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ABSTRACT

This paper discusses an object-oriented
approach for the implementation of genetic
programming (GP) in C++ programming
language. Basic GP data structures have
been formulated and their implementation
aspects have been discussed.

Keywords - Genetic programming, automatic
programming, object oriented programming, C++.

1. INTRODUCTION

Genetic programming (GP) is a major variation of GA to
automatic generation of computer programs, which are
evolved to solve or approximately solve problems [1-4].
The evolving individuals are themselves computer
programs represented usually by tree structures. In tree
representation for GP, the individual programs are
represented as rooted trees with ordered branches. Each
tree is composed of functions as internal nodes and
terminals as leaf nodes of the problem. To solve a
particular problem, it is required to define a priori a
terminal set T and a function set F, such that the selected
functions and terminals will be useful to get the solution
for the problem. Each function in the function set must
satisfy the closure property by accepting gracefully as
arguments the return value of any other function and any
data type in the terminal set.

GP starts with an initial population of randomly generated
tree structured computer programs. A fitness is assigned
to each individual program that evaluates the performance
of the individual on a suitable set of test cases. Individuals
are selected based on their fitness and the selected
individuals are allowed to survive. Then, crossover creates
offspring by exchanging subtrees between two parent trees
at selected random crossover points. An example of this
crossover mechanism has been illustrated in Fig. 1. Other
genetic operators such as mutation, permutation, editing
and a define-building block operation are rarely used [1].
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A steady state GP algorithm used in this implementation is
shown in Fig. 2.
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Fig.1. Sub-tree crossover in GP. Crossover siles are
shown with cross marks on parent trees

Steady State GP Algorithm

Step - 1. Initialise the population

Step - 2. Select the winner or winners from a randomly
sampled subset of population (competitors) using some
selection algorithm.

Step - 3. Procreate offspring by modifying the selected
winners with genetic operators.

Step - 4. Replace the worst individual with the offspring.
Step - 5. If the termination criterion not satisfied Then

repeat Steps 2-5. else output the single best individual of
the entire run.

Fig. 2. The structure of a steady state GP algorithm.




The implementation of tree structured individuals and
their subsequent manipulation involves the complexities
of their dynamic creation and evaluation. To generate
syntactically correct programs, programming languages
like LISP, C, or C++ are used. All the programs are
represented internally as parse trees. Koza selected LISP
programming language which has the property that the
functions can easily be visualised as trees with syntax in
prefix form, and the syntax is preserved by restricting the
language to suit the problem with appropriate number of
constants, variables, statements, functions, and operators.
Recently, GP software developers are using mostly
compiled languages such as C and C++, because of their
faster speed to evaluate the individual fitness functions,
where GP spends most of their time. To date very few
publications [5-8] discussed the implementation aspects of
GP in C++. In this paper, an object oriented approach
using C++ programming language has been described.
Here, the variable length tree structures are implemented
using pointers.

2. GENETIC PROGRAMMING
DEVELOPMENT

Essentially, GP manipulates a population of variable
length tree structured computer programs using genetic
operators. Where each computer program, known as an
individual, consists of functions and terminals. These
functions, terminals and their attributes are imbued inside
tree nodes. This can be interpreted as that each individual
computer program tree consists of nodes, and a collection
of different types of such trees constitutes a population.
Then genetic operators are applied on this population to
evolve better individuals with the progress of the
generation. This hierarchy is shown in Fig.3. This makes
it clear that nodes serve as the key component of a GP
system, around which the entire GP system is developed.
So our GP system development starts at this point treating
nodes as its stepping stones. As already discussed, nodes
may either be a function node or a terminal node. This
feature is illustrated in Fig. 4. The classification of nodes
in this manner sprouts our object oriented design
philosophy. As a first step towards object oriented design,
the base class node is formed, and from this both function
and terminal nodes are inherited. In the next step, this
base node class has been converted to an abstract class
with the inclusion of pure virtual node accessing
functions. In Fig. 4, the dashed box represents an abstract
base class and the lines indicate that the classes are
publicly derived from its base class. The detailed data
structure for these are described in the next section.

3. GENETIC PROGRAMMING DATA
STRUCTURES AND
IMPLEMENTATION

The implementation of GP in C++ accommodates the
following basic data structures:

e System input for both function nodes and terminal
nodes

e Node features of each function node and terminal
node

e Individual program tree

e  Population of individuals

All these data structures are described in the following
subsections.

POPULATION

Consists of

INDIVIDUAL
PROGRAM TREES

Consists of

NODES

Fig. 3. Genetic programming structure

NODE

FUNCTION NODE TERMINAL NODE

Fig. 4. Node hierarchy

3.1 SYSTEM INPUT DATA

In general a node can completely be defined with the
following four primary attributes:

Types of nodes, i.e., function node or terminal node
Arity of the node

Node objective

Value of the node

These primary attributes can not completely define a
particular node in a linked list of tree nodes. Hence, for
the identification of a specific node in a tree, it needs to
add some extra attributes, categorised as secondary
attributes, those are:

e  Node number, and




e Level at which the node is placed in a tree, i.e., depth
information,

These secondary attributes are useful for implementing
different genetic operators such as crossover and
mutation, and evaluating a tree. Fig. 5 illustrates the
implementation of these node attributes. The character
variable Name in the structure implementation of Data
assigns a particular single character symbol to a node.
Whereas, the depth defines the position of a node in a
tree.

A database has been created to store node functionality,
i.e., application specific function set and terminal set. This
has been shown in Fig. 6. Here, function and terminal sets
are stored in arrays of size FUNCSIZE and TERMSIZE,
respectively.

structure Data

{

/f Primary Attributes
int nodeType;

int Arity;

char Name;

float Value;

/! Secondary Attributes
unsigned int nodeNumber;
unsigned int depth;

}; // end of Data

points to the brothers of the oldest son, i.e., LeftmostChild
and RightSibling pointers keep track of all the sons of a
given node. Label holds all the attributes of a given node,
so it is of type structure Data, as illustrated in Fig. 5. Two
pure virtual functions have been added to acquire the node
information. The implementation of node class is shown
in Fig. 8.

Label

LeftmostChild

RightSibling

Virtual Functions

Fig. 7. Node Data Structure

Fig. 5. Representation of Node Attributes

class FTValues

{

public:

void DefineFunctionSet();

void DefineTerminalSet();

void SetNumberofFunctions();

void SetNumberofTerminals();

void SetTotal();

private:

FunctionNode FArray[FUNCSIZE];
TerminalNode TArray[ TERMSIZE];
int numberofFunctions;

int numberoflnputs, total,

}; // end of class FTValues

typedef Node* PtrType;

Class Node

{

public:

virtual void SetData() = 0;
virtual Data GetData() = 0;

void SetDepth(unsigned int);
void SetNodeNumber(unsigned int);
unsigned int GetDepth();
unsigned int GetNodeNumber();
Data Label;

PurType RightSibling;

PtrType LeftmostChild;

} // end of Class Node

Fig. 6. A Class Structure Representing Function and
Terminal Sets

3.2 NODE DATA STRUCTURE

In this implementation, each node has three fields,
LeftmostChild, Label (data field) and RightSibling. This
is shown in Fig.7. LeftmostChild pointer points to the
oldest son of a given parent node and RightSibling pointer

Fig. 8. Node Class Representation

Function nodes and terminal nodes are publicly derived
from class node. Function nodes have child nodes, whose
number depends on the type of the function. This makes
the program to accept any type of user defined functions.:
On the other hand, the terminal nodes consist of inputs
and constants. When a particular terminal node is selected
to serve as an input node, its value changes during run
time training phase to accept different input test samples.
Whereas, if a terminal node is chosen to be a constant
then a random number is substituted in its value field
during its construction, and its value usually remains
constant throughout the test phase. In some cases these
constants may change with application of special type of
mutation operator [9]. Terminal nodes do not accept any
input. The class structures for function and terminal node
are shown in Fig. 9 and Fig. 10, respectively. The member
functions SetData() and GetData() are defined to set and
retrieve all the input values.




class FunctionNode : public Node
{
public:
FunctionNode(); / Constructor
~FunctionNode(); // Destructor
void SetData();
Data GetData();
}; // end class FunctionNode

Fig. 9. FunctionNode Class Representation

int dummyVar = CNode->Label. Arity;
if(dummyVar != 0)
{
depthCount = CNode->Label. GetDepth();
MakeList(dummyVar, Ft);
SetChildren(CNode);
AssignDepth();
} // end inner if
CreateTree(CNode->LeftmostChild, Ft);
CreateTree(CNode->RightSibling, Ft);
} // end outer if

} // end CreateTree

class TerminalNode : public Node
{
public:
TerminalNode(); // Constructor
~TerminalNode(); // Destructor
void SetData();
Data GetData();
}; // end class Terminal Node

Fig. 11. Creation of Tree

Fig. 10. TerminalNode Class Representation

3.3 THE TREE CLASS

The individual computer program trees implemented here
are rooted general trees [10-12]. The LeftmostChild
pointer of each node points to the oldest or the first child
of that node and the RightSibling pointer points to the
nodes next sibling. Each tree keeps note of its root node
pointer only. Once the root pointer is defined, the entire
tree can be constructed recursively by linking through
each nodes leftmost child and right sibling pointer fields.
This has been described in Fig. 11 in the routine
CreateTree(..), which is a member function of class tree.
Other important membership functions of class tree used
to create a complete tree are MakeList(.), SetChildren(.)
and AssignDepth(). The MakeList(.) member function
creates a linked list of children of a node and
SetChildren(.) member function sets this linked list of
children to their parent node. AssignDepth() member
function helps to create a tree of prespecified depth. The
tree class incorporates all tree manipulation functions,
such as evaluating a tree, assigning node numbers and
depths to each node, and displaying trees and their
parameters. The tree class has been illustrated in Fig. 12.

class Tree

{

friend class Population;

public:

Tree(); // Constructor

Tree(Tree* ); // Copy Constructor

~Tree(); // Destructor

/! Create Tree

void SetRoot(FTValues&); // sets Root Node

void CreateTree(PtrType, FT Values&);

void MakeList(int, FTValues&);

void SetChildren(PuType);

/{ Evaluation

void Evaluation();

void FitnessEvaluation(PtrType);

// Displaying and Acquiring Tree Parameters

private:

PuType Root;

PtrType StartPtr, CurrentPtr, EndPtr; // Creates
Linked List

FunctionNode *FList; // Holds Functions

TerminalNode *TList; // Holds Terminals

}; // end Class Tree

Fig. 12. Tree Class Representation

Void Tree :: CreateTree(PtrType CNode, FTValues& Ft))
{

if(CNode)

{

class Population
{
public:
/I Population Initialisation
Population(); // Constructor
~Population(); // Destructor
void Initialise(FT Values&);
/! Genetic Operators
/I Selection
void Selection();
Tree* FindBest();
int FindWorst();
/! Crossover
void Crossover();




// Mutation
void Mutation();

{/ Book Keeping Functions
private:

Tree Pool[PopulationSize],
Tree* Parent[2];

unsigned int crossNode;

// end Population Class

Fig. 13. Population Class
3.4 POPULATION CLASS

The final class in the discussion of GP is population class.
Until now, we have seen how to develop a tree. In all
evolutionary computation methods, a population of
candidate solutions is maintained, which then gets
manipulated by the use of genetic operators. Being the
size of the population is prespecified, so here a fixed array
of tree objects are created. Then these trees are
manipulated using crossover and mutation operators fto
procreate offspring to progress the generation. The
population class holds all the tree manipulation functions
and their book keeping jobs, which is shown in Fig. 13.
The crossover operation swaps [wo randomly selected
subtrees of two parents to produce two offspring. The
crossover membership function implementation is shown
in Fig. 14. All the classes are defined to be hierarchically
friends (not shown in the respective class representations).

Woid Population :: Crossover()
{
unsigned int dummyDepthl, dummyDepth2,
crossPoint1, crossPoint2;
PurType crossNodel, crossNode2, parentNodel,
parentNode2, dummyPtr;
Boolean FLAGI, FLAG2;
Tree dad, mum,;
do
{
dad.Root = dad.CopyTree(Parem[O]};
mum.Root = mum.CopyTree(Parent[1]);
crossNodel = SelectNode(Parent[0]); / Select a Random
Node
crossPointl = crossNode 1->GetNodeNumber();
// Get the Node to which crossNodel is connected
parentNodel = GetCrossNode(Parent[0]->Root,
crossPoint1);
crossNode2 = SelectNode(Parent[1]); // Select a Random
Node
crossPoint2 = crossNode2->GetN odeNumber();
parentNode2 = GetCrossNode(Parent[1]->Root,
crossPoint2);
if((paremNGdc1->Leftm05tChild)&&((parentNode1—
>GetNodeNumber()+1) == crossPointl))
FLAG1 = TRUE,;
else FLAG1 = FALSE;

if((parentN ode2->LeftmostChild)&&((parentNode2-

>GetNodeNumber()+1) == crossPoint2))
FLAG?2 = TRUE;

else FLAG2 = FALSE;

if(FLAGI == TRUE)&&(FLAG2==TRUE))

{

dummyPtr = crossNode1->RightSibling;
crossNodel->RightSibling = crossNode2->RightSibling;
crossNode2->RightSibling = dummyPtr;
dummyPtr = parentN ode1->LeftmostChild;
parentNodel—>LeftmostChi1d =
sLeftmostChild;
parentNode2->LeftmostChild = dummyPtr;
} // end if

if(FLAG1 == TRUE)&&(FLAG2==FALSE))
{
crossNode]->RightSibling = crossNode2->RightSibling;
crossNode2->RightSibling = NULL;
dummyPtr = parentN odel->LeftmostChild;
parentNodel ->LeftmostChild =
>RightSibling;

pareniNodeZ->RightSib1ing = dummyPtr;

} // end if

if((FLAGI1 == FALSE)&&(FLAG2==TRUE))

{

crossNodel->RightSibling = crossNode2->RightSibling;
crossNode2->RightSibling = NULL;
dummyPtr = parentNode1->R1i ghtSibling;
parentNodel—>RightSib1ing =
>LeftmostChild;
parentN0d32->Leftmolehild = dummyPtr;
} // end if

if (FLAG1 == FALSE)&&(FLAG2==FALSE))
{

dummyPtr = crossNode1->RightSibling;
parentNodel->RightSibling =
>RightSibling;
parentNode2->RightSibling = dummyPtr;
} I end if

// Renumber the Offspring

// Evaluate the Offspring

// Calculate the New Depth
dummyDepthl = Parent[0]->GetMaxDepth();
dummyDepth2 = Parent[1]->GetMaxDepth();

} while((dummyDepthl > maxCrossDepth) |l
(dummyDepth2 > maxCrossDepth));

// Replace two worst offspring by dad and mum

} // end Crossover :

parentNode2-

parentNode2-

parentNode2-

parentNode2-

Fig. 14. Crossover Operation

4. AN EXAMPLE OF SYMBOLIC
REGRESSION

As an example of GP, consider the problem of symbolic
regression. For this task a set of data points have been




provided, and the job is to find the underlying functional
relationship in symbolic terms.

Suppose given a set of 10 data points i)n terms of x and y
co-ordinates of a simple function y = x“/2 [2].

The preliminary preparatory steps decided are:
e Terminalset - T = {x,R}

where variable x is set a particular value during training
and R is an integer random number between -5 and 5, i.e.,
whenever the terminal element R is selected as a node
then at that point a random integer number between -5 and
5 is inserted into the tree as the terminal node value.

e Functionset - F = {+ -, * %]
20
e  Fitness function: 1/(1+0.5 Z ei2 )

i=1

where e; is the difference between the actual and
calculated value of output y; for a given input x;. A total
of 10 fitness cases have been chosen between the interval

[0, 11.

e Control parameters: The control parameters used for
this example are shown in Table 1. In addition to this,
there is the provision of assigning probabilities to
selection of function and terminal nodes. For this
regression example, the probability of selecting a
function node is taken as 0.75.

e Termination criteriaz When, maximum number of
function evaluations reached. Here, the maximum
number of function evaluations is set to a value of
600, excluding the function evaluations for the initial
population.

After defining above five preliminary steps, the actual GP
process will be progressed as per the steps outlined in
Fig.2. Fig. 15 illustrates the variation of the fitness of the
best individual in the population, modifying at a time, two
of the individuals in the entire population pool. After 284
(2x 127 + 30) function evaluations the program produces
the exact parsimonious output of (xx (x/2)). After this
point, the same individual tree remains in the pool through
out the rest of the period, which is contrast to the result
reported by Banzaf et al. [2]. Fig. 16 illustrates the
variation of the average fitness of all the individuals in the
pool. The control parameters reported in Table 1 is a
rough comparison between both the methods. To make a
rigorous comparison it is required to know the
implementation details of the program used by Banzaf et
al.

5. DISCUSSIONS AND CONCLUSIONS

In this implementation all the basic C++ class structures
have been described, which can easily be modified for
incorporation of new features. Pointer based approach

have been followed keeping in view the large memory
requirements of GP. Of course, the additional pointer
indirection requires more time to run the program, in
addition to other program complexity overhead. This
program has been implemented on a Pentium II based PC
using Microsoft Visual C++ Compiler. The developed
program can very easily be used to solve various
applications with only few minor changes in the program
construct such as fitness functions and new node function
definitions.
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Fig. 15 Best Score of the Regression Example
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Fig. 16 Average Score of the Regression Example

This implementation stresses on the number of function
evaluations rather than number of generations, where the
former makes it easy to compare the performance of
different available GP algorithms. The reported results on
regression analysis indicates the efficacy of the developed
software and to strengthen this point it is required to
consider more examples. In the future work this software




with certain modification will be used for more complex
task of robot control.
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Table 1: Control Parameters

Parameters Values used Values used in
in reference this paper
[2]
Population size 600 30
Selection method Tournament Tournament
Selection Selection
Tournament Size 4 4
Maximum tree 200 10
depth after
crossover
Initialisation Grow Grow
method
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