new individuals are evaluated in
order to assign them a fitness measure creating a
new population. This process continues until some
termination criterion is satisfied.

2.2 Genetic Programming

Genetic Programming (Koza, 1992; 1994) is a
subclass of GAs. in which the potential solutions of
the population are expressed as programs instead
of individuals represented as bit strings. The fact
that many problems can be expressed as computer
programs makes GP a more powerful t_ol than its
predecessor, the GA. Here, these programs, which
are composed of functions and terminals
appropriate to the problem domain, are encoded as
hierarchical tree structures, providing a dynamic
and variable representation. Figure 2 shows an
example of a hierarchical tree that expresses the
following computer program (in reverse Polish
notation),

(/(-M™aa™*bb) ™ @(+acg))
which is equivalent to
P gk

i i
a+c)

The internal nodes of the tree structure are
elements from the function set (operations), and
leaf nodes are the input data from the terminal set.
In this example T = {a.b.c} and F = {*+’, -7, ¥,
3.

Figure 2. Hierarchical trée encoding.

Genetic Operators

Like the standard GA, the two main operators are
crossover and mutation. The crossover operation
produces a pair of computer programs that inherit
characteristics from both parent programs by
selecting a random node in each of the hierarchical
trees structures of the parents (Figure 3a) and
exchanging the associated subexpressions (Figure
3b). Because of the dvnamic representation used in
genetic programming, the parents are typically of
different size. shape and content, and the offspring
are also generally different. Note that parent tree 1




(Fig. 3a) and the tree shown in Figure 2, are
slightly different but both represent the same
computer program. Thus. in genetic programming,
the process of mapping the genotype onto the
phenotyvpe does not correspond fo a one-to-one
relationship: a particular computer program can be
expressed by more than one different tree structure
allowing a diversification of the population.

Mutation is performed by randomly selecting a
node that can be an internal or terminal node, and
replacing the associated subexpression with a
randomly generated subprogram.

Parent Tree 1 Parent Tree 2

(b}

Figure 3. Crossover. a) Random selection of a
subexpression. b) Offspring.

The fitness measure of each computer program 1is
assigned in terms of how well it performs in the
particular problem domain. This fitness value
depends on the problem but is generally defined as
the error produced by the computer program. In
conventional genetic programming approaches.
and. in general. any evolutionary algorithm. the
assigned fitness measure is based on the evaluation
of a scalar function. But. these population-based
methods  possess  the  characteristic  of
simultaneously searching for multiple solutions
and. more. can evaluate several aspects of the
problem. For this reason. this work presents an
extension of the conventional or single fitness
measure genetic programming mapping into a
multiobjective genetic programming approach. The
next section describes general concepts in
multiobjective optimisation and introduces the
MultiObjective Genetic Algorithm MOGA) that is
the basis of the approach teported here.

3 MULTIOBJECTIVE OPTIMISATION

In many practical applications. design problems

may be represented by a set of competing

requirements (or objectives) which can be
formulated as a multiobjective optimisation
problem. There is seldom a unique solution to such

problems since objectives may be in conflict with
one another. Rather. a set of solutions emerges
where, in the absence of information concerning
the importance of each objective relative to the
others. each solution is deemed equivalent to the
others in the set. Thus. the concept of
multicbjective optimisation is defined as the
problem of finding the vector of decision variables
X , that optimises the # components vector function

F2)=([3(F) Ju(3) @

producing a set of equally efficient alternative
solutions known as the non-dominated or Pareto-
Optimal set (Ben-Tal, 1980).

Pareto-Optimality

The concept of Pareto-optimality or nondominance
may be described in the context of the following
minimisation problem. Given two n component

objective function vectors, f, and f, , one can say

that ?u dominates f\. (is Pareto-optimal) if

Vie{l,..n} f,, £/ Adie{l,..n}. [y <y,
@)

Then, the set of all Pareto-optimal decision vectors
is called the Pareto-optimal or admissible set of the
problem. '

A number of researchers have used evolutionary
algorithms, taking advantage of their population-
based approach, with the aim of simultaneously
optimising multiple functions. Goldberg (1989)
pointed out that the first attempt at multiobjective
optimisation using evolutionary algorithms was
made by Rosenberg (1967). He suggested a
multiple properties function for the simulation of a
population of single-celled organisms. However, he
only considered a single property in his simulation,
but it was the beginning of further multiobjective
evolutionary approaches.

Since Rosenberg’s work, a variety of approaches
have appeared and these are summarised in
Fonseca and Fleming (1995). One class -
aggregating methods - combines multiple
objectives into a single fitness measure to enable
evolutionary algorithms to operate on scalar fitness
information. Previous aggregating approaches
using genetic programming have had the aim of
generating parsimonious computer programs by
incorporating the number of nodes included in
their associated tree representation into the fitness
measure (Koza, 1992). Iba et al. (1994) and Zhang
and Miihlenbein (1996) have proposed a Minimum
Description Length (MDL) based fitness function
which is a trade-off of the model code length and

"the residual error. Siegel and Chaffe (1996) have

introduced a different approach that incorporates a
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time constraint in order to penalise evolved
programs that take excessive execution time.

Other multiobjective evolutionary approaches do
not use a combined fitness function. Instead. they
assign a fitness measure on the basis of a separate
evaluation of each of the multiple objectives. An
example is the MultiObjective Genetic Algorithm
(MOGA) approach proposed by Fonseca and
Fleming (1993). This is a Pareto-based technique
which is based on the concept of nondominance or
Pareto-optimality. /Here, fitness of an individual is
assigned on the basis of relative non-dominance.
ie. all non-dominated individuals in the
population are assigned rank 1, those individuals
dominated ty one or more points are ranked 2 or
higher. Fonseca and Fleming's approach also
includes schemes to combat the formation of
lethals (mating restriction) and genetic drift
(fitness sharing) - special problems arising from
the evolution of a set of Pareto-optimal solutions.

The MOGA approach is extended here to be used
in conjunction with genetic programming to
provide a multicbjective optimisation tool in which
we can include an alternative way of controlling
the growth of genetic programming parameters in
the growth tree. The next section presents a
general description of MOGA.

3.1 Multiobjective Genetic Algorithm

The multiobjective genetic algorithm approach
proposed by Fonseca and Fleming (1993) uses a
rank-based fitness assignment. where the rank of a
certain individual x; at generation 1 is related to the
number of individuals pt) in the current
population by which it is dominated. This is given
by

rank(x;. 1) =14+ p;(n). 3

All non-dominated individuals are assigned rank 1
and remaining individuals are penalised according
to equation (3).

Fitness Assignment

Fitness is assigned by interpolating from the best
individual (rank=1) to the worst. and then the
fitness assigned to individuals with the same rank
is averaged where the global population fitness is
kept constant. However. such fitness assignment
tends to produce premature convergence
(Goldberg, 1989) due to the fact that all non-
dominated (best rank) points are considered
equally fit (Figure 4).

In order to overcome this deficiency. Fonseca and
Fleming have used a niche induction method to
promote the distribution of the population over the
Pareto-optimal front in order to maintain diversity.
This is achieved by a method of fitness sharing

which encourages the reproduction of isolated
individuals and favours diversification.

Preference Information

Preference information is introduced in the form of
a goal vector. which provides a means of evolving
only a specific region of the search space. This
allows the decision maker to focus on a region of
the Pareto front by providing external information
to the selection algorithm.

rank(f, t) = 0
f2 o rank(f, 1) = 3
w3 g e+
. [] '
- f : +
= L A
e X E T

1

Figure 4. Pareto-Ranking without preference
information.

The ranking procedure described previously is .
modified to introduce the goal information by -
altering the way in which individuals are compared
with one another. Degradation in vector
components that meet their goals is acceptable
here. provided that it results in the improvement of
other components that do not satisfy their goals
and provided that goal boundaries are not violated.
This permits discrimination between individuals
(solutions) even though thev are non-dominated.
This concept is formalised in terms of a transitive
relational operator (preferability). instead of the
simple partially less than operator, based on
Pareto-dominance. The preferability operator
additionally takes into account whether or not the
objectives meet their goals. Figure 5 shows a bi-
objective example of the Pareto-ranking preference
information tool. In Figure 5a, both objectives are
assigned the same priority, whereas Figure 5b
illustrates Pareto-ranking when one objective has a
higher priority than the others.

The combination of the notion of preferability
coupled with the concept of nondominance
introduces a preference articulation framework for
multiobjective  and  constraint  optimisation.
Because rank-based fitness assignment and fitness
sharing of MOGA take place in the objective
function domain instead of the parameter domain,
they can be directly applied to genetic
programming. Thus, the structure of MOGA can
be mapped onto genetic programming by
introducing a hierarchical tree representation with
its associated genetic operators.




The concepts of multiobjective fitness function and
genetic programming have been previously applied
by Langdon (1995). He evolved list data structures,
with genetic programming defining a list which
supports ten different operations. Here. each
operation is a separale program lrec within a
composite individual and has its own fitness sub-
core. He used the Pareto-ranking method proposed
by Goldberg (1989). with tournament selection. in
order to choose which individual to breed from or
to remove from the population. However. he did
not consider prioritisation of objectives.

rank(f,. 1) = 0
rank(f,. t) =9

f1

rank(f, 1)
)

2
2. s rank(f,. t) = 7

(b)

Figure 5. Pareto-ranking with preference information:
a) {1 and {2 have the same priority:
b) 12 has a higher priority than f1.

4 REPRESENTATION OF NON-LINEAR
SYSTEMS

While there are many model representations that
may be used in syvstem identification studies. this
work is based upon an input-output model of a
system. To describe this relationship, Leontaritis
and Billings (1985) have introduced a non-linear
difference equation model known as the NARMAX
(Non-linear AutoRegressive Moving Average with
eXtra inputs) model. This model represents a wide
class of non-linear systems expressed by the
following equation,

y(kj= Ff(}f‘(k—l),...,y(k—nj.),u(k—]),...,
u{k—nu),e(k—}),...,e(k—nej)+e(k) (-i)

where v¢k). uck) and e(k) represent the outpul. input
and noise signals. respectively. n,. 1, and 7, are

their associated maximum lags, and F is some
unknown non-linear function of degree £. Since
e(k) is unknown, equation (4) can be expressed in a
simplified form as

vi(k)= F[(_x:(k—]),...,y(k—n).),u(k—-])....,u(k—n”))
)

which is known as the NARX (Non-linear
AutoRegressive with eXtra inputs) model.

Leontaritis and Billings also claim that the
polynomial representation is one of the most
common and has been demonstrated to work well
in practical applications (Billings and Fadzil,
1985 Billings et al., 1989). Thus, the polynomial
NARMAX model is represented as

n n n
v(k)=8p+ X 8, x;,(k)+ > X 6;,08,x;,(k)x(k)
=1

= ip=lia=iy

++§: i B,I...G,-[x”(k)...x,-f(k)+e(k),

(6

where n=n,+n, (the sum of the corresponding
output and input maximum lags), §; are scalar
coefficients and x;(k) represents lagged terms in y
and u . Note that the polynomial model is non-
linear in the output and input variables but linear
in the parameters. Therefore, the set of coefficients
can estimated by a Least Squares (LS) algorithm.

5 PROBLEM DEFINITION

Potential model structures of the form of equation
(6) can be expressed in a hierarchical tree structure
as shown in Figure 6. These models are written in
reverse Polish notation as

(ADD (ADD N1 X4) (MULT (ADD X2 X3)ADD XI
X2)))

ADD
T T
ADD

/MULT \
X1 X4 ADD ADD
X2 X3 X1 X2

Figure 6. Polynomial NARX model represented as a
hierarchical tree.

This is equivalent to the non-linear model defined
by
1'(1() =Bg+8;_v(k—1‘)+82_v(k-.?)+83u(k—U

440 (k= 1) +859(k=1)y(k=2) D




where X1, X2, X3 and X4 are 1.0 (the constant
term). v(k-1). y(k-2) and u(k-1). respectively. The
associated © parameters are then estimated by
using a least squares algorithm. Because this work
restricts itself to the polynomial representation of
the NARMAX model. the function set. F, is
composed of two operations only.

F={ADD, MULT}

The terminal set. T, consists of all linear terms in
the output, input and noise with maximum lags
defined by ny, n, and n.. respectively, and the real
value 1.0 representing the constant term. This is
defined as

T={X0, ..., Xny, Xn,+1, ... Xnn,Xngn+l, .,
Xng+nytne}

. The terminal set is expressed in a look-up table as
‘shown in Table 1.

Table 1. Termﬂ Set

Element of T Linear Term
X0 1.0
X1 y(k-1)
Xn, v(k-n,)
Xn,+1 u(k-1)
Xn,+n, ufk-n,)
Xn,+n,+1 efk-1)

Xn.=n,~n. ek-n,)

Thus. polynomial NARMAX models are
represented as programs which manipulate
independent variables (terminal set) to generate an
output. v(k).

6 MOGP IN PRACTICE

In order to generate programs that represent not
only valid models of the svstem but also
parsimonious models. a set of objectives is
specified whichaddresses the two main themes of
(1) model structure (complexity) and (ii) model
performance.

6.1 Example 1: Simple Wiener Process.

Based on these two attributes. the MOGP method
described above is demonstrated on the simple
Wiener model and compared with two
comventional identification techniques. stepwise
regression and orthogonal regression (Haber and
Unbenhauen. 1990). '

————

The simple Wiener process embodies a linear
dvnamic part defined by the differential equation.

1Ov(t)+v(t)=u(t) 8
and a static non-linear part expressed by
(k) =24v(k)+v (k) ©

The input-output data used here are defined in
Haber and Unbehauen (1990), as described in
Figure 7.

Simple Wiener Model

o - N @ A
—T—T—

o 20 0 80 80 100 120

Figure 7. Simple Wiener Process Input-Output Data.

The multiobjective genetic programming (MOGP)
approach was run considering five objectives
representing the structure and the performance of
the models. These were:- the number of terms, N7,
degree of non-linearity, DEG, maximum.lag.LAG,
residual variance, FAR, and the - leng-term
prediction error, LTPE. Crossover and mutation
probabilities were 0.9 and 0.1, respectively. The
MOGP method evolved for 100 generations using a
population of 200 tree expressions. The method
was run several times and produced similar
families of solutions each time.

For the purpose of analysis. results of one run are
presented in Table 2. In terms of performance
(AR and LTPE) all models emerging from the
MOGP approach dominate those obtained by the
stepwise and orthogonal regression methods. For
models MOGP; and MOGP,, an improvement in
the VAR criterion is also achieved - that which the
stepwise and orthogonal regression methods
explicitly targetted.

In terms of model complexity, Table 3 shows the
structures of the polynomial NARX models which
are similar and have some terms in common,

This identification example is a simple one based
upon simulated data, however it serves to illustrate
the potential of the MOGP-identification. In the
next section MOGP is applied to actual data
obtained through a studv of an industrial
application.




Table 2. Comparative Performance of the Identification Methods.

Model NT DEG LAG  VARuo®  LTPEy’
MOGP, 6 2 1 2.3839 6.0221
MOGP; 6 2 2 2.1978 6.7967
MOGP: 7 2 2 1.6484 6.4279
MOGP, 7 2 2 1.6474 7.8151
Stepwise 7 2 2 1.6808 7.8526
Orthogonal 7 2 2 5.2243 26.8080
Table 3. Simple Wiener Model Structures.
Term MOGP; MOGP, MOGP: MOGP, Stepwise Orthogonal
c A A A A A A
y(k-1) A A A A A A
y(k-2) A A A
u(k-1) A A A
u(k-2) A A
y(k-1) A A A A A
y(k-1)y(k-2) A
w(k-2)" A
v(k-Tuk-1) A A A A A
u(k-1) A A A A A A
y(k-2)u(k-1) A
u(k-1u(k-2) A

6.2 Example 2: Gas Turbine Engine Modelling

Here, MOGP is applied to sets of actual input-
output observation data from a gas turbine engine
system. This case study utilises real engine data
records. from a Rolls-Royce Spey engine, collected
by the Defence Evaluation and Research Agency.
Pyestock. UK.

Most previous research on system identification of
aircrafl engines has been based on /inear frequency
and time domain identification and has not been
directly applicable to non-linear modelling. Some
approaches which deal with non-linear modelling
are based upon the identification of local linear
models. The basis of these approaches is a
decomposition of the system’s full range of
operation into a number of possible overlapping
operating regions. In each operating region, a
simple local model is applied. These local models
are then combined in some way to yield a global
model. However. an important question arises: how
many local models are required to cover the
operating range of the system? It is clear, therefore,
that there is a compromise to be made between the
number and size of local models and their
complexity.

The identification approach presented in this paper
deals with the identification of non-linear models
that can cope with the entire range of working
conditions. This global model is then used to
model the relationship between the fuel flow

consumption and the spool speed of a gas turbine
engine. The identification is based upon a set of
multisine excitation signals (Evans ef a/., 1992) at
different operating conditions, applied to the
engine system which is described in the next
section.

6.2.1. Description of the engine system

A schematic of the measurement system is shown
in Figure 8. The reheat system is inoperative
during the tests and the compressor bleed valve is
closed. The angle of the inlet guide vanes and the
reheat nozzle area are fixed at their low speed
positions for the duration of the tests. The engine
speed control is operated in open-loop and a
perturbed fuel demand signal fed to the fuel feed
system, which regulates the fuel flow to the engine
by means of a stepper valve.

The fuel feed system exhibits both linear and non-
linear dynamics, which affect the actual fuel flow
applied to the gas turbine. It is important to
eliminate these effects from the estimated engine
models and this is achieved by measuring the
actual fuel flow downstream of the fuel feed, using
a turbine fuel meter. The speed of the low pressure
(LP) shaft is measured by counting the rotations of
the turbine blades and the speed of the high
pressure (HP) shaft by measuring the rotation of a
gear linked to the shaft itself.

- The shaft speeds are the primary outputs of a gas

turbine, from which the internal engine pressures




and thrust can be calculated. The dvnamic
relationship between these shaft speeds and the
measured fuel flow is the purpose of this model
identification example.
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Figure 8. Schematic of the measure tests conducted on a
Rolls-Royce Spey engine.

Using the MOGP identification approach we are
able to include a set of objectives which assess the
performance of a candidate model at individual
points over the operating range of the engine. A
series of MOGP approaches is detailed below.

The initial approach did not take into account the
validation criteria. dealing only with model
complexity and performance (as in Example 1).
These were considered as "soft" objectives (that is.
not "hard" constraints) and had the same level of
priority. With this approach only linear models
emerged to model the relationship between fuel
flow demand and the HP shaft speed. These results
are graphically represented in Figure 9. where the
cleven objectives are ranged along the x-axis and
the performance achieved for each objective is
indicated in the v direction. In this "parallel co-
ordinates representation”. each line in the graph
represents a potential solution to the design
problem. indicating the achieved objective values
for that solution. All solutions are both non-
dominant and satisfy the prescribed goals as
represented by the "x" marks. Five models
emerged which exhibited similar performance in
terms of residual and long term prediction error
measures. From Figure 9. the number of models
(indicated by individual lines) that satisfv all the
objectives belong to the ARX model (linear)
expressed by

?1‘1: My
vik)= Zapk=i)+ Yhulk-i)+e @0
i o

i= =1

where n,=n,=2 (maximum lags). and ¢ is a
constant value. The structure of each model is
specified in Table 4 (Recall that while the MOGP
process obtained only linear models in the non-
dominant set, the formulation permitted non-linear
model descriptions).

Table 4: Fuel flow-HP shaft speed linear model

structures.
Model a; az by b, c
1 A A A
2 A A A A
3 A A A A
4 A A A A
5 A A A A A

Linear Validation

Since linear engine models were obtained from the
previous experiment, the first step in model
validation is to test the associated correlation
functions. Therefore, in a second approach to the
identification of this system, a validation stage was
included, based on the evaluation of the
autocorrelation of the residuals (ACF), the
crosscorrelation between the residuals and input
(CCF). This functions are given as

Do (1) = E[e(k —1)e(k)]=8(z)
D (t) = E[u(k -1)e(k)]=0 V1 an

The correlation objective functions were cast as
constraints. The target value to be attained was
given by the 95% confidence limit. Scalar
measures of correlation were selected to be

CCF = max {{,¢ (1)},

(12)

ACF = max {® (1))},
where D(1) is set equal to 0, for T=0, otherwise
ACF would always be 8.

The identification then sought valid models in the
space of all possibilities. In this experiment, this
method provided a set of non-linear, instead of
linear, models which satisfy the wvalidation
requirements. Note that in Figure 10 there are two
linear models but these do not meet the constraints
related to the validation criteria, Objectives 12 and
13. The optimisation produced these linear models
because objective 2 (see Table 5) was assigned the




same level of priority as the correlation functions. models generated in the previous approach (see .
Note that models with a non-linear degree of two Objective 1).
and three possess a few more terms than the linear

Polynomial NARMAX Identification.
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Figure 9: Multiobjective genetic programming framework (multisine input signals).
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Figure 10: Model complexity, performance and linear statistical validation.




Validation of Non-linear Engine Models

Although the ACF and CCF constrainis were
satisfied. these two conditions are not sufficient in
order to provide unbiased non-linear models. For
the purpose of non-linear system validation. high-
order correlation tests (Billings and Voon. 1986)
must also be evaluated and these are described by

d)E(Eu)(T) = E[E(k)s(k -1 )u(k —1‘)]= 0 120
(Duga(‘r):EHuz(k)—E{uz(k)}}f(k—T)]=0 2
(1)=E[{uz(k)—g{u?(k)}}e"(k—T)]=0 2

(13)

e
-
L]

The objectives considered for the next application
of MOGP now relate to model structure,
performance and non-linear validation aspects (as
summarised in Table 5). This objective function
vector is defined as

F = [NT. DEG. LAG, VAR;. LTPE; ACF,CCF. HOC 7]
- (14)

where NT is the number of model terms. DEG is
the degree of non-linearity, LAG is the maximum
model lag, J74R; and LTPE; correspond to the
residuals variance and long-term prediction error,
respectively, and 7 identifies the test signal used.
The validation stage was based on the evaluation of
the autocorrelation of the residuals (4CF). the
crosscorrelation between the residuals and input
(CCF). and higher order correlation functions
(HOC)). The HOC;  functions. as defined in
equation (13), are used to determine whether the
correct non-linear terms are detected in the model

Table 5. Description of the objectives considered in the
MOGP-identification procedure.

Attribute | Objective Description
Modsl 1 Model size Number of process and noise terms
complexiny
2 Model degree Maxunum order femm
3. Model lag Maximum lagged input. output and noise
terms
Model 4. Residual Vanance of the predictive eror between the
Performance vanance OSAPE and the measured outpuls
5. Long-term Vanance of the LTPE
prediction error
Model 6. ACF Autocorrelanon, crosscorrelation and hugher-
validahon 7.€CF order correlaton based funcuons
8-10 HOC, as
defined in
equation (13)

correlation functions were considered as "hard"
objectives, i.e. constraints,

As can be observed from these results. even though
the terminal set 7'in the GP method included past
values of the residuals ({e(k-1). .... e(k-n.)}). no
NARMAX structures arose. Instead. only NARX
model structures emerged.

Validation Using Global Simulation

In this section, the previous set of quadratic models
is validated on different data sets from the ones
used for identification. Ramp testing signals were
used to exercise the nonlinear models over a wide
operating range. Figures 11 to 13 show the
measured and the long-term predictive outputs of
models 1 to 3, respectively, over a triangular wave
of period 100s with amplitude such as to cause
variations of the NH from 65% to 85%.

Table 6: Quadratic Polvnomial Models.

Term\Mode] 1
c A
y(k-1) A
y(k-2) A
u(k-1)
u(k-2)
y(k-1)?
v(k-2)?
y(k-1uk-1)
v(k-2)u(k-2)
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By evaluating the higher-order correlation tests,
the number of non-dominated (or preferred)
models tended to be more selective because of the
number of restrictions (constraints) that had to be
satisfied. The final set of valid non-linear models
generated by means of this new approach is
described in Table 6. As in the previous approach.
objective two (model degree) and the higher-order

100

7 " . L
q.']l] 55 60 65 70 75
Time [ms)

iigure 11: Predictive oﬁfput of a U‘ianléﬁidr Waveusmé
model 1. Solid line (measured), dashed line (predictive).
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“Figure 12: Predictive output of a triangular wave using
model 2.Solid line (measured), dashed line (predictive).
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HFigure 13: Préd{ctive out;;ut of a triangular wave usmg_
model 3. Solid line (measured), dashed line (predictive).

As illustrated in Figs 11-13, models 1 and 3
exhibit a better response than model 2. For the
three-level periodic sequence (Fig. 14), again
model 2 gives an inferior predictive response.
Model 3 predicts better than model 1 which shows
a small offset of NH.

Based upon the non-linear structure of model 3.
three-level (Figurel4) and large transient (Figure
15) data were additionally used for modelling the
engine relationship between the measured fuel flow
and the high pressure shaft speed. As a result of
this study. this model is selected as the most

appropriate; the structure and parameters of this
quadratic NARX engine model are

yik) = -1.16256x10° + 7.96090x1 07 y(k-1)
4 2.39363x] 07 y(k-2) + 4.33425x10" ufk-1)

- 5.90401x10" uik-2) - 437337107 ye-1)° (15)

7. CONCLUSIONS

An evolutionary algorithm based upon the
NARMAXrepresentation has been introduced as an
alternative approach for non-linear system
identification problems. Genetic programming has
proved to be a powerful tool for formulating and
solving complex system identification problems, in
particular for determining system structure.

Additionally, the incorporation of a multiobjective
approach has enabled the separate consideration of
different objectives related to model complexity
and model performance. The validation process
can be also included in this multiobjective
framework.

In comparison with conventional identification
techniques (as used in Example 1), multiobjective
evolutionary identification methods provide a
family of candidate models which satisfy diverse
objectives. This enables the modeller to select the
appropriate  model depending on  specific
circumstances.

In the search for a valid engine model (Example
2), the multiobjective GP identification method has
been demonstrated to perform effectively. The set-
up of statistical validation criteria as "hard"
constraints instead of being considered as “soft"
objectives, directed the search process to reveal
valid models.

Note that this differs from an operating regime
approach (Johansen and Murray-Smith, 1996)
which approximates the system by local linear
models; instead, it has the advantage of producing
a simple and accurate non-linear global model for
this test case involving an industrial application.

Fitness function evaluation is time consuming
when using this approach, in view of the multiple
objectives involved. Compared with “conventional”
methods, more time is spent running the
identification method. While this is a shortcoming
of this approach. it is offset by the ability of this
evolutionary-based  identification —method to
produce valid non-linear models which confer a
high level of credibility on the model. The ability
to cope with different situations. as shown by the
different test responses for the gas turbine engine
example, demonstrates the flexibility of the
approach.
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Figure 15 Fast acceleration/deceleration signal (55% to
85% NH).
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