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Abstract

InMethanococcus maripaludis S2, the swimming organelle, the archaellum, is composed

of three archaellins, FlaB1S2, FlaB2S2 and FlaB3S2. All three are modified with an N-linked

tetrasaccharide at multiple sites. Disruption of the N-linked glycosylation pathway is known

to cause defects in archaella assembly or function. Here, we explored the potential require-

ment of N-glycosylation of archaellins on archaellation by investigating the effects of elimi-

nating the 4 N-glycosylation sites in the wildtype FlaB2S2 protein in all possible

combinations either by Asn to Glu (N to Q) substitution or Asn to Asp (N to D) substitutions

of theN-glycosylation sequon asparagine. The ability of these mutant derivatives to comple-

ment a non-archaellated ΔflaB2S2 strain was examined by electron microscopy (for archae-

lla assembly) and swarm plates (for analysis of swimming). Western blot results showed

that all mutated FlaB2S2 proteins were expressed and of smaller apparent molecular mass

compared to wildtype FlaB2S2, consistent with the loss of glycosylation sites. In the 8 sin-

gle-site mutant complements, archaella were observed on the surface of Q2, D2 and D4

(numbers after N or Q refer to the 1st to 4th glycosylation site). Of the 6 double-site mutation

complementations all were archaellated except D1,3. Of the 4 triple-site mutation comple-

ments, only D2,3,4 was archaellated. Elimination of all 4 N-glycosylation sites resulted in

non-archaellated cells, indicating some minimum amount of archaellin glycosylation was

necessary for their incorporation into stable archaella. All complementations that led to a re-

turn of archaella also resulted in motile cells with the exception of the D4 version. In addi-

tion, a series of FlaB2S2 scanning deletions each missing 10 amino acids was also

generated and tested for their ability to complement the ΔflaB2S2 strain. While most variants

were expressed, none of them restored archaellation, although FlaB2S2 harbouring a

smaller 3-amino acid deletion was able to partially restore archaellation.
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Introduction

N-glycosylation is a prevalent protein modification found in all three domains of life in which

the attachment of the glycan is via the nitrogen atom in asparagine residues located in the accep-

tor glycoprotein [1–6]. General features of theN-glycosylation pathways are shared among the

three domains [1–3,5,7,8]. The N-glycan precursor is first synthesized on a phosphorylated iso-

prene-based lipid carrier, either a dolichol derivative in Eukarya and Archaea, or an undecapre-

nol derivative in Bacteria, via the activities of glycosyltransferases. The assembled lipid-linked

glycan is then flipped across a membrane, i.e. to face into the lumen of the endoplasmic reticu-

lum in Eukarya or to the external face of the cytoplasmic membrane in Archaea and Bacteria. A

signature enzyme of the pathway, the oligosaccharyltransferase (OST), transfers the completed

glycan en bloc from its lipid carrier to select Asn residues in target proteins, although further

sugars can still be added to the protein-bound glycan. The Asn residue to which theN-glycan is

attached is usually located in an Asn-Xaa-Ser/Thr sequon (Xaa cannot be Pro), although in

some Bacteria, i.e. Campylobacter spp., a negatively charged amino acid residue is also needed at

the-2 position. Between the two prokaryotic domains, Bacteria and Archaea, N-glycosylation

appears to be much more widespread among Archaea, where 166 of 168 sequenced genomes ex-

amined contained at least one copy of a gene encoding the archaeal OST AglB [9]. A variety of

archaeal proteins, mainly S-layer proteins and the subunits of surface structures including both

pilins and archaellins (formerly archaeal flagellins [10]), have been shown to be modified with

N-glycans [11–18]. Recent work on archaeal N-glycosylation systems has combined both struc-

tural and genetic methods, typically using archaellins and S-layer proteins as reporter proteins.

Since the first archaeal glycosylation (agl) genes were identified in 2006 [14,19], this combined

approach has focused on a few key archaeal model organisms [20]:Methanococcus maripaludis

S2,Methanococcus voltae PS,Haloferax volcaniiH53 and Sulfolobus acidocaldariusMW001

[1,6,11,12,15,16,21]. Interestingly, theN-glycosylation pathway is not essential for any of the

three studied euryarchaeotes (M. maripaludis S2,M. voltae PS andHfx. volcaniiH53), as mu-

tants carrying a deletion or insertional inactivation of aglB were readily obtained [14,19,22].

However, in the crenarchaeote S. acidocaldariusMW001, repeated attempts to delete or inter-

rupt aglB were unsuccessful and only the integration of a second copy of aglB into the genome

allowed for the deletion of the original aglB [23]. The key reported effects that result from per-

turbation or complete abolition of theN-glycosylation pathway in Archaea are on S-layer stabil-

ity, growth of cells at high salinities and on archaellation and motility [18,19,22,24–30].

The archaellum (formerly archaeal flagellum) is the major motility apparatus found in Ar-

chaea [10]. It is a rotating appendage unrelated to the bacterial flagellum but bearing instead

similarities to the bacterial type IV pilus. These similarities include homologous ATPase and

membrane platform proteins involved in assembly of the structure as well as similarities in

their major structural proteins [31–35]. The structural proteins, called archaellins, are made as

preproteins with class III (type IV pilin-like) signal peptides which are removed by a specific

prepilin peptidase-like enzyme (termed FlaK in methanogens or PibD in Sulfolobales and halo-

philes) [36–39]. Signal peptide removal is critical for incorporation of archaellins into the fila-

ment [37, 39]. In addition, it appears that archaellins are commonly modified with N-linked

glycans and interruption of the normal N-glycosylation pathway leads to defects in archaella

assembly or function [1,40]. In species where aglB has been deleted or insertionally inactivated

(M. voltae PS,M. maripaludis S2,Hfx. volcaniiH53), the cells are unable to make archaella. If

the pathway is interrupted at steps that lead to a truncated glycan, there is an impairment in

motility, although archaella are still made unless the truncation is too great [18,19,22]. InM.

maripaludis S2 strain, archaella contain 3 archaellins: the major archaellins FlaB1S2 and

FlaB2S2 form the filament while the minor archaellin FlaB3S2 comprises the hook region [41].

N-Glycosylation Sites in Archaellins
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The three archaellins share sequence similarities including a class III signal peptide cleaved by

FlaK, conserved N-terminal and C-terminal regions, and a hypervariable region in the middle

[41]. The hypervariable regions of FlaB1S2, FlaB2S2 and FlaB3S2 are decorated at multiple posi-

tions with a unique tetrasaccharide [11]. Cells are archaellated if they carry deletions in agl

genes that result in a N-glycan of at least two sugars, but non-archaellated if the deleted agl

gene results in a glycan of only a single sugar or prevents N-glycosylation totally (as in an aglB

deletion) [22,42,43]. These results could mean that the archaellins must be glycosylated at

some or all of its glycosylation sequons by at least a two sugar glycan for those archaellins to be

assembled into a structure. However, an alternative explanation is that the necessity for the gly-

cosylation lies at a different step in archaella assembly.

A major goal of this study was to examine the requirement of N-glycosylation of the major

archaellin FlaB2S2 for archaellation inM. maripaludis S2. FlaB2S2 has five N-glycosylation

sequons, 26NTS28, 66NIT68, 110NLT112, 119NTT121 and 124NWS126. The first sequon 26NTS28 lo-

cated in the N-terminal conserved region was previously reported to be unoccupied with glycan

while the remaining four, located in the hypervariable region, were modified with tetrasacchar-

ide (Fig. 1, [11]). For these experiments, we eliminated the 4 occupied sequons (66NIT68,
110NLT112, 119NTT121 and 124NWS126, designated as the 1st, 2nd, 3rd and 4th N-glycosylation

site, respectively) in all possible combinations (creating single-, double-, triple- and quadruple-

site mutations in FlaB2S2). We also generated a series of FlaB2S2 scanning deletions in an at-

tempt to determine regions of the molecule that were essential for assembly of archaella.

Materials and Methods

Strains and growth conditions

M. maripaludis S2 Δhpt (Mm900) [44],M. maripaludis S2 Δhpt ΔflaB2S2 (ΔflaB2S2 in short

hereafter) [41] and all complemented strains, as well asM. maripaludis ΔRC (formerlyMetha-

nococcus deltae ΔRC [45,46]) were routinely cultured anaerobically in 125 mL sealed serum

bottles containing 10 mL Balch medium III under an atmosphere of CO2:H2 (20:80) at 37°C

with shaking [47]. Cells carrying a complementation plasmid were cultured in the presence of

2.5 μg/mL puromycin for plasmid selection [48]. For swarming assays, cells were inoculated

onto plates of Balch medium III containing 0.25% (w/v) agar in the presence of 2.5 μg/mL pu-

romycin [22]. Escherichia coli TOP 10 cells (Invitrogen Inc.), used for molecular cloning steps,

were cultured at 37°C in Luria Broth (LB) medium with shaking or on LB plates (containing

1.5% w/v agar) in the presence of 100 μg/mL ampicillin for plasmid selection. Strains and plas-

mids used in this study are listed in Table 1.

Construction of mutant flaB2S2 genes using site-directed mutagenesis
(SDM)

To generate mutant flaB2S2 genes, the wildtype flaB2S2 gene was first cloned into the pCR2.1-

TOPO-TA vector (Invitrogen Inc.) to create pKJ902. This pCR2.1-TOPO-flaB2S2 and its deriv-

atives were used as template to generate the mutants listed in Table 2. The wildtype flaB2S2
gene used in cloning was generated by PCR using the complementation primers listed in

Table 3 and genomic DNA fromMm900 as template.

To generate the mutant flaB2S2 genes that would encode proteins in which N-glycosylation

sites were eliminated, the SDM protocol was employed [49]. Forward and reverse mutagenic

primer pairs were designed with nucleotide changes located in the middle of the primer that

would result in a change of the N-glycosylation sequon Asn residue (Table 3). Purified PCR

products were digested with DpnI to remove the template plasmid, repurified and then

N-Glycosylation Sites in Archaellins
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transformed into E. coli TOP10 competent cells. Plasmids extracted from the transformants

were sequenced to confirm the mutation. Using this method, 8 single-site mutant flaB2S2 genes

were generated that resulted in 4 N to Q single-site mutations and 4 N to D single-site muta-

tions in their protein products. Double-site mutant flaB2S2 genes were then generated using the

plasmids with the single-site changes in flaB2S2 as template. The same strategy was used to cre-

ate the triple and quadruple glycosylation site mutant flaB2S2 genes. The multi-site mutant pro-

teins all contained N to D changes only.

The G6 (flaB2ΔRC) gene was amplified by PCR usingM. maripaludis ΔRC whole cells as

template with the complementation primers in Table 3 and subsequently cloned into pCR2.1-

TOPO. The G10 gene whose protein product contains additional glycosylation sites was chemi-

cally synthesized by GenScript USA Inc. (Piscataway, NJ).

Fig 1. Protein sequence alignment of FlaB2S2, G6 (FlaB2ΔRC) and G10. Signal peptide is shown in grey; the first sequon 26NTS28 that is not occupied with
N-glycan is shown in orange; the 4 occupiedN-glycosylation sequons are shown in red; the 3-amino acid 61GTA63 deletion in 3AA is shown in green; extra
sequons in the G6 and G10 are also shown in orange; sequences differences from FlaB2S2 in G6 and G10 that do not introduce new sequons are shown
in blue.

doi:10.1371/journal.pone.0116402.g001

Table 1. Strains and plasmids used in this study.

Strains References

M. maripaludis

M. maripaludis S2 Δhpt (Mm900) 44

M. maripaludis S2 Δhpt ΔflaB2S2 41

M. maripaludis ΔRC 46

E. coli

E. coli TOP10 Invitrogen
Inc.

Plasmids

pCR2.1-TOPO TA cloning vector, Ampr, Kanr Invitrogen
Inc.

pKJ902 flaB2S2 in vector pCR2.1-TOPO This study

pCR2.1-TOPO-flaB2S2
derivatives

Mutant flaB2S2 genes * in vector pCR2.1-TOPO This study

pWLG40 hmv promoter-lacZ fusion plus Purr cassette; Ampr 48

pKJ1064 flaB2S2 in shuttle vector pWLG40 under a hmv

promoter
This study

pWLG40-flaB2S2 derivatives* Mutant flaB2S2 genes * in vector pWLG40 This study

* Please refer to Table 2

doi:10.1371/journal.pone.0116402.t001

N-Glycosylation Sites in Archaellins
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Table 2. Mutated FlaB2S2 derivatives generated in this study.

Mutated FlaB2
derivatives

Description

Control

WT Wildtype flaB2S2 from M. maripaludis S2

Mutated FlaB2 derivatives containing mutations at N-glycosylation sites

N to Q single-site mutation

Q1 FlaB2S2 N66Q

Q2 FlaB2S2 N110Q

Q3 FlaB2S2 N119Q

Q4 FlaB2S2 N124Q

N to D single-site mutation

D1 FlaB2S2 N66D

D2 FlaB2S2 N110D

D3 FlaB2S2 N119D

D4 FlaB2S2 N124D

N to D double-site mutation

D1,2 FlaB2S2 N66D N110D

D1,3 FlaB2S2 N66D N119D

D1,4 FlaB2S2 N66D N124D

D2,3 FlaB2S2 N110D N119D

D2,4 FlaB2S2 N110D N124D

D3,4 FlaB2S2 N119D N124D

N to D triple-site mutation

D1,2,3 FlaB2S2 N66D N110D N119D

D1,2,4 FlaB2S2 N66D N110D N124D

D1,3,4 FlaB2S2 N66D N119D N124D

D2,3,4 FlaB2S2 N110D N119D N124D

N to D quadruple-site mutation

D1,2,3,4 FlaB2S2 N66D N110D N119D N124D

Mutated FlaB2S2 with extra N-glycosylation sequons

G6 FlaB2S2
60AGT62 to 60NGS62, 104DDT106 to 104NIS106, N110D, A129N

G10 FlaB2S2
60AGT62 to 60NGS62, G79T, V88T, 96TTK98 to 96NTT98, 104DDT106 to

104NIS106, A129N

Ten-amino acid scanning deletions

Δ2–10 FlaB2S2 missing 2SGIGTLIVF10

Δ4–10 FlaB2S2 missing 4IGTLIVF10

Δ11–20 FlaB2S2 missing 11IAMVLVAAVA20

Δ21–30 FlaB2S2 missing 21ASVLINTSGF30

Δ31–40 FlaB2S2 missing 31LQQKASTTGK40

Δ41–50 FlaB2S2 missing 41DSTEQVASGL50

Δ51–60 FlaB2S2 missing 51QIMGISGYQA60

Δ61–70 FlaB2S2 missing 61GTANANITKL70 a

Δ71–80 FlaB2S2 missing 71AIYITPNAGS80

Δ81–90 FlaB2S2 missing 81AAIDMNQVVL90

Δ91–100 FlaB2S2 missing 91TLSDGTTKTV100

Δ101–110 FlaB2S2 missing 101TKYDTTAYTN110 a

Δ111–120 FlaB2S2 missing 111LTAGGDLYNT120-a

Δ121–130 FlaB2S2 missing 121TTVNWSKLAD130 a

(Continued)

N-Glycosylation Sites in Archaellins
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For construction of the mutant versions of flaB2S2 whose protein products would contain

scanning deletions, inverse PCR and overlapping primers was employed, again with pKJ902 as

template. The forward primer was designed to contain the flaB2S2 gene sequence flanking the

desired in-frame 30 bp deletion. The reverse primer was complementary to the forward primer

sequence upstream of the deletion (Table 2). After DpnI digestion, purified PCR products were

transformed into E. coli TOP10 competent cells. Recombinant plasmids were extracted from

the transformants and used as template for amplifying the flaB2S2mutant genes by PCR with

the complementation primers listed in Table 2. The smaller flaB2S2mutant genes were identi-

fied by agarose gel electrophoresis of the PCR products which were also sequenced to confirm

the deletion. The same protocol was used to generate the 3 amino acid deletion, 61GTA63,

where the deletion of the 9bp resulted in the removal of an RsaI restriction site. This allowed

for the screening of the flaB2S2 gene in plasmids carried by transformants for the small deletion

by digestion of subsequent flaB2S2 PCR products with RsaI. Lastly, a mutant flaB2S2 gene en-

coding a mutated FlaB2S2 protein with a 10-amino acid deletion at 91TLSDGTTKTV100 had

those amino acids replaced with a copy of the 10 amino acids at 161IIVSGVSFDT170, thereby

generating a substitution mutant version of FlaB2S2 (SUB) that was still the same length as the

wildtype version. All the mutant versions of flaB2S2 generated were sequenced to confirm

the mutations.

Construction of complementation vectors

To generate complementation plasmids forM. maripaludis S2, mutant flaB2S2 genes in the

pCR2.1-TOPO vector were PCR amplified using complementation primers with an NsiI re-

striction site incorporated into the forward primer and an XbaI site into the reverse primer

(Table 2). After NsiI and XbaI digestion, the PCR product was cloned into the shuttle vector

pWLG40 where transcription of the cloned gene is under the control of the strong constitutive

hmv promoter [48]. Mutant flaB2S2 genes in pWLG40 were sequenced to confirm the insert

gene sequence. As a further control, plasmids were re-isolated from the complemented cells

and re-sequenced.

Table 2. (Continued)

Mutated FlaB2
derivatives

Description

Δ131–140 FlaB2S2 missing 131TTEFGIVEIQ140

Δ141–150 FlaB2S2 missing 141DADLSFTSSA150

Δ151–160 FlaB2S2 missing 151PVINKGDIVA160

Δ161–170 FlaB2S2 missing 161IIVSGVSFDT170

Δ171–180 FlaB2S2 missing 171RMEISGTVQP180

Δ181–190 FlaB2S2 missing 181EFGAPGVISF190

Δ194–204 FlaB2S2 missing 194STFTEKV VSLQ204

Three-amino acid deletion

Δ3AA FlaB2S2 missing 61GTA63

Substitution mutant

SUB FlaB2S2 having
91TLSDGTTKTV100 substituted with IIVSGVSFDT

The mutant flaB2S2 genes were first generated in pCR2.1-TOPO and then cloned into the M. maripaludis

expression vector pWLG40.
a bold letters: N-glycosylation sequons with the asparagine underlined

doi:10.1371/journal.pone.0116402.t002

N-Glycosylation Sites in Archaellins
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Table 3. Primers used in this studya.

Complementation primers Notes

comp-F CTAGATGCATGAAAATAACAGAATTCATGAAAAGCAAAAAAGGTGCTTC NsiI

comp-R ACGTTCTAGATTATTGTAATGAAACTACTTTTTCAGTGAATGTTGAAG XbaI

SDM primers

Ten-amino acid deletion primers

2-F ATTCATGAAAAGCAAAAAAGGTGCTATTGCAATGGTATTAGTTGCTGCAG

2-R AGCACCTTTTTTGCTTTTCATGAATTCTG

4-F ATTCATGAAAAGCAAAAAAGGTGCTTCTGGAATTGCAATGGTATTAGTTGCTGCAG

4-R TCCAGAAGCACCTTTTTTGCTTTTCATGAATTCTG

11-F GGAATTGGTACCTTGATTGTTTTTGCAAGCGTTTTAATTAACACAAGCG

11-R AAAAACAATCAAGGTACCAATTCCAG

21-F CAATGGTATTAGTTGCTGCAGTTGCATTACAACAAAAAGCTTCAACAACTGG

21-R TGCAACTGCAGCAACTAATACCATTGC

31-F CGTTTTAATTAACACAAGCGGATTCGATAGTACCGAACAGGTTGCAAGC

31-R GAATCCGCTTGTGTTAATTAAAACGCTTGC

41-F CAACAAAAAGCTTCAACAACTGGTAAACAAATTATGGGTATTAGCGGATACC

41-R TTTACCAGTTGTTGAAGCTTTTTGTTG

51-F GTACCGAACAGGTTGCAAGCGGTTTAGGTACTGCTAACGCAAACATTAC

51-R TAAACCGCTTGCAACCTGTTCGG

61-F GGGTATTAGCGGATACCAAGCAGCAATCTACATAACTCCTAACGCAGG

61-R TGCTTGGTATCCGCTAATACCCATAATTTG

71-F GCTAACGCAAACATTACAAAATTAGCTGCAATAGACATGAATCAGGTTG

71-R TAATTTTGTAATGTTTGCGTTAGC

81-F CATAACTCCTAACGCAGGAAGTACACTTTCAGACGGAACTACAAAAACTG

81-R ACTTCCTGCGTTAGGAGTTATGTAG

91-F GCAATAGACATGAATCAGGTTGTTTTAACTAAATACGATACTACCGCATACAC

91-R TAAAACAACCTGATTCATGTCTATTGC

101-F CTTTCAGACGGAACTACAAAAACTGTTCTAACTGCAGGTGGAGACCTTTAC

101-R AACAGTTTTTGTAGTTCCGTCTGAAAG

111-F ACGATACTACCGCATACACAAACACAACTGTAAACTGGTCAAAATTAGC

111-R GTTTGTGTATGCGGTAGTATCGTATTTAG

121-F GCAGGTGGAGACCTTTACAACACTACTACAGAATTTGGAATAGTTGAAATTC

121-R AGTGTTGTAAAGGTCTCCACCTGCAG

131-F GTAAACTGGTCAAAATTAGCAGATGATGCAGATCTTTCATTTACAAG

131-R ATCTGCTAATTTTGACCAGTTTACAG

141-F GAATTTGGAATAGTTGAAATTCAACCAGTTATCAACAAAGGTGACATAG

141-R TTGAATTTCAACTATTCCAAATTCTG

151-F GATCTTTCATTTACAAGTTCAGCAATTATTGTAAGCGGAGTTTCATTCG

151-R TGCTGAACTTGTAAATGAAAGATCTGC

161-F CAACAAAGGTGACATAGTTGCAAGAATGGAAATTTCAGGTACTGTTCAG

161-R TGCAACTATGTCACCTTTGTTGATAACTGG

171-F GTAAGCGGAGTTTCATTCGATACAGAATTTGGTGCTCCAGGAGTTATTTC

171-R TGTATCGAATGAAACTCCGCTTAC

181-F GGAAATTTCAGGTACTGTTCAGCCAACCACACCTTCAACATTCACTG

181-R TGGCTGAACAGTACCTGAAATTTCC

194-F CATTCACCACACCTTAAACATTCACTGAAAAAGTA

194-R TACTTTTTCAGTGAATGTTTAAGGTGTGGTGAATG

(Continued)

N-Glycosylation Sites in Archaellins
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Complementation of a ΔflaB2S2 mutant using mutant flaB2S2 derivatives

To determine if the mutant FlaB2S2 proteins generated above could restore archaellation and

motility in the ΔflaB2S2 mutant, recombinant pWLG40 plasmids carrying the various mutant

flaB2S2 derivatives were transformed individually into the ΔflaB2S2 mutant using a PEG-based

method [41,50]. Transformants were cultured in Balch medium III containing 0.25 μg/mL pu-

romycin for plasmid selection [48].

Western blot analysis of the ΔflaB2S2 mutant complemented with mutant
flaB2S2 derivatives

Whole cell lysates of complemented cells carrying the various mutant flaB2S2 genes were sepa-

rated by SDS-PAGE (15% gels) and then transferred onto an Immobilon-P membrane (Milli-

pore Inc.) [51]. Mutant FlaB2S2 proteins were detected using chicken anti-FlaB2S2 specific

primary antibody [41]. Horseradish peroxidase-conjugated rabbit anti-chicken immunoglobu-

lin Y (Jackson Immuno Research Laboratories) was used as secondary antibody, and the blots

were developed using Immobilon Western Chemiluminescent HRP Substrate (Millipore Inc.).

Table 3. (Continued)

Complementation primers Notes

Three-amino acid deletion primers

3aa-F ATGGGTATTAGCGGATACCAAGCAAACGCAAACATTACAAAATTAGC

3aa-R TGCTTGGTATCCGCTAATACCCATAATTTG

Ten-amino acid substitution (sub) primers

sub-F TGTAAGCGGAGTTTCATTCGATACAACTAAATACGATACTACCGC

sub-R CGAATGAAACTCCGCTTACAATAATTAAAACAACCTGATTCATGTC

N-glycosylation site mutation primers

Q1-F GTACTGCTAACGCACAAATTACAAAATTAGC

Q1-R GCTAATTTTGTAATTTGTGCGTTAGCAGTAC

Q2-F CTACCGCATACACACAACTAACTGCAGGTGGAG

Q2-R CTCCACCTGCAGTTAGTTGTGTGTATGCGGTAG

Q3-F GTGGAGACCTTTACCAAACTACAACTGTAAACTG

Q3-R CAGTTTACAGTTGTAGTTTGGTAAAGGTCTCCAC

Q4-F AACACTACAACTGTACAATGGTCAAAATTAGC

Q4-R GCTAATTTTGACCATTGTACAGTTGTAGTGTT

D1-F GTACTGCTAACGCAGACATTACAAAATTAGC

D1-R GCTAATTTTGTAATGTCTGCGTTAGCAGTAC

D2-F CTACCGCATACACAGACCTAACTGCAGGTGGAG

D2-R CTCCACCTGCAGTTAGGTCTGTGTATGCGGTAG

D3-F GTGGAGACCTTTACGACACTACAACTGTAAACTG

D3-R CAGTTTACAGTTGTAGTGTCGTAAAGGTCTCCAC

D4-F AACACTACAACTGTAGACTGGTCAAAATTAGC

D4-R GCTAATTTTGACCAGTCTACAGTTGTAGTGTT

aUnderlined: restriction enzyme sites

Italic bold: reverse complementary sequences in primer pairs

Italics: mutated amino acid codon

Underlined in italics: mutated DNA base

doi:10.1371/journal.pone.0116402.t003
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Swarming assay of the ΔflaB2S2 mutant complemented with mutant
flaB2S2 derivatives

Complemented ΔflaB2S2 strains carrying plasmids with mutant flaB2S2 genes encoding proteins

having mutations at the various N-glycosylation sites were examined for motility using semi-

solid swarm plates [22]. Briefly, the OD600 of an overnight cell culture was measured and adjust-

ed to 1.0. Five microliters of the adjusted cell culture were inoculated onto semi-solid Balch me-

dium containing 0.25% (w/v) agar using a micropipette in an anaerobic chamber by stabbing

the tip into the agar. Plates were incubated in an anaerobic canister at 37°C for 4 or 6 days.

Electron microscopy of the ΔflaB2S2 mutant complemented with mutant
flaB2S2 derivatives

ComplementedM. maripaludis ΔflaB2S2 cells carrying mutant flaB2S2 genes were collected

from an overnight culture by centrifugation at 20 000 g for 1 min, washed with 2% (w/v) NaCl

and resuspended in phosphate-buffered saline. Resuspended cells were loaded onto carbon-

Formvar-coated copper grids and stained with 2% phosphotungstic acid, pH 7.0. Grids were

examined in a Hitachi 7000 electron microscope operating at an accelerating voltage of 75 kV.

Results and Discussion

Generation of mutant flaB2S2 derivatives

While deletions in genes that affect N-glycosylation are known to cause severe defects in

archaellation and motility [18,22,28,29], it is not clear if the defects are related directly to the

inability of non-glycosylated archaellins or archaellins glycosylated with truncated glycans to

assemble into archaella, or whether the glycosylation defect affected other steps in the assembly

of archaella. For example, it may be that another protein critical for assembly of archaella, but

not an archaellin, must be glycosylated in order to function properly. InHfx. volcaniiH53,

changing the sequence of the major archaellin flgA at any of the 3 examined sequons so that

the encoded amino acid changed from Asn to Gln led to mutant forms of the protein that

could not rescue the swimming defect of an flgA deletion strain, suggesting that each glycosyla-

tion site was necessary for archaellation [18]. However, this is not the case forM. maripaludis

S2. Previous work in this methanogen showed that a strain that had a spontaneous mutation in

flaB2S2 which led to the loss of the 2nd N-glycosylation site of the archaellin that is normally

decorated with the N-linked tetrasaccharide, was, nonetheless, still archaellated and motile

[43]. To examine the possible role that each N-glycosylation site, either alone or in combina-

tion with other sites, might have on archaella formation and motility inM. maripaludis S2, var-

ious mutant flaB2S2 genes whose products were lacking single to quadruple N-glycosylation

sites either by Asn to Gln (N to Q) substitution, or Asn to Asp (N to D) substitution of the

N-glycosylation sequon asparagine were generated and cloned into the complementation vec-

tor pWLG40 (Table 2). For these mutant constructs we used D or Q followed by a number to

indicate that the change was N to D or N to Q with the number representing the site changed,

i.e. Q1 indicates mutant FlaB2S2 with an N to Q substitution at the 1st N-glycosylation site.

In addition, two other mutant genes, designated G6 and G10 (Fig. 1), whose products con-

tain extra N-glycosylation sequons were generated and cloned into pWLG40. The G6 sequence

encodes the wildtype FlaB2ΔRC protein (i.e. FlaB2ΔRC fromM. maripaludis ΔRC). FlaB2ΔRC
and FlaB2S2 share 95% identity, with the differences almost exclusively confined to several

N-glycosylation sites (Fig. 1). Compared to FlaB2S2, FlaB2ΔRC shares 3 sites, plus it has 3 addi-

tional sequons, 60NGS62, 104NIS106, 129NDT131, but it is missing the 2nd N-glycosylation site
110NLT112 in FlaB2S2. The G10 protein has all the sites present in FlaB2S2 and FlaB2ΔRC, with 3
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additional sites created in the hypervariable region at sites requiring only minimal amino acid

changes to generate a total of 10 possible sites (Fig. 1). G6 and G10 both have the 26NIS28

sequon in the N-terminal conserved region that is not occupied with N-glycan in FlaB2S2. After

transformation of these recombinant plasmid pWLG40-flaB2S2mutants into a ΔflaB2S2mu-

tant, the complemented strains were examined for expression of the mutant FlaB2S2 proteins,

archaella formation and cell motility.

Western blot analysis of the ΔflaB2s2 strain complemented with flaB2S2
derivatives containing mutations at N-glycosylation sites

Western blots were run to detect the expression and stability of the various mutant versions of

FlaB2S2 in the complemented ΔflaB2S2mutant. As shown in Fig. 2, all mutant versions of

FlaB2S2 except G10 were successfully expressed in the ΔflaB2S2mutant. All mutant FlaB2S2 pro-

teins were expressed in similar amounts and all appeared stable as judged by the general lack of

any cross-reacting smaller molecular mass bands which could be indicative of protein degrada-

tion. The amount of the G10 version of FlaB2S2 detected in western blots was very low and could

be only observed when blots were overexposed (data not shown). We have found previously that

cells carrying mutations in any gene that prevents assembly of archaella (as in the ΔflaB2S2mu-

tant) often stop transcribing the fla operon after several sub-cultures in the laboratory. This then

makes the complementation of the original gene deletion back to an archaellated state impossi-

ble [22]. For this reason, the presence of FlaE, whose gene is a downstreammember of the fla op-

eron, was also confirmed by western blot to ensure that the fla operon was still transcribed in the

ΔflaB2S2mutant during the course of the complementation experiments (data not shown) [41].

In general, mutant FlaB2S2 proteins missing N-glycosylation sites all had a smaller apparent

molecular mass than that of wildtype FlaB2S2 when examined by western blotting, with the

Fig 2. Western blot analysis of whole cell lysates of the ΔflaB2S2 strain complemented with flaB2S2
with mutations at variousN-glycosylation sites.Mutant FlaB2S2 proteins missing single to quadrupleN-
glycosylation sites showed smaller apparent molecular mass than that of wildtype FlaB2S2. The G6 which
has extra glycosylation sequons migrated slower than wildtype FlaB2S2. The expression of G10 was not
detectable on this blot with normal exposure time. 900: wildtypeM. maripaludis S2 Δhpt. WT: ΔflaB2S2
complemented with wildtype flaB2S2.

doi:10.1371/journal.pone.0116402.g002
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possible exceptions of D4 and Q4 which ran at very close to wildtype size. The greater the num-

ber of N-glycosylation sites eliminated in a particular FlaB2S2 mutant, the faster the mutant

proteins migrated, i.e., single-site mutants had the largest apparent molecular mass, and the

quadruple-site mutant D1,2,3,4 had the smallest. However, the 8 single-site mutants did not

migrate as proteins of the same apparent molecular mass. Of the 8 mutants, D1 and Q1, both

of which had the 1st N-glycosylation site eliminated, had the smallest apparent molecular mass,

while D4 and Q4 had the largest. Similar results were observed from the double-site and triple-

site mutations. In the 6 double-site mutations, FlaB2S2 with D1,2 and D1,3 sites eliminated had

the smallest apparent molecular mass, followed by FlaB2S2 with D1,4 and D2,3 sites eliminated,

while the archaellin having the D2,4 and D3,4 sites eliminated migrated with the largest appar-

ent molecular mass. In the triple-site mutants, FlaB2S2 with any of the 1st N-glycosylation site

eliminated (D1,2,3, D1,2,4 and D1,3,4) migrated at the same apparent molecular mass while

FlaB2S2 with the other triple combination of sites eliminated (D2,3,4) migrated more slowly.

One possible explanation for the observed different electrophoretic mobilities is that mutant

FlaB2S2 proteins lacking the same number of N-glycosylation sites have the same number of

N-glycans attached but the attachment of N-glycan on some sequons might have effects on the

local protein structure so that the glycoprotein is not able to be totally denatured by SDS, thus

resulting in an unusual migration pattern. This unusual electrophoretic mobility has been ob-

served in other similar studies and been the suggested explanation. Human erythropoietin

(Epo) has 3 N-glycosylation sites, and the 3 single-site mutants generated by N to Q SDM

showed uneven migrations on western blot, although all of the 3 mutants had the same theoret-

ical molecular mass but differed only in the position of the N-glycans [52]. Similar uneven mi-

gration was also observed in the 4 single-site mutations of hepatitis C virus envelope protein

E1 each missing one N-glycosylation site [53].

While local folding effects might explain the altered electrophoretic mobility, another possi-

ble explanation for this unusual western blot result is that elimination of the 1st N-glycosylation

site might interfere with the cell’s ability to N-glycosylate the remaining sites, resulting in

FlaB2S2 where not all the remaining sequons are actually occupied (and so run as smaller mo-

lecular mass proteins). On the other hand, it may be that elimination of one or more glycosyla-

tion sites results in the attachment of glycan to the sequon 26NTS28 that is not glycosylated

under our usual growth conditions. This could explain why, for example, the FlaB2S2 mutants

that are missing the 4th N-glycosylation site (D4 and Q4) showed a larger apparent molecular

mass than the other single mutants and close to wildtype size. If D4 and Q4, missing the 4th gly-

cosylation site, now had N-glycan attached at the normally unused sequon, these mutant pro-

teins would have an identical mass as the wildtype. There is precedent for glycosylation at one

sequon influencing what happens at distant sites. For example, it has been reported for rabies

virus glycoprotein that N-glycosylation at one sequon can influence processing of the

N-glycans at a different site on the protein [54]. InM. voltae PS, the archaella are composed of

4 archaellins FlaAMv, FlaB1Mv, FlaB2Mv and FlaB3Mv, which share high sequence similarity in

the N-terminal conserved region with FlaB1S2 and FlaB2S2 [41,55]. Interestingly, the first 40

amino acids in the mature FlaB1Mv and FlaB2Mv including the
26NTS28 sequon, are identical to

those of FlaB2S2, but in the case of theM. voltae PS archaellins, the 26NTS28 sequon was found

to be occupied with N-linked glycan [12]. Clearly, this region of the archaellin can be glycosy-

lated and possibly the 26NTS28 sequon in FlaB2S2might be able to be N-glycosylated inM. mar-

ipaludis S2 under different conditions.

The G6 mutant FlaB2S2 protein (identical to the FlaB2ΔRC) with additional glycosylation

sequons compared to wildtype FlaB2S2 had a larger apparent molecular mass (~32 kDa) than

wildtype FlaB2S2 (~27 kDa) in western blots. Since G6 has 6 N-glycosylation sites (excluding

the 26NTS28 sequon), its larger apparent molecular mass suggests that at least some, and
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possibly all, of the extra sequons are, in fact, occupied since the mass of the tetrasaccharide is

only 1036 Da [11]. Although the expression level of G10 was extremely low, on over-exposed

western blots, the apparent molecular mass (37kDa) of this “artificially designed” glycoprotein

was even larger than G6, indicating that AglB can recognize and transfer glycan to at least

some of the newly introduced sequons in the hypervariable region.

Electron microscopy of the ΔflaB2s2 strain complemented with flaB2S2
derivatives containing mutations at N-glycosylation sites

Complemented cells carrying FlaB2S2 proteins having mutations atN-glycosylation sites were

examined by transmission electron microscopy for archaellation, and the results are listed in

Table 4. The majority of the complementations either restored archaellation to essentially all

cells or were unable to restore archaellation to any cells. In only a couple of cases did the comple-

mentation lead to a population which contained roughly equal number of archaellated and non-

archaellated cells (D1,2 and D3,4). Fig. 3 shows electron microscopy pictures of a number of se-

lected complements (Q2, Q4, D2, D3, D4, D1,3, D2,4, D1,2,4, D2,3,4, D1,2,3,4, G6 and G10).

The archaellation state of the 4 control strains was as expected. Wildtype Mm900 cells (900)

were archaellated while the ΔflaB2S2 mutant strain was non-archaellated. Archaella were

Table 4. Archaellation and swarming ability of complements bearing FlaB2S2 mutants at N-glycosylation sites.

Complements Archaellationa Motility

Controls WT ++ (100%) ++

Blank - (0%) -

NQ single Q1 - (3%)b -

Q2 ++ (100%) ++

Q3 - (3%)b -

Q4 - (0%) -

ND single D1 - (3%)b -

D2 ++ (100%) ++

D3 - (0%) -

D4 ++ (93%) -

ND double D1,2 + (47%) +

D1,3 - (0%) -

D1,4 ++ (97%) ++

D2,3 ++ (100%) ++

D2,4 ++ (100%) +

D3,4 + (60%) +

ND triple D1,2,3 - (0%) -

D1,2,4 - (0%) -

D1,3,4 - (0%) -

D2,3,4 ++ (100%) ++

ND quadruple D1,2,3,4 - (0%) -

Additional sequons G6 ++ (100%) +++

G10 - (0%) -

aFor each strain a minimum of 30 random cells were assessed for the presence or absence of archaella. Values in parentheses describe the percentage

of cells with observable archaella.
bOnly a rare cell was observed with archaella, typically very few in number and abnormally short.

doi:10.1371/journal.pone.0116402.t004
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observed when the ΔflaB2S2 strain was complemented with the wildtype version of flaB2S2, but

not when the ΔflaB2S2 strain was complemented with the empty vector pWLG40.

In the 8 single-site mutation complements, 3 mutant versions of FlaB2S2 (Q2, D2 and D4),

could restore archaellation. In the 3 archaellated complements, Q2 and D2 had different amino

acid substitutions at the same 2nd N-glycosylation site. The N to D amino acid change at the

2nd sequon generated in this study replicates the spontaneous mutation in flaB2S2 that we pre-

viously reported [43]. Both that spontaneous mutant and the complemented cells carrying the

mutant D2 gene generated in this study showed no impairment in archaellation or swarming

motility [43]. These results indicate that missing the 2nd N-glycosylation site alone does not sig-

nificantly interfere with archaellation. In contrast, complementation of the ΔflaB2S2 strain with

flaB2S2 lacking the 4
th N-glycosylation site differed markedly depending on what amino acid

the original Asn was changed to; cells complemented with the D4 version had archaella under

electron microscopy while cells complemented with the Q4 version did not (Fig. 3). None of

the other single-site mutation complements (Q1, Q3, Q4, D1 and D3 (Fig. 3)) were considered

archaellated, although in each of the Q1, Q3 and D1 complementations a rare cell with short

archaella was observed (Table 4).

Among the 6 double-site mutation complements, all but the D1,3 version could assemble

archaella (electron micrographs of D1,3 and D2,4 complemented cells are shown in Fig. 3).

This was surprising since many of these double-site mutants contained eliminated sites which

if deleted alone resulted in non-archaellated cells. In the 4 triple-site mutation complements, 3

complements D1,2,3, D1,2,4 and D1,3,4 were non-archaellated, while archaella could be assem-

bled in D2,3,4 (Fig. 3). However, when all glycosylation sites were eliminated in the comple-

menting version of flaB2S2 (D1,2,3,4), the ΔflaB2S2 cells were not able to assemble archaella.

These results indicate that inM. maripaludis S2, archaella can be assembled using FlaB2S2 lack-

ing as many as 3 out of the 4 glycosylation sites, as long as the first site remained intact

(D2,3,4) but not when the archaellin is entirely non-glycosylated (D1,2,3,4).

In the two complementations where new sequons were introduced into FlaB2S2, different re-

sults were observed. In the G6 complemented cells, the ΔflaB2S2 strain were now archaellated,

suggesting that the FlaB2S2 protein with extra N-glycan modifications in the hypervariable re-

gion could be incorporated into the archaellar filament by the archaella assembly apparatus in

M. maripaludis S2. This was not unexpected since this version of FlaB2 already exists naturally

in the archaellatedM. maripaludis strain ΔRC. In contrast, no archaella were observed on the

ΔflaB2S2 strain complemented with the G10 version. The G10 version had extra glycosylation

sequons added to the internal hypervariable region of the protein. While this protein appeared

to be modified at, at least, some of these additional sequons with glycan, judging from its higher

apparent molecular mass in western blots, it was very poorly expressed in the cells under our

normal growth conditions and this low expression may explain the lack of archaella observed

by electron microscopy (Fig. 3).

Swarming assays of complements with mutant flaB2S2 derivatives
containing mutations at N-glycosylation sites

In addition to the restoration of archaellation, the complemented cells were also examined for

possible restoration of motility using semi-solid agar plates (Fig. 4A). Motility assay results are

summarized in Table 4, which also incorporates the archaellation status of the complemented

strains for comparison.

In general, complemented cells in which archaellation was restored were also motile on

swarming plates and all of the complemented cells that were non-archaellated as determined

by electron microscopy (D1, D3, Q1, Q3, D1,3, D1,2,3, D1,2,4, D1,3,4, D1,2,3,4 and G10) were
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also non-motile on swarm plates, even after an extra 2-day incubation (Fig. 4B). The unusual

exception was the complementation with the D4 version of FlaB2S2 which was archaellated but

non-motile (Fig. 3, Fig. 4A). However, among the motile complemented cells, the swarming di-

ameter was not always returned to the wildtype level. Cells complemented with the flaB2S2
genes carrying D2, Q2, D1,4, D2,3 and D2,3,4, mutations swarmed out to a similar distance on

semi-solid agar (swarming diameter of D2/ WT = 1.01±0.11, Q2/WT = 1.10±0.09, D1,4/WT =

Fig 3. Transmission electronmicrographs of select ΔflaB2S2 strain complemented with flaB2S2 with mutations at variousN-glycosylation sites.
Wildtype Mm900 cell (900) was archaellated, while the ΔflaB2S2 mutant was not. Wildtype FlaB2S2 protein expressed in ΔflaB2S2 restored archaellation
(WT), but the empty vector could not. Archaella were observed on surface of Q2, D2, D4, D2,4, D2,3,4 and G6 complemented cells. Cells complemented with
Q4, D3, D1,3, D1,2,4, D1,2,3,4 and G10 were non-archaellated. Archaella are indicated by arrows. Bar equals 500 nm.

doi:10.1371/journal.pone.0116402.g003
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0.93±0.14, D2,3/WT = 0.96±0.20, D2,3,4/WT = 1.08±0.22), while complements with the

flaB2S2 genes carrying D1,2, D2,4 and D3,4 had a smaller swarming diameter (swarming diam-

eter of D1,2/WT = 0.51±0.05, D2,4/WT = 0.68±0.13, D3,4/WT = 0.52±0.07). For the D1,2 and

D3,4 complementations, the smaller swarming distance may be explained by the lower per-

centage of cells that were observed by electron microscopy to be archaellated, but in the case of

the D2,4 all cells examined were archaellated. Interestingly, G6 appeared hyper-motile as it

consistently swarmed further than cells complemented with the wildtype version of flaB2S2
(swarming diameter of G6/WT = 1.24±0.10).

In Hfx. volcaniiH53, none of the 3 FlgA single-site mutation complements showed motility

[18]. However, in this study,M. maripaludis S2 cells were still as motile as wildtype cells when

the ΔflaB2S2 strains was complemented with flaB2S2 with the D2,3,4 changes, in which archae-

lla were assembled using FlaB2S2 lacking 3 out of the 4 N-glycosylation sites. The structural

protein (flagellin) of the functionally analogous bacterial swimming organelle, the flagellum,

can also be modified with glycan, especially in Gram-negative bacteria, although the linkage is

O-glycosidic rather than N-glycosidic [56,57]. The O-glycan modification in bacterial flagellin

can be critical for flagella assembly, stabilization, motility, and even virulence in pathogens

[56,58–60]. In Pseudomonas syringae pv. tabaci, flagellin FliC has 6 O-glycosylation sites, and

single-site mutations in any of these sites resulted in various impairments in motility, while a

mutant carrying mutations to eliminate all 6 O-glycosylation sites in FliC was non-motile [59].

The structural protein (pilin) from bacterial type-IV pili, structures which share several signifi-

cant similarities with archaella [10,34], can also be O-glycosylated [61,62]. Elimination of O-

glycosylation of type IV pilin resulted in reduced twitching motility in Pseudomonas aerugi-

nosa 1244 and P. syringae pv. tabaci but did not interfere with pili assembly [62,63]. However,

in P. aeruginosa 5196 in which a different O-glycan was attached to the type IV pilin PilA,

O-glycosylation played critical roles in both type IV pili assembly and twitching motility [2,64].

Fig 4. Swarming plates showing the motility of the ΔflaB2S2 strain complemented with flaB2S2with mutations at variousN-glycosylation sites. A.
Plates were incubated at 37°C for 4 days. B. Complemented cells that did not showmotility or showed poor motility after 4 days incubation were incubated a
further 2 days.

doi:10.1371/journal.pone.0116402.g004
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The results obtained with the G6 complemented cells indicate that an increase in glycosyla-

tion can lead to hyper-motility. The western blots results indicate that the G6 version of FlaB2

is hyper-glycosylated compared to the wildtype FlaB2S2 version. Of all the complemented

strains, only the G6 complement consistently demonstrated an increased zone of swarming

compared to the wildtype. Interestingly, similar results were also observed in regards the

O-glycosylation of flagellin inHelicobacter pylori [65] where O-glycosylation of the flagellins

FlaA and FlaB with pseudaminic acid is essential for flagella assembly and cell motility [66,67].

AH. pylorimutant defective in deglycosylation of flagellins showed both hyper-O-glycosyla-

tion (3 fold more pseudominic acid) of FlaA as well as hyper-motility [65]. However, there is a

limit to how many extra sequons can be added to archaellins since archaellin synthesis was

very poor in the G10 complemented cells, even though the small amount of the G10 version

detected was apparently modified at, at least, some of the extra sites.

The data obtained from the glycosylation site elimination mutants indicates that while no

particular single site of glycosylation on FlaB2S2 is essential, nonetheless glycosylation at some

site is necessary for archaella formation. In the case of the 4 triple-site mutants it is clear that

glycosylation of only site 1 is sufficient for archaellation and motility. However, removal of the

1st site did not always lead to non-archaellated cells as witnessed by the archaellated and motile

cells observed in the D1,4 complementation, suggesting that glycosylation of FlaB2S2 at several

different combinations of sites could be sufficient for incorporation of the subunits into func-

tional archaella. In some ways, this is reminiscent of a situation in Wzc, a tyrosine autokinase

essential for capsule formation in E. coli. Phosphorylation of tyrosine residues in the C-termi-

nus of Wzc are necessary for its function but no single tyrosine is essential for phosphorylation

and it was suggested that the overall level of phosphorylation rather than a precise combination

of tyrosine residues accessible to phosphorylation is what is important for Wzc activity [68].

Western blot analysis of the ΔflaB2s2 strain complemented with flaB2S2
scanning deletions

To determine which regions of the FlaB2S2 protein are critical for archaella formation, a series

of FlaB2S2 scanning deletion mutants that sequentially lacked 10 amino acids were generated

in the complementation vector pWLG40 and transformed into the ΔflaB2S2 mutant. The scan-

ning deletions in flaB2S2 were identified since they migrated slightly faster than the wildtype

version of flaB2S2 in 0.8% agarose gels due to the 30 bp deletion (Fig. 5 shows an example for

screening of Δ31–40). For the first 10 amino acids, two versions were generated. The first was

deleted for amino acids 2–10 (named as Δ2–10), leaving the +1 amino acid which we thought

might be important for successful cleavage of the 12 amino acid signal peptide. We also gener-

ated a 4–10 amino acid deletion (named as Δ4–10) since the +3 glycine of the mature protein is

needed for signal peptide removal in archaellins of the related methanogenM. voltae PS [69].

Mutant FlaB2S2 proteins from whole cell lysates of the various complemented cells were de-

tected using anti-FlaB2S2 specific antibody on western blot analysis, as shown in Fig. 6. In the

21 FlaB2S2 scanning deletions, 19 mutant proteins (all, except Δ4–10 and Δ11–20) were readily

detected on western blot by anti-FlaB2S2 specific antibody, although the expression level of Δ2–

10 and Δ21–31 was relatively lower compared to that of the other mutants. Evidence of some

possible protein degradation was observed in the Δ2–10 and Δ161–170 FlaB2S2 as multiple

lower molecular mass bands were detected in these two lanes. These results indicate that some

of the mutant proteins were either not expressed or were unstable and degraded. Fourteen mu-

tant proteins, including Δ21–30, Δ31–40, Δ41–50, Δ51–60, Δ71–80, Δ81–90, Δ91–100, Δ131–

140, Δ141–150, Δ151–160, Δ161–170, Δ171–180, Δ181–190 and Δ194–204, had similar appar-

ent molecular masses, which were smaller than FlaB2S2 from the wildtype strain Mm900 (900)
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Fig 5. PCR screening of the Δ31–40 scanning deletion. Following the deletion procedure, the flaB2S2
gene was amplified using flaB2S2 complementation primers and the PCR product analyzed by agarose gel
electrophoresis along with the amplification product obtained with the wildtype flaB2S2 gene using the same
primers. The scanning deletion is readily distinguished from wildtype flaB2S2 by the faster migration of its 30
bp smaller PCR product M: 100 bp DNA ladder; flaB2S2: PCR products using pKJ902 as template; Δ31–40:
PCR products using plasmid isolated from one colony of the Δ31–40 transformants as template.

doi:10.1371/journal.pone.0116402.g005

Fig 6. Western blot analysis of the ΔflaB2S2 strain complemented with flaB2S2 scanning deletions.
Except for Δ4–10 and Δ11–20, all the FlaB2S2 scanning deletion proteins were expressed, although the
expression level of Δ2–10 and Δ21–30 was relatively low. FlaB2S2 scanning deletion proteins Δ61–70,
Δ101–110, Δ111–120 whose 10-amino acid deletion contains an N-glycosylation site (shown in red) had
smaller apparent molecular masses due to the loss of N-glycan usually attached at this site. Δ121–130
missing the 4th N-glycosylation site (shown in red) had unusual bigger apparent molecular mass than the
other 3 mutants also missingN-glycosylation site.

doi:10.1371/journal.pone.0116402.g006
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or from the ΔflaB2S2 strain complemented with the wildtype version of flaB2S2. This is consis-

tent with the fact that all these mutation proteins are 10 amino acids shorter than wildtype

FlaB2S2. The upper band in the mutant Δ2–10 lane appears slightly larger than the neighboring

WT lane. This might be due to the lack of processing of the archaellin signal peptide in this de-

letion since inM. voltae PS the +3 glycine position was essential for cleavage of the signal pep-

tide by the pre-archaellin peptidase FlaK and this is missing in the Δ2–10 version of FlaB2S2
[69]. The presence of the signal peptide does not prevent the attachment of N-glycans [37] so

this version of FlaB2S2 would be expected to have a full complement of attached N-glycans as

well as the extra amino acids of the signal peptide contributing to make it run slightly larger in

the western blots than the processed wildtype version of FlaB2S2.

The FlaB2S2 mutants Δ61–70, Δ101–110 and Δ111–120 had even smaller apparent molecu-

lar masses compared to the FlaB2S2 carrying other scanning deletions. This can be attributed to

the fact that these three deletions result in the loss of one N-glycosylation sequon. Surprisingly,

the scanning deletion that contains the remaining, 4th, glycosylation sequon, namely Δ121–

131, does not follow this pattern. In this lone case, FlaB2S2 migration in western blots is slower

than the other three deletion mutants missing N-glycosylation sites. This observation is consis-

tent with the results of the N-glycosylation sequon mutation complementations. In the case of

both single 4th sequon mutants (D4 and Q4), FlaB2S2 had a larger apparent molecular mass

than the other single-site mutations (Fig. 2), suggesting either that the lack of glycosylation at

this site has unusual effects on the migration of FlaB2S2 in western blots or that when the 4th

glycosylation site is not available, the normally unoccupied 26NTS28 is now decorated with gly-

can, adding to the molecular mass. Further studies are necessary to confirm the glycosylation

status of this 26NTS28 sequon in FlaB2S2 in these mutant proteins.

Electron microscopy of the ΔflaB2s2 strain complemented with FlaB2S2
scanning deletions

To examine if ΔflaB2S2 cells could assemble archaella after being complemented with any of

the FlaB2S2 scanning deletions, cells from each complementation were observed by transmis-

sion electron microscopy for the presence of archaella. All of the 21 10-amino acid scanning

deletion complements were found to remain non-archaellated (data not shown) even though

most of them produced FlaB2S2 detected by western blot. These results suggested that either all

regions of the molecule were essential for archaella formation or that a certain critical archae-

llin length is important for the archaella filament to be assembled.

Since none of the FlaB2S2 scanning deletion mutants could restore archaellation, we sus-

pected that the 10-amino acid deletion in the scanning deletions was too long for FlaB2S2 to be

assembled into archaella. To address this, we created a shorter 3-amino acid deletion in the hy-

pervariable region of FlaB2S2. This protein was detected by western blot at a similar apparent

molecular mass as the wildtype FlaB2S2 (Fig. 7A). The examination of ΔflaB2S2 cells comple-

mented with the Δ3AA version of flaB2 by electron microscopy revealed that even with this

short deletion, only approximately half of the complemented cells were archaellated (Fig. 7B).

These results suggest that a 3-amino acid deletion might be the shortest deletion that FlaB2S2
could tolerate and still be assembled into archaella filaments.

We also tried to examine the possible length requirement of archaellins in a different way.

In a FlaB2S2 that was already deleted for
91TLSDGTTKTV100, we inserted into this spot

IIVSGVSFDT (originally from 161IIVSGVSFDT170), creating a FlaB2S2 hybrid that had amino

acids 91–100 replaced with a second copy of amino acids 161–170 so that the resulting length

of the FlaB2S2 (dubbed a substitution; SUB) was wildtype. Both the donor and the acceptor re-

gions are located in the hypervariable region of FlaB2S2, and do not contain N-glycosylation
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sequons to minimally reduce the effects from disruption of the conserved regions that might be

involved in subunit-subunit interaction or in glycosylation. The SUB protein was expressed in

the complement cells and showed similar apparent molecular mass as that of WT protein, as

expected (Fig. 7A). However, the SUB protein complement could not restore archaellation ei-

ther (Fig. 7B), suggesting that the particular 10-amino acid sequence 91TLSDGTTKTV100 is

critical for archaella assembly, despite the fact it is located in a hypervariable region of the mol-

ecule. We had anticipated that at least some of the scanning deletions covering the hypervari-

able region may have been tolerated and allow for formation of archaellation while those

located in the conserved N-terminus believed to critical for subunit-subunit interactions in the

filament would not be tolerated [70,71]. It is known that in the case of bacterial flagellins large

internal deletions can be accepted; for instance in E. coli, the 493 amino acid flagellin can be re-

duced by internal deletions so that only the N-terminal 193 residues and the 117 C-terminal

amino acids are required for filament formation [72]. In addition, sequences in the internal hy-

pervariable region of bacterial flagellin can be replaced with completely unrelated sequences

[73]. This is also true for archaellins inHalobacterium salinarum where both FLAG (8 amino

acid peptide) and a gold-binding 12 amino acid peptide have been inserted into variable re-

gions of different archaellins and these mutant proteins were still able to be assembled into

archaella [74]. However, for type IV pilins, it has been shown in a number of studies that very

small changes at key amino acids in the major pilins can result in instability of the pilins and

ones that cannot assemble into pili [75–77].

Archaella are unique swimming organelles that are thought to be assembled like bacterial

type IV pili but function like bacterial flagella by filament rotation [10,33,34,78]. So far little is

known about details of the incorporation of individual archaellins into the archaella filament.

N-glycosylation seems to be a common modification of archaellin, but the relationship between

N-glycosylation and archaella assembly is unclear [1,40]. In this study, we investigated the ef-

fects of eliminating potential N-glycosylation sites as well as scanning deletions of the archae-

llin FlaB2S2 on archaella assembly and function inM. maripaludis S2. InM. maripaludis S2,

functional archaella can be assembled using FlaB2S2 lacking as many as 3 out of 4 glycosylation

sites (D2,3,4), but not when the archaellin is entirely non-glycosylated (D1,2,3,4). A hyper-N-

glycosylated version of FlaB2S2 (G6) resulted in hyper-motileM. maripaludis S2 cells. Attempts

to define essential and nonessential domains of the archaellin by scanning deletion analysis re-

vealed that no contiguous 10 amino acid stretch could be deleted and still have the archaellin

complement a ΔflaB2s2 strain back to an archaellated phenotype.

Fig 7. Analysis of the ΔflaB2S2 strain complemented with flaB2S2 carrying the 3-amino acid deletion (3AA) or the substitution version of flaB2S2
(SUB). A. Western blot analysis of the ΔflaB2S2 strain complemented with flaB2S2 carrying the 3-amino acid deletion (3AA) or the substitution version of
flaB2S2 (SUB). 3AA and SUB had similar apparent molecular mass as wildtype FlaB2S2. B. Transmission electron micrographs of the ΔflaB2S2 strain
complemented with the 3AA or SUB versions of FlaB2S2. In the case of the 3AA complemented cells, both archaellated cell (3AA-1) and non-archaellated cell
(3AA-2) are shown. Arrows show the archaella. Bar equals 500 nm.

doi:10.1371/journal.pone.0116402.g007
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