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1 Overview

The final project documentation considers the problem of the integration of
‘posterior knowledge’ into condition monitoring systems from both the theoretical
and practical points of view. The work is presented in the context of aircraft engine
maintenance. Initially, the problem is framed in the context of elementary
probability theory where the task of posterior knowledge representation is examined.
A methodology for updating posterior condition probabilities is proposed for cases
where fault conditions are rejected or retained on the basis of external knowledge
supplied by an end-user—the posterior knowledge. A possible fault class ranking is
generated following the specification of fault class posterior probability functions.

It is shown that a simple renormalisation of existing probabilities does not apply in
the dependent condition-class case and can lead to erroneous results: the condition-
class ranking may change following the exclusion of condition-classes known not to
have occurred. An artificial example is used to illustrate the theoretical principles.
Simulated fault data are then used to explore the posterior probability estimation
problem through the use of radial basis function networks. A validated aircraft jet
engine model is used which allows for the injection of faults (conditions). A simple,
model-based range-checking methodology is applied to the data to provide a quick
method of generating verified condition data for condition-class prediction and
probability estimation. It is shown that the maximum possible accuracy can be
achieved when the most probable fault is chosen in each case.

Context-free simulations are used to show the effect of posterior knowledge as part
of a maintenance strategy. Being context-free, the simulations are independent of
any specific condition-monitoring situation. Preliminary results indicate that
posterior knowledge reduces the number of sub-unit inspections required for
isolation of all faults. This has the potential to result in real maintenance cost
savings.

One of the key objectives of this project work is to reduce the number of no fault
found (NFF) incidents during aircraft maintenance. Stated simply, a NFF incident
happens when a fault is indicated in a sub-unit which turns out to be a false alarm on
subsequent inspection. The techniques of posterior knowledge integration (PKI)
have been applied to the NFF reduction problem as detailed in this report.
Simulations indicate that the application of PKI will not only reduce the overall
number of sub-unit inspections during the maintenance cycle, but will also reduce
the number of NFF incidents. Thus, the application of PKI may result in tan gible
reductions in maintenance costs,

A cost-weighted version of the context-free simulations is also presented in the final

documentation. Cost weightings may be important in that maintenance strategies are
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information may not lead to identifying the system state as quickly but the overall
cost will be lower; such considerations are important in the commercial world.

Both the unweighted and weighted PKI systems lead to an overall minimum in the
number of sub-unit inspections required during maintenance as shown by the
simulations. This fact can be proved theoretically. The gain is in the reduction of
NFF incidents comprising sub-unit inspections over and above the theoretical and
practical minimum encountered when identifying all faults.

Prototype PKI code is also presented and discussed together with further possible
modifications and directions for research. The overall structure of the final project
documentation is as follows:

Chapter 1 considers the theory underlying the integration of posterior knowledge in
the context of condition monitoring. PK representation is discussed together with its
integration using a posterior probability update equation. This equation governs the
changes in posterior probabilities for a given fault in a given sub-unit and is
determined by posterior knowledge. This subject is considered further in section 1.6
of Chapter 1 which looks at the resulting fault rankin gs and the effects of condition
classes being included or excluded. A discussion of probability estimation and the
use of radial basis function networks is also included in section 1.7; the reliance
upon estimated probabilities necessitates the investigation of the probability
estimation problem. Another approach, that of Bayesian belief networks (BBN’s), is
considered in Chapter 3 which examines the PKI problem from a different an gle
from that of total reliance upon empirically-derived data. Indeed, future work may
stem from combining the two approaches.

Section 1.7 also introduces the turbo-jet engine. Simulation of fault conditions and
the subsequent fault detection method are both discussed in this section along with
some of the issues involved in fault diagnosis

Chapter 2 presents the simulation studies and considers the simulation protocol and
performance assessment measures. It is shown empirically that PKI is always at
least a good as, or possibly superior to, a realistic comparison method. The
theoretical explanation of these results is discussed throughout this chapter.

Chapter 3 introduces Bayesian belief networks and discusses them in some detail.
The networks are related to the PKI problem and pointers to future work are given.
In particular, section 3.4 considers the application of BBN’s in PKI.

Some conclusions are drawn in Chapter 4, together with a discussion of possible
directions for future work. The prototype Matlab code is documented in Chapter 5.




2 Condition Monitoring: The Posterior Knowledge
Integration Approach

2.1 Introduction

Over the past decade or so, research effort has been directed at developing methods of
identifying faults or conditions in dynamical systems using statistical classifiers based
upon historical data. Much effort—and possibly expense—can go into the
development of such classifiers which form the basis of diagnostic systems. A set of
fault-condition (FC) posterior probabilities is generated upon which diagnoses are
made for example using maximum a posteriori (MAP) or Bayesian risk wei ghted
decision criteria (e.g. Melsa and Cohn, 1978). In short, this is a statistical viewpoint
on condition monitoring. When given a ranked set of FC probabilities representing
the most likely FCs to have occurred, if the most probable FC is known not to have
occurred then what should further decisions be based upon? Does it make sense
always to choose the next most likely FC or set of FCs?

The knowledge that FCs have (or have not) occurred is deterministic, not available to
the statistical classifier and is specific to the current situation. It cannot be made part
of the historical data until the complete set of FCs is known for that particular input
vector. Furthermore, the situation-specific data may become ‘swamped’ by the rest of
the historical set in which it will be included. The main issue then, is the problem of
integrating deterministic situation-specific data with historical, probabilistic data in a
condition monitoring context. The aim, then, is to provide a rationale, which leads, in
some sense, to the shortest or least costly route to the discovery of all faults that have
occurred.

This document addresses the issue of the post-processin g of statistical condition
monitoring information when external evidence is available to inform the fault
diagnosis process. The key objective is to devise a mechanism for the integration of
such evidence into predictive systems to allow the update of FC probabilities that have
been generated without reference to that knowledge. Posterior knowledge integration
has potentially widespread application in the field of condition monitoring (fault
detection and isolation) as explored in this document. Incorporation of deterministic
situation-specific knowledge about a monitored plant, not available in developing the
condition monitoring system, will facilitate a more informed choice of maintenance
strategy. Such a post-processing system could augment available condition
monitoring systems which generate probabilistic data following fault classification by
statistical pattern recognition.

There is a growing interest in automated condition monitoring systems as the number
and complexity of monitored plants increases to keep pace with the demands of
modern technology. This interest is reflected in the number of fault detection and
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features—with or without a reference model—for pre-defined anomalies or novel
operating conditions.

The so-called *classical” methods are based upon limit checking (Isermann, 1997) and
involve the monitoring of measurable variables to detect pre-defined range violations.
The monitoring system may initiate appropriate control actions immediately and alert
the operator. Other systems may alert the operator only. Such systems are often
simple and reliable (Isermann,1997) but may only be suitable for detecting relatively
large changes. Furthermore, the detection is not dynamic in that changes in operating
profile over time may indicate possible faults much earlier, prior to failure. Condition
monitoring systems may be model-based where a reference model is used in
comparison with the real plant behaviour (e.g. Trave-Massuyes and Milne, 1997;
Karsai and DeCaria,1997; Milne et al, 1996; Gomm, 1994). Other systems may
involve the use of rule-bases and expert systems (e.g. Wang, Lu, and McGreavy,
1997; Bogunovic, and Mesic,1996; Keravnou and Johnson,1986; Liu, Singonahalli,
and Iyer, 1996; McDonald, Burt, and Moyes, 1996; Wang Xue and Yang Shuzi,
1996). Novelty detection provides another way of detecting anomalous conditions by
training an artificial neural network (or other adaptive system) to recognise normal
operating modes; anomalous conditions are those which deviate from the learned
regions of parameter space (outliers) (Tarassenko, 1996;1997). Various types of
artificial neural network have been applied to condition monitoring (e.g. Dimla, Lister
and Leighton, 1997; Wilson, Irwin, and Lightbody, 1997; Boudoud and Masson,
1996; Li, Wong, and Nee, 1996; Patel, et al,1996; Perrott and Perryman, 1995; Zhang;
Ganesan, and Sankar, 1995).

Other condition monitoring methods include the use chaos theory (correlation
dimension), (e.g. Logan and Matthew, 1996), statistical methods (e.g. Weighell,
Martin, and Morris, 1997; Korbicz, and Kus, 1996; Ma Yizhong, 1996; Zhang,1996),
Fourier Transforms and Wavelets (e.g. Pan, Sas. and van Brussel, 1996; Maclntyre
and O'Brien, 1995), nonlinear observers (e.g. Preston, Shields, and Daley, 1996; Yang
and Saif,1996; Krishnaswami and Rizzoni 1994.), hybrid approaches (e.g. Hines,
Miller, and Hajek,1995; Eryurek, and Upadhyaya, (1995) Lianhui Chen and Ho 1994;
Ding, and Wach,1994; Isermann, 1994) analytical redundancy (e.g. Dorr, et al, 1997)
and evolutionary methods (e.g. Bilchev and Parmee, 1996; Korbicz, and Kus,1995)

The emphasis of our work is the post-processing of probabilistic fault data regardiess
of the fault detection and isolation methods employed, i.e. we assume a particular set
of flags has been flagged with a certain probability. Where the condition-monitoring
stage is required to illustrate probability estimation, the classical range-checking
detection method is used in the simulations, for the sake of simplicity The range
checking method provides adequate data for the demonstration of post-detection
methods of the type explored here. The CM system can be thought of as a “black
box” with measurements as inputs and probabilities of conditions as outputs; this
information is then used by the post-processing method presented here. In general,
condition monitoring systems are confined to the actual tasks of detecting and
isolating faults and alerting an end-user to their possible existence and location.
These systems may or may not give probabilistic estimates of FC probabilities to
allow the end-user to decide an appropriate course of action. It is clear that such a




methodology is ‘open-loop’ in that end-users are given a final analysis, upon which to

base operational decisions, without having the opportunity to feed their observations
or knowledge back into the process.

What if the end user has external information (not available to the condition
monitoring system) which would alter specific fault diagnoses? It is obviously
desirable to maximise the use of available information. The feedback of external

information to a condition monitoring process makes it a ‘closed-loop’ process as
shown in Figure 1.

Condition

Posterior Knowledge

Figure 1. The condition monitoring feedback-loop. Posterior knowledge supplied by an end-user may
be integrated into the condition monitoring process to improve FC isolation. The fault diagnosis and
isolation (FDI) block is where the decisions are made.

In a condition monitoring situation, the end-user may say, ‘The condition monitoring
system indicates the possibility of faults x,y and z. I have just checked y and can
discount the possibility of a fault there. How does this affect the probability of faults x
and z having occurred?” The checking of y is not included in the monitored plant
features and occurs after the condition monitoring system has made its predictions
concerning possible fault scenarios. This external knowledge is given the name
‘posterior knowledge’ to distinguish it from any other knowledge about the monitored
plant. Posterior knowledge is knowledge about the outcome supplied by an operator,
or some other source, and which is not available to the predictive system at the time of
prediction. It is new evidence about the posterior probabilities which have been
predicted for the current classification in the form of an updated output classification
and differs from the new evidence about the state of the system which is typically
encountered in sequential decision theory (e.g. Melsa and Cohn, 1978), i.e. updated
evidence vectors. Posterior knowledge is deterministic; it is about known outcomes.
Subjective probabilities could be used but are not considered here. The incorporation
of this knowledge into the feedback loop of condition monitorin g allows fault analysis
to be adjusted towards a more accurate picture of the current plant status.

The main principle behind posterior knowledge integration is the fact that dynamical
systems usually consist of a set of interconnected sub-systems which are causally
related in some way. This means that information about a particular sub-system may
have an effect on the prediction probabilities of other sub-system faults mediated by
the causal connection, i.e. that multiple fault scenarios may be indicated
simultaneously, as a result of a single cause. This differs from the usual assumptions

of exclusivity or of conditional independence made in conventional pattern
recognition situations.




One particular application area for fault diagnosis and isolation methods is that of
aircraft gas turbine engines (e.g. Patton and Chen, 1997; Nairac et al, 1997). These
are complex systems comprising distinct interacting sub-units which include
electronic feedback control and monitoring devices. The posterior knowledge
integration problem, as considered in this document, is discussed in the context of
aircraft gas turbine engine monitoring. The integration of posterior knowledge into
condition monitoring systems applied to gas turbine engines is motivated by a need to
reduce costly no fault found (NFF) conditions. NFF conditions occur when one or
more faults are flagged and subsequent tests of sub-units fail to locate a problem. For
example, a fault may be logged in-flight and when the plane lands at airport x, the
supposedly faulty unit is replaced. The same fault is flagged during the onward flight
and the unit is replaced at airport y. Subsequent analyses of both replaced units show
no signs of malfunction because the alarm was triggered, perhaps, by to a faulty
connection. However, the units have to be re-certified for future use which is a very
expensive process. The generation of fault rankings—capable of being updated by
posterior knowledge—may allow better-informed decisions about which sub-units
and/or components to remove and test.

The aircraft engineering context is illustrated by the use of the Trent 700 engine model
developed by Patel (Patel et al, 1996). This SIMULINK™ model consists of the
engine and accessories and is used to generate fault data for the estimation of fault
probabilities as discussed in Section 1.7. The accessories include the electronic
engine control (EEC) to monitor engine performance and make necessary adjustments.

2.2 Posterior knowledge integration from an engineer’s point of view

A condition monitoring system will typically provide an end-user with a set of
predictions indicating one or more possible FCs. Merely choosing a single FC, on the
basis of its associated probabilities, may be too simplistic. Furthermore, the end-
user’s knowledge may come to bear on the problem as posterior knowledge, and be
used to modify the original condition monitoring system diagnosis. A simple example
will illustrate this (Marriott and Harrison, 1998a):

A gas turbine vibration monitoring system has detected several features that
correspond to one of three conditions: ‘Bearing wear in IP shaft’ with probability
0.65, ‘Out-of-balance in LP compressor’ with probability 0.20, and ‘Out-of-balance
in HP compressor’ with probability 0.15. However, the user knows from additional
knowledge that a recent change of bearing rules out condition ‘Bearing wear in IP
shaft’. Is the most likely diagnosis now ‘Out of balance in LP compressor’?'

If the above conclusions are based on statistically dependent probability distributions
then it may not be sufficient simply to renormalise the probabilities associated with
FCs ‘Out-of-balance in LP compressor’ and ‘Out-of-balance in HP compressor’; this
issue will be discussed further in Section 1.3. Indeed it is possible that the suggestion
‘Out-of-balance in LP compressor’ is based on vibration phenomena attributed to
bearing wear that also produces the out-of-balance as a side-effect. Eliminating

! Suggested by Dr. Steven King of Rolls-Royce plc, Applied Science Laboratory, Derby
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bearing wear as a possible diagnosis could remove the possibility of the LP out-of-
balance. The engineer may, therefore, conclude that the correct diagnosis is ‘Out-of-
balance in the HP compressor’. This example illustrates some of the issues
concerning the manner in which this posterior knowledge can be incorporated by the
system for re-evaluation and future reference.

2.3 Posterior knowledge: representation and integration

It has been stated that posterior knowledge is deterministic knowledge external to the
condition monitoring system. Two questions naturally arise from this: how can
posterior knowledge be quantified and how is it to be integrated with the information
contained within the condition monitoring system based upon the key plant features?
This document explores these two questions and then presents simulation evidence to
show that posterior knowledge integration represents a technique with potential
application in the condition-monitoring field. As stated in the introduction, the key
objective is to develop a method of automating the knowledge integration and
updating process that follows logically from the fault detection and isolation tasks.

There are many possible ways of representing posterior knowledge. The
representation problem is solved here by representing the posterior knowledge of
possible system states and associated FCs as FC probabilities with discrete values of 1
or 0 depending upon whether a FC is known to occurred or not. Thus, although the
posterior knowledge is deterministic, it is represented as a new set of FC probabilities
that is, a revised probability for each class that is influenced by external observations
of the current situation only. The externally obtained information is then used to
update the predicted FC ranking for the remaining probabilistic FCs. In other words,
posterior knowledge about an FC is represented in the form of a probability indicating
the occurrence or non-occurrence of that FC. In this way, deterministic data has been
represented within a probabilistic framework. Note that this is not to be confused
with the posterior probability of a fault occurring. For example, a set of class
posterior probabilities will be predicted for a single input datum (feature vector). If it
is then possible to exclude one or more classes (i.e. the probability of those FCs
occurring is zero) on the basis of knowledge or reasoning not available to the
predictive system, then the current list of predicted FC probabilities may be revised.
This will give a more accurate estimation of new FC posterior probabilities in the
form of a revised probabilistic ranking. Similarly for the inclusion of known FCs.

Here, the integration of posterior knowledge is given in terms of classes that are
known not to have occurred (excluded) or are known to have occurred (included) as
indicated by the external knowledge. It is convenient to represent the updated
posterior probabilities in terms of probabilities estimated from previous observations
of system FCs, i.e. classes that have occurred; these probabilities are probabilities of
occurrence and they can be estimated from empirical fault data. The limitation of
probabilities involved in the representation of posterior knowledge to the class of null
and certain events is a design choice made to facilitate implementation of the posterior
knowledge integration process. This does not preclude the generalisation of the
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1. the probability associated with the posterior knowledge that a FC has or has not occurred i.e. 1 or 0
representing the deterministic knowledge,

2. the exclusive (i.e. non-overlapping) singleton and joint probabilities generated by the condition
monitoring system or FC frequencies of occurrence,

3. the (possibly) overlapping posterior probabilities of FCs reconstructed from the condition
monitoring probabilities of (2).

2.3.1 Conditional Probabilities: a Basis for PKI

Posterior knowledge integration is based upon conditional probability. The
probability of a sub-unit failure is conditioned upon alarm readings and the failure or
correct operation of other sub-units. The latter relationship exists unless the sub-units
are totally independent of each other. It will be shown that the PKI method is superior
to the baseline comparison method unless all sub-units are independent; in this case,
the performances are equal.

This section (1.3) will introduce the concepts underlying PKI. The basic theory will
be developed and illustrated by examples to provide a justification for the posterior
probability update equation (PPUE) which governs the integration of posterior
knowledge. Issues related to the use of the PPUE will also be covered.

The input space or sample space of a condition monitoring situation (e.g. Grimmet
and Stirzaker,1992) may be divided into N, possibly overlapping, classes given by
U, =C vG,,...,uC,y. This space is exhaustive and contains all possible outcomes

or conditions A four class example is represented by a Venn diagram in Figure 2.

e
£ ?

o

C3

Figure 2. Abstract representation of a four class problem showing a number of overlapped regions.
Note that some of the possible regions of overlap may contain no members and, thus, would not exist.

Here, the universal set, U is given by U =U , U, where U, signifies normal or

non-faulty operation. The remainder of the universal set may be taken to represent the
normal operation. Venn diagrams provide a useful way of representing the
probabilities involved in updating class predictions. Figure 3 represents schematically
the probability of class 1 faults occurring in a four-class problem.
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Figure 3. The shaded circle represents the total probability of class 1 occurring.

The representation of probabilities by Venn diagrams can be justified by appealing to
the frequentist interpretation of probability (e.g. Kneale, 1949). Letting n, represent

the number of elements in set i (class 1) and N represent the total number of elements,
then P(C‘,.) can be defined as

P(C)= lim .

N—eo
From this definition (e.g. Durrett, 1994) many other expressions involving the union
and conjunction of sets and their respective probability definitions can be derived.

Fault classes may be:

i) independent
11) dependent and exclusive
iii) dependent and non-exclusive

These three cases will be examined within this document in the context of PKI.
Classes (i) and (ii) are special cases of PKI whilst class (ii1) is the most informative as
PKI utilises joint information.

Independence in this context is taken to be conditional independence (Bernardo and
Smith, 1994; Grimmet and Stirzaker, 1992). More detail is given in the relevant parts
of later sections.

In essence, the posterior knowledge integration process involves the modification of
the FC posterior probabilities by the exclusion or inclusion of FC frequencies based
upon the known occurrence or non-occurrence of FCs. Both the inclusion and
exclusion of FCs by posterior knowledge integration will be dealt with here. The
revised posterior probabilities include the integration of external knowledge explicitly
in the notation. The revised posterior FC probabilities, given some posterior

knowledge, are represented by the expression P(CPIE N x) where the posterior

knowledge is given by € = (ﬂ Cs, ]ﬂ(ﬂ Cge ) and x is the feature vector. The

SO, S PR SR - N, (RN + - P N e




given FC, C;_, is the complement with respect to all other classes (including the
normal operation class). The set of FC occurrences and the set of non-occurrences are
known as the included and excluded classes respectively. The expression P(CPIE N x)

denotes the predicted probability that FC p has occurred given the observation vector,
x, and the posterior knowledge, €. The following discussion will illustrate the
motivation behind this representation of PKI.

2.3.2 Excluded Faults: a Special Case

When faults are known not to occur in sub-units (normal operation), the FCs are
excluded. That is, a sub-unit may be known not to be faulty and so it can be excluded
from the search for faults. This is a special case of the general PPUE and will be used
to illustrate the PKI process. Included (known) faults will be discussed later. Without
loss of generality, the conditioning on the reading vector will be ignored in the early
stages of the discussion.

Using the definition of conditional probability for discrete events (e.g. Durrett, 1994,
Grimmet and Stirzaker, 1992)

P(ANB)

P(AIB) = o

» £L8) =0

where event A is conditional upon event B, the integration of posterior knowledge in
the form of excluded classes, that is where a given system condition is known not to
have occurred, can be represented by statements such as

PLG riCs PIC, A G &l
P(C,lc;):——( — ) and P(C,IC; N C:)= (G —— ‘)
P(c5) P(c;ncy)
the superscripted ¢ indicates the complement operation with respect to the universal
set, (Grimmet and Stirzaker, 1992) thus C; and C; signify that fault classes two and

four respectively have been excluded; this constitutes the new knowledge that those

classes are now known not to have occurred. The revised probabilities P(CEICZC ) and

P(CIIC;,_“ G ) now represent the state of knowledge regarding the occurrence of FC
I, after external knowledge has been incorporated, in the form of revised posterior
probabilities. In other words, it is known that P(C,)=0, or P(C,)=0

and P(C4) =0, respectively.

Formally, the revised posterior probabilities require that the inclusion of external
knowledge be explicitly included in the notation e.g. P(C] |8), with

&€= C;and P(Clls) € = C; N Cy respectively, where the symbol ‘€’ denotes the
external knowledge or evidence. In later sections, €, is used to denote the sequential

14




nature of PKI but this refinement is not important here. So & = C,and e=C; NC§
respectively in the above examples.

Here, probabilities are required of the form P{C.1C¢) and P(C.IC® A C* . The
p q i J i b k

general form given by P(C,) ﬂ & ] where A, denotes the set of indices of the

keA,

excluded FCs; the exclusion being based upon external knowledge. Here & = ﬂ C,
keA,

and the inclusion of posterior knowledge is given in terms of classes which are known
not to have occurred as indicated by the external knowledge. It is convenient to
represent the updated posterior probabilities in terms of probabilities estimated from
previous observations of system conditions, i.e. classes which have occurred; these
probabilities we call positive probabilities and they can be estimated from empirical
data.
The probability of class 1 occurring given three possible classes and given the
posterior information that class 2 has not occurred is denoted by
P@”Cq_f{Qrwﬁ)_ P(c,uc,)-P(c,)

b Plcg)  Plougua)-#E)

using the definition of conditional probability and the identity
P(AnB°)= P(AU B) - P(B)
This situation is shown schematically in Figure 4.

Figure 4. The diagrammatic representation of P(CI|CZC) for three dependent classes. It is the

probability of the remainder of C; (without C, ) divided by the probability of C, and C; combined
(without C,).

The probability of class 1 occurring given a total of four possible classes and given the
posterior information that class 2 has not occurred is also denoted by

Plc mes)
P(cs)

MThio 1o 1 1liotrmntmd T T8 oo

P(cict)=




Figure 5. The diagrammatic representation of P(Cl IC;’) for four dependent classes. The probability of

the remainder of class 1 occurring is divided by the total remaining probability excluding class 2 to give
the remaining probability of class 1 occurring.

For dependent FCs, the underlying general pattern appears to consist of finding the
difference of unions of those sets involved in the numerator and denominator of the

conditional probability expression and finding the ratio of the respective probabilities.

For example, for the four class problem, P(Cl IC,; ) can be written as
P(C1 mC;) _ P(Cl Y Cz)_ P(Cz)
€ - 4
Ae)  AULc)-Ple)
where the posterior information has been included in terms of positive probabilities,
that is, those which can be estimated directly, or computed from estimated

probabilities. Similarly, the inclusion of further posterior information that class C,
has also been excluded can be written as

P(C,nCinC;) Pl ucuc,)-Pcuc,)
P(C; N C;) plUc)-Plcuc,)

Here, the class unions have increased by a single member (FC 4) which is to be
excluded to give the revised probabilities. This is shown in Figure 6.

P{CIC}) =

Plcic ngg)=

C
C, :

Figure 6. A representation of P(C1|Cf 8] C:) where class 4 has also been excluded from Figure 5.

The set of fault classes is taken to be exhaustive with the universal set given by the
union of all classes including a “no-fault” class.
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2.3.3 The Generalised Form of Posterior Knowledge integration Where One
Or More Dependent Classes Are Excluded.

For the more general case, where a set of dependent fault classes is excluded, the
following notation is introduced:, A, andA, denote the index sets of remaining and

excluded sets respectively where A, ={§, ,8,,...,6,, } andA, = {5N,+1 ,5N,+2,...,5N}
N, is the number of remaining classes, N is the total number of possible classes.
The delta notation is used to denote that the class indices are not necessarily selected
on the basis of ordering e.g. it could be that for a five class problem, A = {1,3,5} and
B = {2,4} in whichcase §, =1, 6, =3, §, =5, §, =2 and 05 =4 where classes
two and four have been excluded.

In general, to calculate the updated probabilities, given posterior knowledge on
excluded classes,

P(c;, ne:, AG, n.nG,)

Plcsice G, nnGg, )=
. ) P(C‘ NG, . N..NC;, )

SNr+1

P{L}JCQJ—P(LRJCE‘) v
fUe)-o{ye)

where &, is the i th index, 0 € {1,2,...,N} signifying the fault class under

investigation, j € {é: }u A, is the union of this class with the excluded set, k € A,
signifies the excluded set and [ € A, U A_ is the totality of fault classes.

For the numerator, the probability of the union of all classes omitted is subtracted
from the probability of this union augmented by the class of interest i.e.

P(Cgf v {U Cs, D — P[U Cs, J . For the denominator, the probability of the union of
k k

all excluded classes is subtracted from the probability of the total number of classes
i.e. the certain event. This calculation suggests that an incremental procedure is
possible . Indeed, the simulations discussed in this document use incremental PKL
The proof of equation (1) is deferred until sub-section 1.3.7 when the dependence of
the class on the data is included. A general version that also allows included fault
class knowledge to be integrated is discussed in Section 1.4. That is, faults known to
have occurred are included in the PKI process.

2.3.4 Union of Overlapping Sets.

Now that the general form of the updated posterior probabilities

BlC: .. ] M s )ds given in terms of unions of sets, the general form
51 6Nr+l 5Nr+:! 51\'
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of P(Uf:I Ca,) is required (e.g Durrett, 1994, Grimmet and Stirzaker, 1992) where K is

the number of sets involved in the union. This is expanded to give
K

P(U:; Ca,) = Z P(Ca,-)

K

- ZP(C@ M Ca,.)

i<j

K

+ P(Cai NG N C&) ()

i<j<k

5 (__ 1)K+1 P(C(s] N C52 ﬁ...mcgk)

in terms of positive probabilities. Recall that the § notation is used to reflect the fact

that the indices i,j k... are not necessarily consecutive or ordered sequentially. For
example, 6, =1, 6, =3, etc as above.

2.3.5 Examples of Posterior Knowledge Inclusion in Terms of Positive
Probabilities.

2.3.5.1 For Three Classes where a Single Class has Been Excluded:

P(cics) = PanG)  Pauc)-#c)

P(c;) Pl uc,uc,)- P(c,)
P(c,)-P(c,nc,)

2.3.5.2 For four classes where a Single Class has Been Excluded:

GnG)  Plcuc)-rc,)
P(c;) "~ P(c,ucuc, uc,)-p(c,)
_P(e)-P(c,nc,)

P(cics)= il

P(c)+ P(c,)+ P(c,)
~P(C,nG,)-P(c,nc,)-P(c ne,)
-P(C,nC,)- P(c, nG,)-P(c,nc,)
+P(C,nC,nG)+P(c N, nce,)
+P(C,nc,ne,)+P(c, A, nG,)
-P(C,nC,nC NG,)

18

P(c,)+ P(c,)- p(c, NG,)-P(c,nc)-P(c, A ¢,)+P(c,nc,nc,)
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2.3.5.3 The Exclusion of two Classes in the Four class Example:
P(c,nC: N CE)
P(C; )
P(c,uc,uc,)-P(c,uc,)
" p(c,uc,ucuc,)-P(c,uc,)

P(cici nCe)=

P(c,)- P(c, mCz)
_-P(C,nC )+ PCnGnG,)

p(c,)+P(Cy)
- P(c,nG,)-P(c,nG,)-P(c,ncC,)
—Pcrmc)—Pkywq)

2.3.6 All Probabilities are Conditional Upon the Input Space

So far, the dependence of the classes on the underlying sample space has been
omitted. In actuality, these classes are labels attached to regions of the space.
Denoting the underlying data variable by the n-dimensional vector x, and assuming
for now that the elements of x are discrete random variables, the expression that the
updated class probabilities including posterior information can be stated as

P(CS‘, NG, NG N.NCs mx)
P(CgN NG, ,N..NCs mx)

r+l

_ P{[L;J C‘S’}m‘]‘ o HU G, ]ﬁx] 3
e oA yes Jou)

where j e {c‘)‘,}u A, keA,,and le A, UA,. From equation (3) we get

P(C;1C5, NG5, M..NCE, Nx)=

19




P(c,ici, NCE, ,N..0C5, Nx)=

P(U &, xJ P(x)- P(U G
i P(U Cs x]P(x) - P{U C;,

Fo gl e
Jo A

where the rule P(A N B) = P(A|B)P(B) has been applied.
The above expression reduces to

P(xmL}JCaj]—P(xmLkJC@]
P(x)—P[xmLkJC&_]

if all input vectors have class labels associated with them i.e. the set of classes is
exhaustive. The final expression for the revised probabilities is given by:

P((Uc X}“P[{Qcﬁ* ] Q
P((UC x]-p[(LAJC& x]

Equation (4) can be proved formally as follows:

P[Caj N (ﬂ Cs, ) N x]
P{Cai i(ﬂ Cs, ]m x] = d by definition of conditional
¢ P{ ﬂ Cg'l_ } N x]
k
probability.

P{cﬁ{ N (O cs x] P(x)

()

) P[Csi A [O s x]

(i)

»

P(c& Ncs nx|=
k

by P(AnB) = P(AIB)P(B)
x |P(x)

by cancellation of P(x)

X
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where the fact that the union of the classes is exhaustive has been used.

If x is real-valued (continuous) then appropriate probability density functions of the
form

fole A s

are substituted into the previous argument where p(.) denotes a probability density
function.

After including the dependency upon x, equation (2) is now written in terms of
probabilities conditional upon the input

2




P ( £ G- 213((:5; )

. I
-y P(c@ i,

i<j

K

)

+ Z P(Cs,. N Caj NG,

i<j<k

X) S))

+(=1)*"! P(Cal Gy, i Gy, )x)

to include the conditional probabilities of equation (4). Equation (5) can be proved
easily by using the distributivity of set relations and substituting Cs, Nx for

G in
equation (2).

2.3.6.1 A Simple Example in Terms of Relative Frequencies.

In principle, the probability estimation problem can be solved by counting the number
of occurrences of classes on a case-by-case basis. Here, the probabilities are
represented by relative frequency observations. In practice, this method requires a
large amount of data (Bishop, 1995) and may not be accurate thus necessitating the
use of a continuous (i.e. not discrete-valued) estimator. The example presented here is

intended to illustrate the principles discussed in the previous section in a simple
context.

The probabilities of single classes are approximated by
P(C, nx)
P(x)
n(C, nx)/ N(x)
T a0/ NG
n(C,. M X)
n(x)

where N(x) is the total number of condition occurrences within a given region of the
data space x. Similarly for two classes occurring simultaneously

P(Clx)=

P\C.NC,nx
P(c ncix)= ( T )
n(CimC}.mx)
- n(x)

or for all classes:

22




P(C,nCn..nCy A C)
P(x)

P(C, M Czrw..nCle) =

B n(C, PG, mx)

n(x)
and are associated with a reading vector, x.

A numerical example of overlapping classes with all elements associated with x is
shown in Figure 7.

Figure 7. A diagrammatic representation of the numerical example.
The class frequency counts are given by

n(Cl (‘\x)z 28, M(C2 mx): 26, n(C3 ﬁx): 26, M(C4 ﬂx)z 25,

(G, NG nx)=13, n(C, N C,nx) =12, o(c, NC,Nx)=13,
n(C, M ¢ Nx)=18, n(C, A C, Nx)=12, n(C,nC, nx)=13,

n(C,NC,NC,Nx)=8, nC,nC,nc nx)=7, n(C,nC,nC,nx)=7,
n(C,nC,nC, nx)=9,
(

(G NC,NC,NC Nx)=5

The total number of condition occurrences across the four classes is given by
N(x) =28+26+26+25-13—-12 13— 18-12-13+8+7+7+9-5

=105-81+31-5
=50

Now the relative frequencies (probabilities) of the singleton classes (the total
probability of each class as a whole) can be calculated by

M(C'I ﬁx) 28

P(C,Ix) = NG = 55 =056

Similarly,
P(C,Ix) = % =052, P(C,Ix)= % =052, and P(C,Ix)= % ~ 05
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4
Note that E P(C,.) # 1 because the classes are not exclusive, instead, the union of the

i=1

4
four classes P(U q] =1.

i=1
The class pairs are given by

n(C, M, mx) 13
N(x) 50

P(C, NG, Ix)= =026

P(c, ﬁC3Ix)=;—§=O.24, P(c, mC4Ix):;—3=O.26, P(c, mC3):%%: 0.36

P(c, nC,Ix)= % =024, P(C, N C,Ix)= % =026

the class triples by
n(c,nC,nC,nx) 8

P(c, ne,nClx)= NG =35=016
7 7
P(C,nCy N c41x)=%: 014, P(c,nC,nC,)= =5 =014
9
ﬂQQOQM:%:MS

n(C, NC,NC,NC, mx) 5

N(x) B 5—0-
The revised probabilities given the posterior knowledge, C,, (i.e. not class 2 in this
case) are given by

P(C, U G,lx)- P(C,Ix)  P(C,Ix)- P(C, N C,Ix)

and finally, P(C, " C, N C, N C,Ix) = =0.1.

P(CICE Mx) = =
{GIgE ) 1- P(C,Ix) 1- P(C,Ix)
28 13
50 50 15
=30 2_6—24—0.625
50 50
Similarly,
26 18
50 50 8
P(C3IC§mx)=§8—-g—-g-=£:O.333
50 50
26 13
50 so 13
P(CIC; nx) =2 gg = = 05417
50 50

If class 4 is also excluded, the revised probabilities become
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P(C,nC{ N CE Nx)
P(C: N CE)
P(C, v G, uC,Ix)~P(C, U C,Ix)
P(C,uC, U C, UC,lx)- P(C, UC,Ix)
P(C Ix)- P(C, N C,lx)
_=P(C, " Cilx)+ P(C, n C; " Cylx)

P(CICi N CE nx) =

P(C,Ix)+ P(C,Ix)

-P(C, N C,lx)- P(C, N C,lx) - P(C, N C,Ix)
—P(C, N G,Ix)- P(C, N C,Ix)

+P(C, nC, N C,Ix)+ P(C, " C, N C,Ix)
+P(C, " C, N C,Ix)+ P(C, n C, N C,Ix)
-P(C,nC, nC, N C,Ix)

8 13 13 7
50 50 50 50
~ 28 26 13 12 13 18 I3 & 7 7 9 5
el ey ——t—t—+—+
50 50 50 50 50 50 50 50 50 50 50 50

9
=—=08182
11 8

26 138 13 9

4
and P(C,IC; N C; Ax) = 50 501150 50—11=0.3636

50

Note that had a simple renormalisation been used following the exclusion of class 2,
the results would have been given by

rsre Pclx) P(c,Ix)
(e, oex) T P(CIx)+ P(Cx)- P(C, A Cyix)
28
50
et Euﬁ—omss
50 750 " 50

26
Similarly, P(CIx) === 06190

A simple renormalisation is not sufficient because the classes are not exclusive or
independent and, consequently, the exclusion of classes 2 and 4 affects the
probabilities of occurrence of classes 1 and 3 depending upon the extent of ‘coupling’
between the respective classes (see Table 1).

Class Adjusted for overlap Simple Renormalisation
1 0.8182 0.6666
3 0.3636 0.6190

Table 1 The effects of adjusting the new posterior probabilities by taking into account the overlaps with
the excluded classes. Note that the probabilities obtained using a simple renormalisation are only valid
for exclusive or independent classes.
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2.3.7 The Use of Bayes Theorem.

As will be discussed in Section 1.7, posterior probabilities can be estimated directly if
certain techniques are used. In some cases, however, it may be more appropriate to
use Bayesian decision theory, and compute the posterior probabilities indirectly rather
than directly estimating them. Bayesian decision theory is a framework for calculating
the required conditional probabilities from other empirically derivable probabilities
(e.g. Duda and Hart, 1973; Gelman et al, 1995). Bayes’ theorem for real valued data
variables is of the form

P(CIx) = %) ©

where P(le) , is the posterior probability, p(xIC,) is the likelihood , P(C,.), is the
prior probability of class i occurring and p(x) is the unconditional density function.
These probabilities are estimated from the data.

For a set of exclusive classes, the form of p(x) is given by

N

P(X)=Zﬂ_l,p(xmq):zp(mq)})(q) m

I

as x 1s generated by a single FC only. Equation (7) ensures that the posterior

probabilities sum to unity, i.e.,

N
P(Clx)=1 ®)

=1

Equation (7) is a special case of the more general case involving non-exclusive classes
given by

p(x)=p(xnU)=

P(Xﬂ(Uilcf)): i p(x(‘\ Cf)

i=1

—-ZN“p(XF\CEF\C}.)

i<j
¥ ip(xmcjmcjmck)

i<j<k

+(-D""p(xnc,nCyn.nCy,)
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-3 p(xic)P(c)

i=

- Ep(xlc,. nc,)P(c,nC,)

i<j

. ip(mq nC,nG)P(C,nC,nC,) ©)

i<j<k

+(=1)"" pxIC, " C,n..NCy )P(C, N Cyn..nCy)

where equation (9) ensures that the probability of the union of the classes conditional
upon X is unity, i.e. every input is classified.

P(UIx) =

P((U:V:l ¢ )ix)= i} P(C,Ix)

=

- i P(C, N C,lx)

i<j

N
+ Y P(C,nC,nC,lx) (10)

i<j<k

+(=1)""P(C, " C,n..NCy 1)
—1
plxc, nc,)p(c,nc)

p(x)

where P(C‘. N lex) = etc.

Equation (10) reduces to Equation (8) when C, N C; = ¢, i.e. the classes are exclusive

giving rise to the usual definition of Bayes’ theorem (e.g. Walpole and Myers, 1989):

Given a partition of the event space, {Bl,...,BN }that is B, N B, =¢, Vi+# j,and a
N
set A such that A ¢ UBJE , the conditional probability, P(B,.IA) can be written as
k=1
P(B,|A P(B, )P\ AIB.
o) 218)__ Ple)r(an)
5. #(s ()

Note that the condition that B, " B, = ¢, Vi# j is required.

2.3.8 Posterior Knowledge Inclusion For Exclusive Classes

The next four sections examine the inclusion of posterior knowledge for the
exclusive, independent and dependent class cases where only members of a single
type of class are to be excluded. The more general case is examined in Section 1.4
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where it is shown that the three class types can be decoupled and, thus, treated
individually.

For exclusive classes, the situation is shown schematically in Figure 8.

Figure 8. A set of exclusive classes.

Because the classes are exclusive, P(Cf. N Cj[x) =0 Vi, ji.e. all probabilities of joint
classes are zero, only the single class probabilities P(q Ix) are required to calculate
the class union probability, P(UL Crlx) in Equation (5). This fact leads to the rule
given in 1.5.2.

2.3.8.1 Exclusive FC Example:

A three class problem is specified as follows:
The input variable x = x is one dimensional.

Priors: P(Cl): P(Cz): P(C-*):—Zla:

Likelihoods: P (x| C,) ~ N(3,2), P(x | C,) ~ N(6,3), P(x|C,) ~ N(8,2).

Where N(.,.) denotes the normal distribution.

The likelihoods are shown in Figure 9. Note that there are no occurrences of two or
more classes together because the classes are exclusive.
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Figure 9 Likelihoods for a three class example where the sets are exclusive.

The posterior probabilities are given by Bayes’ theorem

p(XICI)P(Ci)
p(x)

3

p(x) = Zp(xﬁ Q) = ip(XiCi)P(Ci)

P(C,.lx) = , 1 =1,2,3 where

The posterior probabilities are shown in Figure 10.

0.8

0.7f

o
=2
T

£
&

&
tw
T

Posterior Probabilities
o
o
T

0.2f

0.1F

0 . i | |
-2 0 2 4 6 8 10 12
Input variable

Figure 10.Posterior probabilities for the three class example of Figure 10.

At the point x =6, P(Cl6) = 02032, P(C,I6)=04172, P(C,i6)= 03796, and

3

z P(C,.lx) =1 as expected.

i=1
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Given the posterior knowledge that class three has been excluded, in this case, the
updated posterior probabilities are given by equation (4) and shown in Figure 11.

1

Posterior Probabilities
o
W«

. ! . i "
-2 o 2 4 6 8 10 12
Input variable

Figure 11. Posterior probabilities where class three has been excluded. At each point, the remaining
class probabilities are renormalised.

At the point x =6, P(Cl6) = 03275, P(C,I6) = 06725.

From the original posterior probabilities, owing to the exclusiveness of the classes,
there is a simple renormalisation giving

0.2032

= =0.3075
P(cik) 02032+ 04172~ =%
and

04172
#Ge)= 02032+04172 2072

as expected. The renormalisation of exclusive classes is covered further in section
1.5 (rule 1.5.2)

2.3.8.2 Example: a five FC problem:

Two fault classes C;,; and C,, whose posterior probabilities will be updated when

posterior knowledge becomes available. Three classes C,,C, and C, which are
exclusive, independent and dependent respectively (that is, C, " C, = ¢ etc. ) are to
be excluded on the basis of external knowledge.

2.38.2.1 1.3.8.2.1 Excluding the Exclusive Class
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Where the fault classes are excluded by PKI, the updated probability for class C;, is
given by Equation (4)

P(c, uc,uc uCk)-Plc,uc uch)
(Cf,ucﬁuceuquc]) P(C, uC uC,x)

(c,u ) (C’ u(c,uc,)x )
P((CHUC UC)U uc } ) (C u(c, UC)| )

Ju(c,

Ju

P(C|CE N CF N CE )

) ((c ue,)u(c,)x)-p(c x)
((C uc,uc,)u( f)jx) P(c
Plc,u ]x)+P(C,x) P(c ua,) mc[)
{P (c,x) P(C’ ne,|x)}

((Of1 u()},2 uc, ”0,;41 )—{P (C.lx) + P(C,[x)-P(c.nc,|x)]

where C,, is used to represent C; U C, for convenience, giving

¢ c c
( fll ¢ i d )
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Air is compressed by the compressor prior to combustion. A triple spool (axial
flow) compressor is shown below. Each spool is driven by its own turbine and

consists of multiple stages, each of which increases the air pressure by a small
amount.

HP
LP 1P
_ N3
Léw Intermediate High
Pressure Pressure Pressure
Spool Spool Spool

Figure 18. The compressor N1,N2, N3 low, intermediate and high pressure shaft speeds respectively

2.7.2 Trent 700 model fault induction:

The model is used for the induction of simple faults so that data can be generated to

investigate the probability estimation problem. An overview of the fault induction
process is:

Nominal operating points (NOPs) are determined by the Mach and altitude (MA)
settings. The Mach and altitude settings are chosen at random from a uniform
distribution in the ranges [0.3,0.8] and [20000,80000] ft respectively. This method

is used for simplicity. A more realistic flight envelope could be chosen and is a
possible extension.

The MA settings give rise to a series of dependent parameters that include the sub-
set:

1. WF: Fuel flow,

2. TGT: Turbine gas temperature sensed by thermocouple, at entry to the LP
turbine

N3: HP shaft speed,

P30: HP compressor delivery pressure (total),

T30: HP compressor delivery temperature (total).

il ol

The TGT thermocouple measures the core gas temperature at its entry to the LP
turbine.

This sub-set has been chosen specifically as a first approximation. This the minimal
set of useful parameters chosen in conjunction with engineers from Rolls Royce ple
An extended, richer set of parameters is a subject for further investi gation. -
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Induced fault cases are chosen to be:

Fuel decay

TGT increase

N3 decay

Normal (N) Fault not induced ie running at NOP

No fault found (NFF): fault not induced but flagged as faulty

WD Lo b

This set has been chosen as a first approximation to the problem. The fault
severities are fixed but may be varied in an extended model. Fuel decay is realistic
in that partial blockages may occur in fuel pipes or filters. TGT increase and N3
decay may reflect a decrease in engine efficiency. No fault found reflects the
condition in which one or more faults are flagged by the system but no apparent
cause can be found. Faults 1, 2 and 3 may also occur in binary combination giving
eight fault conditions in total. These are f1, f2, f3, f1&f2, f1&f3, f2&f3, N, and
NFF. The condition f1&f2&f3 has been omitted for simplicity.

Priors are chosen for each of the eight cases to reflect the mix of actual faults, no
fault found and normal conditions. For case 5, no fault found, a single fault is
chosen at random from faults 1 to 3 depending upon the priors.

2.7.2.1 Fault Diagnosis Issues

The engine and accessories comprise a dynamical system and fault detection /
diagnosis is not a straightforward task. Fault diagnosis is a research area in itself to
determine both what constitutes a fault and how to detect faults. When faults oceur,
the EEC attempts to compensate for the problem and maintain the desired set-point
further complicating the problem. Many design choices have had to be made to
allow the generation of data of sufficient complexity and realism to investigate
methods of posterior knowledge inclusion which is the primary remit of this work.

Even seemingly straightforward fault diagnosis methods such as range checking
pose several problems. How are the ranges to be determined across the operating
envelope? What constitutes a fault? How are fault labels to be associated with sets
of parameters? Will fault conditions in steady-state mode following EEC
intervention be mistaken for NOPs? In the latter case, will range checking be of any

use? How are static faults to be detected and represented? How are dynamical faults
to be detected and represented?

The steady-state reached following the injection of a fault may give a parameter
vector commensurate with normal operation in a different region of the operating
envelope. The labelling of the final parameter vector as indicating a fault may
provide misinformation to a FD system. It may be possible to prevent this by
including the Mach number and altitude information in the parameter vector.

The N3 decay fault is a case in point. Whilst operating at a NOP during an
experiment, (fixed Mach number and altitude) a decay was introduced into the HP

42

A I B TN = S IS BN & BN BN =N BN e
o] v




shaft speed (which may indicate bearing faults for example). An expected increase
in fuel flow (WF) occurred as the EEC attempted to compensate for the problem.
There was an initial surge in fuel flow followed by reversion to a steady-state value
of fuel flow not significantly above the original. The final parameter vector may be
indicative of a normal (N) state. In this case, the FD problem is one of detecting a
fuel surge not accounted for by normal operation or allowed transients. This
involves the detection of dynamical anomalies—a research topic in itself. Such
considerations belong to the domain of fault diagnosis proper. Here, the concern is
with post-processing of fault occurrence probabilities, hence our crude simulation
and detection methods. The main thrust of this work is in the direction of post-
processing techniques and, hence, the introduction of context-free simulations as
discussed in Chapter 2.

2.7.3 A Neural Network Approach to Probability Estimation

A common method of estimating posterior probabilities is to use an artificial neural
network (e.g. Bishop, 1995; Richard and Lippmann, 1991). Where the FCs are
exclusive, given N classes, there arises the 1 from N estimation problem, that is, for
each input, one FC will be chosen on the basis of the posterior probabilities. Where
the classes are non-exclusive, more than one FC can occur simultaneously giving
rise to an M from N estimation problem. It has been shown (e.g. Bishop, 1995;
Richard and Lippmann, 1991) for both the mean squared error (MSE) and cross
entropy (CE) performance measures, that feedforward neural networks ( such as the
multilayer Perceptron or Radial Basis Function Network) will estimate the total

Bayesian posterior probabilities of the form P(C'.Ix) only. Thus, although joint

class information (M from N) is available in the training vectors, a conventional
neural network classifier will not be able to estimate the joint probability function
unless the output space is expanded to give an equivalent 1 from many problem. To
capture class combination information in general, an augmented output vector
consisting of 2" outputs is required. The expansion is valid if the output space is
treated as a collection of disjoint sets or partitions (Halmos, 1974). The desired
probabilities may then be reconstructed from the members of the partition. The
posterior probability update equation can be considered as a renormalisation of such
partitions. Figure 19 illustrates how a set of overlapping classes is broken down into
a set of disjoint classes for probability estimation.
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Figure 19. A set of overlapping fault classes is treated as a partition for convenience. The exclusive
class probabilities are estimated and used to reconstruct the non-exclusive fault probabilities.

Figure 20 shows the neural network training situation schematically. If the desired
class training vector was [L...1., .I]’ for example, joint class information would be

available but would not be learned by the network. It is equivalent to having N
decoupled networks with no correlation between the outputs, hence the M from N to

a 1 from 2" expansion at the worse possible case. Thus, the apparently complex
tasks of estimating overlapping class probabilities and updating the posterior
probabilities have been simplified by using a partition which divides the fault-space
into exclusive regions. A renormalisation of the remaining probabilities, following
posterior knowledge integration, is then carried out to give the updated posteriors.
Posterior probabilities of fault occurrence are used to guide engineers to individual
faulty sub-units in a given plant.

The whole process of posterior knowledge integration is shown schematically in
figure 21. Not all of the joint probabilities will be nonzero unless the worst case
scenario occurs. The subset of relevant probabilities is chosen, forming a partition,
and estimated using a neural network or other method. A possible fault scenario
identification cycle is then entered.

The desired FC posteriors are reconstructed giving a ranking of sub-unit fault
probabilities. This information is used to make a sub-unit inspection. If the fault

scenario is identified—i.e. there are no other faults to be found—then the cycle ends.

If the scenario is not yet identified, then the new inspection information is fed in as
further posterior knowledge and the cycle continues. For the purpose of our
simulation, the number of faults in a scenario is known in advance to provide the
stopping criterion. However, in reality, a posterior probability threshold may be
used to determine when the fault search is halted.
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Figure 20. A schematic illustration of the process of using a neural network as a classifier.
If a class is indicated, the relevant desired output is set to 1, otherwise it is left at 0.

Estimate
condition
piobablliies

Specify subset of -
condition probabiifies g
{Including Joint
piobabllities)

Identify fault scenario

Remove/include
members of subset
depending upon

posterior knowledge

Figure 21. The posterior knowledge integration cycle. The posterior knowledge feedback occurs
until all faults are isolated.

The analysis given here is general and applies to both regression and classification
problems and involves minimising the mean square error (MSE). For classification
problems, however, the cross-entropy measure is more useful and a similar result for
cross-entropy will be found in Richard and Lippman (1991).

Assuming discrete outputs indicating class membership, d; where i signifies the

output and j signifies the discrete output value, for L output values, the (MSE) of
classification can be calculated by

N L 2
E= lim = > [y, -d,] P(d, nx) (12)
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for N, data points

For continuous output values and applying the law of large numbers (e.g. Bishop,

1995)

E= 2” dﬁx)dddx
“Zﬁ[y. T ol ix)p(x)dd, dx

where dTI is a continuous variable.
From equation (12) using the law of large numbers and assuming that

P(d!.j M x) = P(C ’ r‘\x) i.e any network output value depends upon class

membership,

E= J‘ii[y ~dij]2p(xm Cj)dx

i=1 j=1

ij[ *_2yd, +d?]p(xn €, ix

j=1

L'Mz

= éj[yfip(xrﬁ Cj)—ZyEidﬁp(xm Cj)+2d§p(xm Cj):|dx (13)

j=1 j=1
For 1 from N classification d; =1, for xe C; and d; =0, for x¢ C;.

Furthermore, as the classes are exclusive (1 from N) and x belongs to one of the

N
classes Z p(x M C}.) = p(x) , can be substituted into equation (13) to give
=1

I = Z“yp — 23 me)+p(xr'\C')]d
- 3 [5200- 2 Pl « PCpto

= i [[2 - 25, P(cIx)+ P(C,1x)+ P*(CIx) - P2(C,Ix)|p(x)dx

= ij 2 =2y, P(C;1%) + P(C,Ix)+ P*(C;1x) - P*(C1x) |p(x)dx

and, finally,
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E= i: [ - Pex)] px)ax+ [ P(cix)(1- 2(c, 1x))p(x)dx

To minimise E with respect to the parameters, the second term can be ignored
because it is not a function of the parameters. This leaves the first term which gives

Y= p(q.lx) for a minimum to occur as the integral will always be positive.

A number of assumptions have been made in the above derivation (Bishop, 1995):

1) alarge data set which approximates to an infinite set, is available

ii) parameters (weights) exist such that y,.(x,w) — P(C,.Ix) i.e. the approximating

function is able to approximate the required probabilities, and
iii) the optimisation procedure finds the appropriate minimum.

K

It is also assumed that the classes are exclusive to ensure Zp(xr\ Cj) = p(x) . This
=1

can be written as

i P(C;1x)p(x) = p(x) which implies that i P(c)x)=1.

J=1 j=1

2.7.4 Conditional Expectation of Vector Output (M from N)

It cannot be assumed that all classes will be exclusive. Where more than one class is
likely at any one time, the problem becomes an m from n estimation problem. A

procedure analogous to the one above for deriving the result Y, = p(QIx) is given

below for the more general m from n estimation problem where it is convenient to
formulate the class membership problem in terms of vector output.

It will be shown that although joint class information (m from n) is available in the
training vectors, a neural network will not be able to estimate the joint probability
function unless the output space is expanded to give an equivalent 1 from n problem.

For the continuous valued vector output case (regression problem) the MSE is given
by

E = [[ly-dl p(a ~ x)ddax = [[|y - d’ p(dix) p(x)ddax
which implies that for a minimum MSE,

y=(dlx)= [ dp(dix)dd
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For the discrete output case (classification) which is of more relevance to the m from

n problem, the minimum MSE is given by
2" -1

={d|x)= Ed;P(dflx) where d, is a binary output vector.
i=l1

Proof:

£=]3 ly-aff Pl

+] X ((ax) - a,)° P(d1x)p(x)ax (14)

g |

= J (v- <dlx>)2 > P(d,Ix)p(x)dx

i=1

— J(y - <dlx>)2.].p(x)dx

= j(y —(dx))’ p(x)dx

For term 2:

2_[ rZ:(y - (dlx))((dlx) -d, )P(dl.lx) p(x)dx

_[( (dlx)) {<dlx)P(dex)—diP(dilx)}p(x)dx

i1
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e 2M 1

=2f(y- (d[x)){(dlx) P(d,1x)- zd,.P(d,.Ix)} p(x)dx

i=1 i=1

=2 (y = (dix) {{aix).1 - (aix)} p(x)x

=0

For term 3:

[ Z ((ax) -, ) P(d,1x) p(x)dx
= jzjz;l (ax)” - 2{dix)a, + )P(d,.|x) p(x)dx

j{ P(d,Ix)- <d1x)2§1dfP(dilx) NZd P(dlx)} (x)dx
= [{(ax)” 1- 2{ax)ax) + (@?1x)} p(x)ax

= [{{@1x) — (ax)"} p(x)aix
Substituting the above terms into equation (14) gives the expression for the MSE
E= _[( dlx ) (x)dx + J((d?‘lx> = (dlx)z)p(x)dx

As the second term is determined by the data, the minimum MSE will be where
= (dlx) in the first term

For three classes there will be 2° — 1= 7 different binary output vectors and the
expected conditional output will be given by

7 ’
= ZdiP((Cﬂr\...mlex) ) n <3 where ... € A, the set of class indices
i=l1

involved for pattern i. The dash denotes the probability of any class or set of classes

occurring exclusively i.e. P((le) ) does not include P((C1 N C3Ix) ) Bte.
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(d|x) = d P [(03 | x)’] +d,P((C,]x))+d,P [(02 ne, | x)’] + d4P[(C’1 | x),]

+d.P [(c1 ne, | x)’] +d,P [(01 ne, | x)’] + d7P[(Cl ne,nc, | x)’]

0 0 0 1

(d|x) =0 P[(Ca |x)’]+ 1 P[(G2 |x),]+ 1|P|(c,nC, |x),]—i- 0|P((c, |x))
1 0 1 0

+ ; P[(c1 nc, |x)’]+ 1 P|(c,nc, |x)’]+ 110[(01 ne,nc, |x)']

1 0 I}
This implies that

Y, = P((Cllx)’] % P((Cl N Calx)’)+ P((C, N Czlx)’ ) + P((C, NG, N cjlx)']
={P(c,Ix)- P(C, n C,Ix)- P(C, n C,1x)+ P(C, n C, m C,lx)}
+{P(c, nclx)- P(c,nC, nCyix))
+{P(c,nc,x)- P(C, N ¢, N Gylx))
# P(C; NC,N C3|x)
= P(C,Ix)

Similarly, y, = P(C,Ix) y, = P(C,lx).

In general, for calculating

oV

y=(aR) = 34, p(a)

: ! : ;
for any output, y,, the class C, will occur in 52” =2"" terms in the summation

because the other class intersections form a partition of C, i.e.

P(clx)= P(CIx)+ P((C,. A c}.)'m) + P((C} NC,NC, )’Ixjﬁ-...

s P((C,. AE AN NGy M CN) Ix)
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Figure 22 shows an example of the results obtainable using a multilayer Perceptron
to estimate the posterior probabilities of a given a set of distributions. A data set
consisting of 1000 data points was used to generate the graph. Note that the classes
are not exclusive or independent. The MLP is an instantiation of the estimation
problem and is only able to estimate the singleton class posterior probabilities
although joint class data is available (i.e. more than one desired output bit may be
active at any one time).
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Figure 22 A graph showing the estimation of posterior probabilities by a Multilayer Perceptron. Note
that only the singleton class probabilities have been estimated as expected.

It is clear that the probability of class 1 occurring contains some occurrences of class
1 paired with class 2 i.e. P(Cl M Czlx) # 0. Thus, even though the training data

incorporates examples of two classes occurring together, any method using binary
outputs to indicate class membership based upon error minimisation as described in
the previous discussion (including cross-entropy) is not able to extract this
information using N outputs alone where N indicates the number of classes.

To capture class combination information in general, an augmented output vector
consisting of 2" —1 outputs is required.

Note the non-smooth approximation of P(Cl|x) and P(C2|x). This problem and a

possible solution, known as regularisation, is discussed in the context of radial basis
function networks in the next sub-section.
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2.7.5 Using Radial Basis Function Networks to Estimate the Posterior
Probabilities

One way of estimating posterior probabilities is to use a radial basis function
network (RBFN) (e.g. Powell, 1987, Broomhead and Lowe, 1988; Moody and
Darken, 1989; Bishop, 1995). Radial basis function networks are capable of
interpolating between data points to approximate a given noisy function (regression)
or probability density function (classification).

A basic RBFN consists of a weighted linear sum of basis functions. This will not be
gone into in detail here as there are many references dealing with this subject (e.g.
Bishop, 1993, 1995; Haykin, 1994; Wasserman, 1993).

This documentation deals with classification problems which necessitates the use of
the softmax function (e.g Bishop, 1995). To prevent over-learning of the training
data, regularisation (Bishop, 1991, 1993,1995) may be used. The total cost function
for any error-driven neural network using regularisation will be given by

C=E+vQ

where E is the original error function, v is the regularisation constant and Q2 is the
regularisation function.

For the simulations given below, the second-order differential regularisation
function is given by '

N L (32, \
Yi
Q= ;
53(%)
Details of the implementation of an RBFN network with second-order differential

regularisation applied to a standard network configuration with a softmax layer will
be found in Appendix E.

Second-order differential regularisation penalises large changes in the curvature of
the output function thus smoothing the resultant function.

The following dependent condition classes were generated using Gaussian
distributions for the likelihoods of: C,,C,,C,, C,NC,, and C, " C,. The RBFN is

expected to approximate the posterior probabilities P(C] |x), P(C2|x) , P(C3|x),
P(C1 N C2|x) ,and P(C2 N C_Jx). The RBFN used had an expanded output set

consisting of 5 outputs, each output signifying that case alone e.g. P(Cl'x) gives the
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posterior probability of class 1 occurring alone. To be consistent with earlier
)

A Radial Basis Function network of the sort discussed previously was used in the
simulations of this document. The network had a cross-entropy cost-function and
incorporated a softmax layer to reflect the output probabilities. Second-order
differential regularisation was used to reduce the rate of curvature of the output to
prevent over-fitting to the data.

notation: P(C‘,. |x) = P(Q’

x) and P(C, N C Jx)= P((C} nC, )

Figure 23 shows the estimated posterior probabilities without regularisation.
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Figure 23. A graph showing the estimation of posterior probabilities by a radial basis function
network. Note that only the output space has been partitioned to allow the joint probability functions
to be estimated.

The data density outside of the range [~ 3,+I2] is low, giving inaccurate predictions

of the posterior probability functions as expected. The lack of regularisation allows
over-learning of the data and is indicated by the considerable curvature of the
estimated probability functions.

Figure 24 shows the estimated posterior probabilities with second-order derivative
regularisation.
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Figure 24. A graph showing the estimation of posterior probabilities by a radial basis function
network using second-order differential regularisation as explained in the text.

Note that the approximated functions are considerably smoother in the region of
higher data density.

2.7.6 Fault Protocol

The protocol used for generating the fault data used in exploring the probability
estimation and update problems is:

for each choice of Mach-Altitude co-ordinates,

i) run the model at the NOP without any faults,

ii) run the model with faults induced based upon the priors

iii) compare NOP run with the possible fault run, then

iv) find the maximum absolute percentage deviation across the time-trace of
the variable for each indicator; if this exceeds the limit set for that particular
variable, flag a fault.

For the experiments detailed here a data set comprising 800 training patterns and 300
test patterns was used. The faults actually induced were:

i) Fuel decay (increase), C1
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ii) TGT increase, C2

iii) N3 decay, C3

iv) Fuel decay (increase) and TGT increase, C1 & C2
v) Fuel decay (increase) and N3 decay, C1 & C3

vi) TGT increase and N3 decay, C2 & C3

Faults are not induced for a number of cases which are thus considered normal.
From these normal cases, a fraction is assigned a false alarm or no fault found. The
faults are induced according to the prior probabilities. The following list of priors
was used in the preliminary experiments featured in this document. These could be
adjusted to give a more realistic spread of fault/normal conditions.

I Condition-Class Prior Probabilities
Cl 0.15
I C2 0.15
3 0.15
Cl&C2 0.05
I Cl &C3 0.05
C2 & C3 0.05
No fault / normal(N): 0.3
I No fault found (NFF) 0.1

Table 4. The induced condition-class priors

As mentioned in step iv) of the protocol, faults are assi gned on the basis of range
checking compared with the fault-free model for the five parameters detailed above.
The fault ranges of all five variables are all set at (£10%) for simplicity; they can all

be set at separate limits if required. We remark that such a detection scheme is crude
and is simply used for illustration.

2.7.6.1 The fault vector coding scheme

The fault vectors are coded using a five bit input string which indicates the
occurrence or non-occurrence of a limit-trip on each of the monitored variables. A
seven-bit output is used to indicate the following fault conditions: Cl1,C2,C3,
Cl&C2, C1&C3, C2&C3, N. The case C1&C2&C3 is prevented from happening
by not allowing all three faults to be induced at any one time, i.e. the condition is
ignored. This is using one from many coding. Thus, the three condition-classes can
be indicated separately or in pairs or the plant can be operating normally. The target

vector represents verified fault / no fault occurrences. This form of input/output data
indicates a binary heteroassociative problem.

An example data vector is (10111, 0000100). The first set of five bits is the alarm

indicator set which signifies that there are trip deviations in fuel flow, N3, P30, and
T30 but TGT is within range. It forms the input pattern to the neural network. The
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second set of seven bits indicates the verified status. It represents the training input
and represents a verified fault in C1 & C3, i.e., there is a verified fuel problem and a
problem with the HP turbine (N3). The network has to develop a mapping between
input alarms and verified faults. The network used is a RBFN with soft-max output
layer and second order derivative regularisation, trained using simple, steepest
gradient descent.

2.7.6.2 Results

The empirical training set and test set probabilities were computed from the data
files. These were found by computing the relative frequencies for each input vector.,

2.7.6.2.1 1.7.6.2.1 The Theoretical Maximum Accuracy

A linear network, incorporating a softmax output layer to allow for the
representation of probabilities, was trained and tested with the 800/300 set using a
variety of initial weights. The network was used to predict the most likely fault(s).
The best performance was a prediction accuracy of 64% and this varied very little for
different choices of the initial weight set; this indicated that the minimum mean-
squared error for such a system had been achieved. Thus, comparing with the
theoretical maximum prediction accuracy of 87.7% (calculated directly), it is clear
that this is not a trivial problem solvable using a simple, linear network. As the
complexity of the fault data increases, it is likely that the linear system will have an
even poorer performance. Measurement noise and quantisation of inputs may
possibly reduce accuracy further.

A single run of the regularised RBFN was carried out with the 800/300 data set to
assess the network’s accuracy in probability estimation. The prediction accuracy for
the test set for the most likely fault scenario was 87.7%, the maximum possible; that
is, if faults were chosen on the basis of probability magnitudes. How can this be?
This is because the RBFN models the probability distribution and only the maximum
probability for each of the binary input vectors is required. There may be a large
error in the estimates of the probabilities which does not affect the MAP decision as
long as the probability of the most probable prediction exceeds the others by a small
margin. In other words, the winning probability only has to be largest. Thus, the
probability density function may not be very accurate or representative of the
underlying distribution of fault vectors but still allow the maximum achievable
accuracy.

The test set results are shown in Table 3. Only 11 out of a possible 32 states
occurred with this run; NB this would change for different values of the fault
detection thresholds. For each input, the actual probabilities (relative frequencies) of
occurrence are shown together with those predicted by the network. The column
labelled p(x) shows the data distribution (relative frequency) of the patterns. This is
included to illustrate the variation of accuracy with data density.
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The RBFN network was then trained and tested with an 800/300 data set based upon

the 11/32 binary input vectors encountered in the above fault-induction
experiments. This set was devised for use as a calibration check. This time, a single
unambiguous input was assigned to each input on the basis of the maximum
probabilities encountered in the previous experiments. The input vectors were
distributed approximately according to the frequency of occurrence encountered
above. Thus, the max theoretical accuracy of correct diagnoses was 100% The
RBEN achieved this 100% target.

Cl C2 C3 Cl&C2 | C1&C3 C2&C3 N p(x)
input actual 0 0 0 0 0 0 1 0.3100
00000 | predicted | 0.005029 | 0.012104 | 0 0 0 0 0.982867
input actual 0 0 0 0 0 0 1 0.0433
00100 | predicted | 0.164490 [ 0.202020 | 0.008506 | 0.007712 | 0.006416 | 0.006438 | 0.604418
input actual 0 0.7910 0 0 0 0 0.2090 0.2233
01000 | predicted | 0.000097 | 0.883493 | 0.000068 | 0.000187 | 0.000001 | 0.000009 | 0.116146
input actual 0 0 0.6667 0.3333 0 0 0 0.0100
01011 | predicted | 0.010755 | 0.014644 | 0.850851 | 0.008370 | 0.011507 | 0.092996 | 0.010877
input actual 0 0 0.8750 0 0.1250 0 0 0.0267
01111 | predicted | 0.000516 | 0.000375 | 0.922690 | 0.000667 | 0.001522 | 0.073864 | 0.000366
input actual 0.8750 0 0 0 0 0 0.1250 0.1333
10000 | predicted | 0.941444 | 0.000090 | 0.000002 | 0.000078 | 0.000001 | 0.000001 | 0.058384
input actual 1 0 0 0 0 0 0 0.0133
10010 | predicted | 0.558011 [ 0.053072 | 0.025421 | 0.051029 | 0.029564 | 0.015743 | 0.267161
input actual 0 0 0 0 1 0 0 0.0500
10111 | predicted | 0.000875 | 0.000359 | 0.005837 | 0.000367 | 0.991319 | 0.000811 | 0.000432
input actual 0 0 0 1 0 0 0 0.0533
11000 | predicted | 0.000629 | 0.000737 | 0.000058 | 0.998410 | 0.000010 | 0.000011 | 0.000144
input actual 0 0 0 1 0 0 0 0.0033
11010 | predicted | 0.087575 | 0.085436 | 0.094690 | 0.576361 | 0.042954 | 0.054367 | 0.058617
input actual 0 0 0.6000 0 0.0500 0.3500 0 0.1333
11111 | predicted | 0.000094 [ 0.000036 | 0.719065 | 0.000333 | 0.021754 | 0.258647 | 0.000070

Table 5. Test set results. The actual probabilities are the relative frequencies of the classes in the
data set. The predicted results are those of the RBFN run. P(x) indicates the relative data frequency.

Note that not all of the condition-class rankings are correct; where they are incorrect
(e.g. alarm condition 01111) the relative frequency of data is low. Some type of
error measure is needed which allows comparison of rankings between experiments.

2.7.6.2.2 1.7.6.2.2 Discussion

As expected, the underlying statistics of the training set population are estimated by
the RBEN system; where the data relative frequency is low the estimated
probabilities become inaccurate. For both training and test sets, the same decision as
predicted by the actual probabilities will be taken in all cases using the predicted
probabilities. Some states may not occur in the fault diagnosis procedure, e.g. 00001
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which signifies that T30 has changed without any concomitant changes in other
monitored variables.

The eleven observed states were as follows:

State 00000 indicates that no fault has occurred.

State 00100 indicates that a fault has occurred in N3 only. The probability
estimations point to the fact that a NFF condition is actually the case because an
actual N3 decay fault usually has an effect on other parameters such as fuel flow and
TGT. Note the low data density.

State 01000 indicates that a fault has occurred with TGT only. It is highly likely that
the fault lies with the TGT thermocouple because no other parameter changes have
been noted. There is also the possibility that no fault has occurred.

State 01011 indicates that, as well as the thermocouple changes, there are
concomitant changes in P30 and T30 indicating that the N3 shaft may be involved
(N3 or N3&TGT). In both cases, the N3 activity does not show up as a fault. Note
that the data density is low in this case.

State 01111 indicates that all faults are triggered except for the fuel flow. This is
highly indicative of an N3 fault but the data density is low indicating that a fuel flow
problem usually occurs as well. This is supported by the higher data density
associated with state 11111.

State 10000 indicates that there is a fuel flow problem. When this occurs alone it is
rarely a consequence of any other actual fault. However, there is a possibility that a
NFF condition has occurred.

State 10010 indicates both a fuel flow and P30 problem. According to the test set
statistics, it is always a fuel flow problem.

State 10111 indicates that all faults are triggered except for TGT. A low data density
indicates that TGT is usually associated with N3 (alarm pattern 11111). Where TGT
is omitted, WF and N3 together are expected according to the training or test data.
State 11000 indicates that WF and TGT have occurred together. The actual faults
are WF and TGT because the occurrence of N3 usually has a ‘knock-on’ effect.
State 11010 indicates that it is again a conjunction of WF and TGT but the P30 fault
is anomalous as shown by the data density.

State 11111 is either indicative of N3 alone or N3 and TGT. Note the ratio of
occurrences of approximately 3:1 is commensurate with the ratio of prior
probabilities of 0.15:0.05 or 3:1.

This preliminary empirical investigation indicates that fault induction and detection
using the aircraft engine model will provide data suitable for testing and extending
the posterior knowledge inclusion model. The fault induction and detection process
is to be refined so that meaningful posterior probability hierarchies will be
generated.

2.8 Representing Non-Exclusive Probabilities by Exclusive
Probabilities
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The motivation for seeking a partition of the input space is that we need to expand
the space to estimate all of the probabilities required for the update equation. In
other words, the class dependencies indicated by more than one ‘on bit’ in the target
vector.

A partition of classified input space may be achieved by specifying that the class
intersections are pairwise disjoint, for example C only contains data points that
belong to C; and not C; N C; etc. Similarly, (q N Cj) only contains data points

that belong to C; N C; and notC; N C; N C, etc. This will ensure a partition of the

!
space with disjoint sets as required (e.g. C/ M (Q N Cj) = ¢). The ‘dash’ notation
is used throughout to indicate partition members which comprise the entire sample
space.

Now, the original formula for the uniqn of sets in terms of set intersections can be
specified in purely additive terms:

AU, cix) = i P(C!1x)
+.i P((c,. ﬂCj),Ix)

+ i P[(chjmck)’m] (15)

+ P((Cl N sz..nCN),lx)

It is required to prove that the two representations are formally equivalent.

For P(UL Crlx) , it must be shown that the probability term representing each

disjoint region only occurs once in the sum.

N
Foreach C/, C/ c C, and P(le) occurs only once in the summation 2 P(C,.[x)

i=1
: . N .
and in the expression P(Ur=1 Crlx) because all other class segments consist of two

or more intersecting classes and, hence, do not have single class sets as subsets. The

N
first set of terms of P(Uil C,Ix) become ZP(Q’IX) where
i=l
N N
P(Cx) <Y, P(C/Ix). Introducing the notation C(n,k) which signifies a
=1 i

i=1

I

a3




combination of k objects selected from n.  So for C; there is only a single set and a
single way of selecting that set so n=1 and k=1 giving C(1,1) =1.

For two or more intersecting classes the non-overlapping region of interest is

’ ’

(Ciij) . Now, (C,.r‘\Cj) cC.C;,C NG, so, for
P(Cx) + P(C,1x) - P(C, n Cx)

where all three terms all include the term P[((C,. NC j) IXD, the resultant term will

x] - P[(C,. S c}.)’ x] = P((C,. A cj)’

once. Here, the number of terms is given by C(2,1)— C(2,2) =1 where each of the

be ZP[(C,. A Cj)’

x] i.e. the term only occurs

singleton terms P(C,Ix) and P(lex) can be selected once from a set of 2 (because

7

(Cf N Cj) c C,,Cj), hence C(2,1),and the term P{(C,. N Cj) x} involving 2 sets

can only be selected once from P(Ci N Cj Ix), hence C(2,2). Continuing this

’

(c.nc,nG) €C.C,.C.CNC;,6 N C,C,AC,.CAC, AC, and so the

’

argument for P((Ci NC; N Ck)

number of terms including P[(Ci NC; N Ck)

x] will be given by

C(3,1) —C(3,2)+C(3,3) =3-3+1=1. For the general case, n class intersection
terms occur N, = C(n,1) — C(n,2) + C(n,3) — C(n,4)+.. +(=1)""' C(n,n) times. It is
required to prove that N, =1, that is, each term only occurs once.
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Here, the expansion of (a —b)" = Z(—- 1)*a"*b* has been used with a =b =1 |
k=1

Now any probabilistic function of the possibly overlapping classes U = {C] e g }
can be replaced with an equivalent disjoint set

s
3o

U’ = {c,’,...,c;, AG o) . Sy PV, ),,...,(Clm,...,mCN)’} which forms a

partition of the input space. Equation (15) can now be written in terms of Bayes
theorem:

¥ v p(C)P(xIC!
AU )= 3 AE0C)

P((C‘. A cj)’]P((q. A cj)’|x)

P)

, P[(C,. NC, N Ck)’]P(xl(Ci NC,NC, )}

i=1,j=2 k=3 P(x)

i#jzk

P((Cl N CyN..NC, )’)P[xl(q N C,N..NC,, )'J
P(x)

+
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2.9 |Interim Review

It has been stated that, in general, condition monitoring involves the detection of
anomalous conditions that arise during the operation of some plant or process. The
indication of the most likely fault and its estimated probability by a fixed pattern
recognition system is not necessarily the end-point. Condition monitoring is, or
should be, a closed-loop process involving an end-user. The end-user ultimately
decides how to use the information generated by the condition monitoring system.
The end-user may, in turn, require a mechanism of incorporating his or her
observations into the condition monitoring system for a more accurate diagnosis.
The incorporation and utilisation of posterior knowledge presents a difficult
problem. This research has attempted both to articulate the problem and to provide a
framework for its solution. It is clear that more work is required in this area. The
contrived example illustrates some of the issues involved in the integration of
posterior knowledge within the human / machine diagnostic cycle as fault evidence
is accumulated. Three phases of the fault diagnosis cycle have been identified:

(1) fault diagnosis and isolation to provide fault prediction data,
(i1) probability estimation to provide the fault hierarchy, and
(iii) posterior knowledge inclusion to provide a revised fault hierarchy.

Phases (i) and (ii) are covered by many condition monitoring schemes. Some of the
theory of phase (iii) has been explored so far in this document. Chapter 2 will
expand upon the theme and discuss simulation studies.

The problem of posterior knowledge representation is a difficult one and further
work is needed to increase the scope beyond just excluding classes on the basis of
external observations. Both the method of knowledge representation and the
posterior probability update problem are independent of the method used for
probability estimation; this is because of the general framework based upon set
theory.

Using the specified probabilistic framework, the posterior knowledge integration
problem has been reduced to an m from n estimation problem. Furthermore, The m
from n estimation problem has been reduced to a 1 from 2" problem by expansion
of the output space. Pre-processing may be required to reduce the combinatorial
explosion. It is clear that probability distribution estimation methods must give
sufficiently accurate estimates to maintain condition class hierarchies; the estimation
problem has been explored further using an established neural network technology.
The radial basis function network has the combined features of cross-entropy cost, a
soft-max layer and second order derivative regularisation.

2.10 Assessing the utility of posterior knowledge integration

Of primary interest here is the development of more informed maintenance strategies
which reduce the amount of maintenance required. By using posterior knowledge,
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revised fault probabilities will lead to a more efficient sub-unit checking order.
Without posterior knowledge integration, the probability estimates—generated from
the condition monitoring data—give a fixed fault ranking via the posterior
probabilities of fault occurrences. The theory discussed so far indicates that revised
posterior probabilities may alter the fault ranking and give a more accurate
prediction of the current fault scenario. How can posterior knowledge integration
enhance maintenance strategies in practice? Furthermore, how effective is the use of
posterior knowledge and how can this be quantified? These questions and related
issues will be explored in the remainder of this document.

In general, in a condition-monitoring situation, there will be a search path followed
by maintenance engineers to detect and isolate all current faults. In terms of aircraft
maintenance, this entails using all available fault indicators and maintenance
experience/procedures to detect the faulty line-replaceable units (LRUs). The
posterior knowledge integration technique has been developed to reduce search-path
lengths during maintenance.

Posterior knowledge integration is an abstract technique designed, in theory, to be a
post-processing stage with general applicability to a wide-range of condition
monitoring techniques which produce probabilistic FC data. Consequently, the
assessment of this technique should be, at least initially, context-free. In other
words, its utility should be indicated without reference to a specific condition
monitoring situation. A technique for context-free simulation has been developed
for this purpose. Using context-free simulations means that the results are not
limited to a specific set of FC relative frequencies. Using such a specific set may
give a misleading impression of the possible utility of posterior knowledge
integration.

Context-free simulations use a number of individual sets of relative frequencies to
explore how the posterior knowledge technique functions across a range of
conceivable condition monitoring situations. Each simulation is based upon a single
set of relative frequencies generated at random,; this set represents some possible set
of condition monitoring data for the lifetime of a single plant such as an individual
aircraft. By applying the integration technique to each of the relative frequency sets,
an ensemble of results is obtained which can be summarised using appropriate
ensemble statistics. Performance measures will be discussed in Section 2.2. The
ensemble results may represent many individual items of the same plant type (e.g. a
Jfleet of aircraft) or, more generally as applied in this work, a heterogeneous set of
plants. For the purposes of simulation, multiple instantiations of a plant may be
characterised by using a narrow probability distribution for the relative frequency
vectors. In other words, relative frequencies of individual plant items of the same
basic type are not expected to vary to the extent of those of different plants.

For a single simulation (realisation) from an ensemble, a set of FC frequencies are
generated at random which represent a possible estimated set from the real-world.
The real-world counterpart is shown schematically in figure 25. Here, in the
context-free simulations, the input features do not exist explicitly because the FC
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frequencies may be associated with any possible input and represent some possible
situation. The relative frequencies represent the probabilities of fault scenarios for
the plant. An example scenario may be when sub-units (LRUs) 1 and 5 are faulty
and all the rest are operating normally.

Automated
Diagnosis Condition

frequencies

Input I —

-

Figure 25. A schematic diagram of a ‘real-world’ counterpart to a single context-free simulation. A
set of observations is fed into a pattern recognition system which generates a set of FC frequencies
corresponding to the predicted probabilities of fault scenarios. These probabilities will then be used
to identify the actual fault scenario.

A fixed set of FC frequencies are generated for a given simulation from the
ensemble. Each of the fault scenarios represented by a non-zero probability is taken
in-turn as the actual fault scenario to be detected. The FC frequencies are used
systematically—in conjunction with the probability update equation—to identify the
actual fault scenario. Finally, after each scenario, relevant information is recorded
which allows the single simulation measures ( e.g. for a single aircraft) or the
ensemble measures (e.g. for a fleet) to be calculated. Each fault scenario of the
individual simulation entails a fault search which results in a fault path representing
the number of inspections required before all faults are identified.

Figure 26 illustrates what happens for a single fault scenario awaiting identification
using posterior knowledge integration. The posterior probabilities of occurrence for
each fault are reconstructed using the scenario frequencies. These posterior
probabilities are ranked in descending order of magnitude and represent the
probability of a given fault occurring. The sub-unit with the highest fault probability
is chosen and inspected for that fault. The posterior knowledge following inspection
is then used to specify the actual form of the probability update equation which
depends upon the FCs to be included or excluded. The probability update equation
is used to give the revised posteriors. If the fault scenario has been identified then
the search is halted. Otherwise, the revised posteriors are used and the process is

continued until the scenario is identified or the maximum number of sub-units is
inspected.
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Figure 26. A flow diagram of the identification process for a single binary-coded fault scenario. A
number of scenarios is identified for a given set of FC frequencies generated for a single simulation.

In order to show any possible utility of the posterior knowledge integration
technique, a comparison has to be made with a baseline method which does not use
this external evidence. A simple comparison method is to fix the FC posterior
probabilities as they are obtained from the condition monitoring system. The fault
search entails inspecting the sub-units in descending order which is equivalent to a
simple renormalisation of the MAP decision. Here, the comparison technique is
referred to as the baseline, or MAP, method.

For comparison purposes, the posterior knowledge is included systematically, that is,
the fault status of an inspected unit is fed into the probability update equation to give
the new posteriors after each inspection. Both the posterior knowledge and baseline

methods are carried out for each scenario until all faults are found, i.e. the scenario is
identified. In practice, the search could be halted when all posterior probabilities fall
below a given threshold.

3 Simulation Studies: Theory

3.1 Simulation Protocol.

Binary vectors are used to represent the reading status and actual fault status of
system sub-units. The reading status is a set of sub-system alarms coded as a binary
string in which ‘1’ entries represent triggered alarms and ‘0’ entries represent correct
operation. The reading vector, x, provides the input to a probability
estimation/classification sub-system (as part of an FDI system) for training an
estimation system or probabilistic fault isolation. In the latter case, x, is applied
and a set of probabilities are generated (see Figure 27) which assist the user in
making the optimal choice (given some criterion of optimality) of system sub-unit to
be inspected. In other words, the set of fault readings x, gives rise to a set of
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condition probabilities indicating the relative frequency of faults associated with the
readings.

The actual fault status of a system is indicated by a binary vector, S,, which has a ‘1’

entry for each sub-unit shown (on inspection) to be faulty; the binary vector of actual
fault states is known as a fault scenario and provides the target for training or fault
isolation. The probabilistic FDI system is based upon a mapping, x, — S, between
the binary reading or alarm space and the binary scenario space (actual fault status
space).. Thus, there is a set of data representing a mapping between input sensors
and verified actual faults. Statistical information can be gathered from this data
which indicates the probability of fault scenarios given fault indicator readings. For
example, the pattern pair (1100, 1000) indicates faults in sub-system 1 and 2 but,
subsequently, only faults were found in sub-system 1 as represented by the scenario
1000. The fault indicated in sub-system 2 in this case is an example of a NFF
situation. The output for a given input, x, is a set of posterior scenario

probabilities, P(S£|xk) conditional upon the input. Figure 27 illustrates the
association of scenario probabilities with a given reading vector x, . S 3, is the jth

scenario associated with the kth reading vector. Scenarios represent the disjoint fault
classes of figure 19 in Section 1.7. To get the fotal posterior probability of a FC

given an input vector P(lexJt ), sum the exclusive posterior scenario probabilities of
scenarios containing the required fault class. Thus

P(C,.’xk)z ;P(ng |xk)

where each scenario, S 5, contains the ith sub-unit represented as faulty.

Figure 27. The kth reading vector gives rise to a number of associated scenarios. Each scenario has a
conditional probability associated with it.

For a binary NFF implementation, the number of readings must equal the number of
sub-units, i.e. there is a one to one correspondence between the alarms and the sub-
units. This is assumed here without loss of generality because it is must be possible
to find a suitable mapping between the measured variables and alarm states, x,

otherwise certain alarm states would be indistinguishable and therefore redundant.
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Here a NFF is taken to be when a reading indicates a faulty sub-unit but the
corresponding sub-unit is not faulty, i.e a bit is set in the alarm vector x . Which is

not set in the corresponding scenario vector S, which currently represents the actual
fault scenario (system fault status).

Binary data is generated in the form of pattern pairs (x,,S,) where an input reading,
X, Is associated with an output vector S, representing the associated actual fault
state of the system. If a forward simulation is used to generate data, the scenario
prior probabilities, P(S'.) are used to generate fault scenarios and the

likelihoods, P(x i |Sl.) are used to choose the reading vectors. Bayes’ Theorem:

P(x,}f)s(if;(sr) P(Xk)ng(xJS,-)P(S.')

can be used to calculate the expected posterior probabilities as the number of pattern
pairs (x,,S;) grows countably large. The exclusive scenario probabilities are
represented in matrix form,

P(Srlxk):

~P(S:]|x,) P(S:,.|x1) P(S,:,|x1)

P(S|x) = P(Si’xk) P(Sé’xk) P(S,\;,[xk)

_P(SJXMI) P(S,.AIXM) P(SNl|xM)

with each row,
P(S}x,)=[P(S/x,) .. P(S)x,) - P(S[x, )]

representing the scenarios associated with a single reading vector. The reading
priors are represented by P(x) = [P(xl) P(xk) P(xM )]

Thus, there is a vector of scenario posterior probabilities P(S|x k) associated with
cach alarm vector x, which indicate the possible current scenario. These exclusive
posterior probabilities are converted into non-exclusive fault class probabilities

P(Cp [x k) for each sub-unit. The PKI and baseline methods use these probabilities to

make informed choices about probable faulty sub-units. The simulations presented
in this document use the calculated posteriors for convenience to illustrate the use of
PKI without loss of generality. The calculated posteriors represent some population
of fault classes with parameters which will be estimated from a sample.
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3.2 Performance measures

A number of performance measures are possible which allow a comparison between
methods of scenario identification. Of direct interest and applicability are measures
involving the path length (PL) or path length difference (PLD) between the same
scenario identified using the two techniques of PKI and the baseline comparison
method. The path-length is the number of sub-unit inspections required to find all
faults. The path length difference is the difference between the baseline and
posterior knowledge integration techniques for a given scenario. A positive path
length difference indicates that the MAP method, henceforth referred to as the

- baseline method, took more steps (sub-unit inspections) to identify the scenario as
compared to the PKI method and vice versa. Each sub-unit inspection increases the
path length by one. One of the objectives here is to reduce the path-length to a
minimum thereby possibly reducing maintenance costs. The other objective—the
most important—is to reduce the number of no fault found (NFF) incidents. The
measure of no fault found number (NFFN) indicates the number of NFF incidents
encountered during the identification of a fault scenario. The overall measures of a
FDI technique (PKI or baseline) are the average path-length (APL) and the average
number of NFF incidents encountered per scenario (ANFFN). These measures are
obtained from data covering every possible alarm situation and every possible fault
scenario which occurred in a given (simulated) data set.

Results are recorded for each scenario, each simulation and each ensemble for a
given set of simulation FCs. Thus, in the context of aircraft maintenance, a set of
measures is calculated for each situation (FC), each aircraft and each fleet. Figure
28 shows this schematically for a single FC and a single simulation.
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Figure 28. (a) for a single FC, the posterior knowledge and baseline methods are applied to give path-
lengths signifying the number of sub-unit (LRU) inspections required to identify the scenario. The
path length difference is then calculated from the two path lengths. (b) For multiple FCs, the average
path lengths and average path length differences may be calculated.

The path length difference ranges between —(n —1) through 0 to (n—1) where n is

the number of sub-units. One ensemble measure is to count the individual PLD’s to
give quasi-histograms of PLD frequencies. However, the counts must be weighted
to reflect the relative frequencies of the scenarios which gave rise to those path
length differences. For a single scenario, the path length difference is calculated and
weighted by the scenario probability. The weighted PLD counts are then presented
in a bar chart as a quasi-histogram. Positive PLD’s indicate that the baseline method
requires more sub-unit inspections to identify the scenario. Thus, a quasi-histogram
skewed to the right indicates that the posterior knowledge method is more efficient
in scenario identification, requiring fewer sub-unit inspections. This may translate
into maintenance savings. In the aircraft industry, this would mean fewer LRU
inspections. LRU’s are usually removed and replaced which can be a costly process

in terms of LRU recertification. NFF situations mean that non-faulty LRU’s have to
be tested thoroughly prior to re-use.

3.3 Context-Free Simulation: The Algorithm

Each possible alarm (reading) vector is gone through in turn and taken to be the
current reading vector which would occur with a relative frequency of approximately

P(x k) as given by the calculated reading prior. For a given reading vector, each

scenario is treated in turn as the actual fault scenario. Both the PKI and baseline
methods are then used to identify the actual scenario.

The optimal situation is when the scenarios are identified by choosing each faulty

unit in turn; thus the minimum path length for a single scenario—to be identified by
locating all of the faulty sub-units, if any—is the total number of faults in that
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particular scenario. Each scenario will have an associated minimum path-length.
Furthermore, each scenario, which has non-zero probability, will have an associated
path-length for both of the PKI and BL methods respectively when they are applied

in the scenario identification process. The vectors 15, 1%, and 1}, represent the

pki
scenario path-lengths for the kth reading vector with the optimal, PKI and BL cases
respectively. For example I, = [l}fk,..l SRR S l;‘kw] where 17, . is the

path-length (number of sub-unit inspections) required to find all faults when the PKI
technique is applied to the ith fault scenario given the kth reading vector, x 5

The path-length vectors 1;, 17, and I;; are then weighted using the posterior vector

P(S[x " ) for the particular reading vector to give
aplt, = (18, ) P(S|x, )

apllfk,- = (lfm‘)r P(Slxk)
apl,f, = (ljff )r P(S!xk)

where apl,, apl;, and apl}, are the average path lengths for the optimal path, the
apt pki bl g p P

PKI derived path and the baseline method derived path respectively given the kth
input vector.

There are analogous measures for the number of NFF incidents. Prior to applying
PKI and the baseline method for a given reading and a given scenario, the possible
NFFs are flagged. The total number of possible NFFs for a scenario is weighted by
the scenario posterior (conditioned upon the input) to give the contribution to the
average NFF occurrence for that scenario. This gives a comparison for the PKI and
baseline techniques which provides more information about performance other than
relative to each other. NFF incidents for a given scenario are also counted for the
PKI and baseline techniques. For each reading, there is an associated NFF vector
(each entry corresponding to a given scenario) indicating how many NFF units have
been checked for that technique. The vectors nf,, n’, and nj; represent the

scenario NFF counts (associated with the input vector x, ) for the maximum
possible numbers of NFF incidents, the numbers for the PKI technique and the
numbers for the baseline technique. When a sub-unit is checked (search-path
incremented), if it is a NFF, the corresponding count for that reading and scenario is

: ko _ [ & k k P
incremented. For example n ,; = [nﬂkl.‘, W My, e np,ﬂ.'N] where n,;; is the

number of sub-unit inspections occurring as NFF incidents when the PKI technique
is applied to the ith fault scenario given the kth reading vector, X,
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The path-length vectors n,, n}, and nj, are then weighted using the posterior

vector P(S|x & ) for the particular reading vector to give

anff. :( mﬂx) (Slx )
anff —( P,u) (S!x )

anff,s =(11,,,) P(Slxk)

where anfft an P’j\t and anff,; are the average path lengths for the optimal path,

the PKTI derived path and the baseline method derived path respectively given the kth
input vector.

Both the path-length and NFF incident measures for the three cases are conditioned
upon the current input vector x, To get a meaningful measure across the whole

range of system conditions, the path-length and NFF incident measures are weighted
by the calculated priors, P(x k) associated with the inputs. The resulting measures
give the overall averages per scenario for a given system. The final measures are:

the average scenario optimum path-length aspl,,

= Elapl,,, = Zaplnp, P(x,)= ;(p) P(S[x, )P(x,),

the average scenario PKI path-length aspl i 8iven by

aspl,,ﬁE[aplpk.] Zapfpm P(x, )= ;(,m) (S|X) (%),

the average scenario baselme path-length aspl,, given by

M M
aspl,, = E[aplb,] = ;apl;,}’(xk ) = 2(15’;) P(S|Xk )P(xk ),
k

the average scenario maximum NFF incident number asnff .., given by

asnff,.. = [ max] Zan o~ ( ) i( max) (S’X) ( )

the average scenario PKI NFF incident number asnff o given by

asnff ;= E[an pk,-]= ﬁanﬁpﬁdp(xk): i( pfu) (S|xk) ( )

the average scenario PKI NFF incident number asnff,; given by

asnﬁ“b,zE[anﬁb,] Zanﬁb, ( ) Z(nb,) P(Slxk)P(xk)

given by

aspl

3.4 PKI Optimality
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For both the PKI method and the BL method, the optimum case is when all faults are

found in unbroken sequence, thatis aspl,;, = aspl,, = aspl,, It follows that where

the methods will differ is in the number of LRU inspections where a fault is not
found.

There is thus a common core of the average scenario path lengths where the
probability-weighted path lengths do not differ for the PKI and BL methods. The
remaining ASPL contributions can be defined by,

R, =aspl, —aspl
and

R,, = aspl,, —aspl

ki opt

opt
respectively.

The fundamental idea behind PKI (in the unweighted case) is to look for the sub-unit
with the highest posterior probability at each choice stage. The evidence at stage n
of the PKI process has narrowed down the fault scenario to within the set, €, . Now,
€, can be broken down into two exclusive sets (a partition) given new evidence at

the n+1 th stage. Thus, the scenario either belongs to the set with a fault at a given
position or otherwise as shown in Figure 29.

The stage n evidence is given by
& =&, UL

n n+l n+l

at stage n+1 and so,

where g, =U and P(Eo)z 1.

Sub-units are chosen on the basis of having the largest posterior probability of being
faulty. This implies that the probability of the chosen sub-unit being faulty is the
lowest. Therefore, if the sub-unit is non-faulty, it adds the lowest weighting to the
APL for NFF situations.
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Figure 29. The scenario space is reduced at each stage until the scenario is identified (all faulty sub-
units are isolated).

3.4.1 A Four Sub-Unit Example

Four sub-units were used in the following example. The ambiguity was chosen to be
100% (that is, all scenarios are possible) For PKI the path lengths were

S p1 12 |3 14 {5416 17 |8 |9 110 j11 12 p13 14 }15

PL |2 |1 |4 |3 |3 |3 |4 |4 |4 |2 |4 |4 |4 |3 |4

for each scenario given a particular reading vector. S and PL signify the scenario
number (index) and the path-length respectively. For example, S=6 signifies
scenario 6 with a binary representation of 0110; this indicates that sub-units (LRUs)
2 and 3 are faulty. The probability weighted sum of path lengths or APL is 2.2905 in
this case.

For the same parameters the baseline (MAP) approach gives

S {1 12 3 14 ({5116 17 {8 |9 J10 j11 j12 13 j14 {15

PL |4 |1 |4 |2 |4 |2 |4 |3 |4 |3 |4 |3 |4 |3 |4

giving an APL of 3.3758.

Notice that, in individual cases involving a single scenario, MAP can be superior.
This is because of misdirection (incorrect choice in a specific case based upon
probabilities) by the PKI method. For example, consider scenario 4 where PKI takes
3 LRU inspections and the MAP approach requires only 2 inspections. However, for
a given reading vector, the probability (relative frequency) weighted total (APL) for
PKI is always smaller (or equal to) that of the MAP method.

In the weighted PKI case (WPKI), discussed in section 1.7, the sub-unit with the
lowest cost weighted probability of a fault is chosen; this is equivalent to the above
definition in the unity weighted (unweighted) case. PKI superiority in both the
unweighted and weighted cases is discussed in section 2.8.

3.5 Simulation Studies: Actual Simulations

3.5.1 Single Seed Simulations

i,



One thousand simulations were carried out where each simulation generated a set of
FC frequencies and applied the posterior knowledge and baseline methods to the
scenarios within each simulation. For the simulations described here, a total of eight
sub-units was used to represent a hypothetical plant; this gave 256 outcomes where
the fault scenarios were represented by 8-bit binary strings. Here, the 256 fault
scenarios were equally likely. Multiple seed simulations of Section 2.6 use different
distributions. Figure 30 shows a quasi-histogram for a set of simulations in which
all 255 scenarios having one or more faults are possible. The 256th scenario has zero
faults.
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Figure 30 A quasi-histogram of path length differences over a thousand simulations. Each simulation
provided a number of scenarios for identification using both the posterior knowledge and baseline
methods. The histogram is skewed towards positive path length indicating that posterior knowledge
integration results in shorter path lengths overall. The height of the bar indicates the relative
frequency of occurrence for a particular PLD

Comparing related columns (PLD of same magnitude) such as +1 and -1 sub-unit
inspections respectively reveals that the quasi-histogram is skewed towards positive
path length differences, i.e. that positive PLDs are more likely. This means that the
sequential integration of posterior knowledge has reduced, on average, the number
of required sub-unit inspections. As 255 fault scenarios were possible, the scenario
predictions were maximally ambiguous, that is, when an actual scenario is to be
identified, it can be any 1 of 255 possible scenarios.

Figure 31 shows the same protocol but with the number of scenarios reduced to any
64 out of 256. Comparison of figures 30 and 31 reveals that the quasi-histogram
skewing is more pronounced—as expected—because the number of possible
scenarios for a given diagnosis is reduced. In reality, the number of fault scenarios
predicted for a given feature vector will invariably be lower than the maximum
possible; the prior distribution of scenario frequencies will be dependent upon the
dynamical system being monitored. For example it is conceivable that multiple fault
scenarios will be much less prevalent than simple fault scenarios thereby reducing
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the number of fault scenarios associated with a given input. Furthermore,
associations between fault scenarios and input vectors depend upon the key features
monitored. If ambiguity is high, then it is likely that the choice of monitored
features is not optimal for predictive disambiguation of fault scenarios.
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Figure 31. The results of the same simulations carried out using a reduced number of possible
scenarios of 64 out of 256. The skewing is more pronounced. See text for details.

Figure 32 shows the same protocol again but this time with only 8 out of a possible
256 scenarios. Note that the skewing is even more pronounced than in the previous
simulations. This results from a further substantial reduction in target scenario

ambiguity.
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Figure 32. The results of the same simulations but using a further reduced number of possible
scenarios (8 out of 256). The skewing is yet more pronounced. See text for details.
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Figure 33 shows the total path-length-difference relative frequencies of the left and
right sides of the quasi-histograms for an increasing number of scenarios. These
sums represent the total relative frequencies of the left and right sides of the quasi-
histograms. A larger positive PLD relative frequency indicates that the path-length
for posterior knowledge integration is shorter than for the baseline method. Note
that the positive PLD sum is consistently larger. As the number of scenarios allowed
for each simulation increases, the difference between the positive and negative PLD
relative frequencies diminishes. The number of possible scenarios for a given input
increases and represents an increase in predictive ambiguity. An expected
consequence is that the effectiveness of the posterior knowledge technique
diminishes. A high degree of predictive ambiguity is not expected in a ‘real world’
situation because it would indicate a problem with fault resolution. A consistently
larger positive PLD relative frequency indicates that the posterior knowledge
integration technique always outperforms the baseline technique. The main point is
that the posterior knowledge integration technique is superior even with high
predictive ambiguity.
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Figure 33. A graph of the PLD sum relative frequency versus the number of scenarios allowed for
each simulation. The positive PLD sum relative frequency is a total relative frequency reflecting how
many times the baseline method path length has exceeded that of the posterior knowledge integration

technique (positive PLD) i.e. the total relative frequency for the right-hand side of the histogram.
This shows where the integration of posterior knowledge has shortened the path-length.

Where there are only singleton classes, i.e. no joint probabilities, there will be no
gain using the posterior knowledge integration method. This is because no
information is given about other FCs or sub-units in the form of joint probabilities.
For individual scenarios, the posterior knowledge integration method may result in a
longer path length. However, on average, the overall path length is shorter owing to
the larger probability weightings of shorter path lengths arising from the posterior
knowledge integration choice mechanism. Thus, on average, the posterior
knowledge integration method is at least as good as, if not better than, the baseline
method. This may lead to financial savings for maintenance.
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3.6 Multiple seed simulations

3.6.1 An lllustrative Set of Simulations

Figure 34 shows the results of a ‘calibration’ run where equal fault scenario priors
are used to check the PKI-BL system. The results for the average number of faults
climbs linearly at 0.5 faults per extra sub-unit, as expected.

Equal Priors

Value of Measure

—<&— pkave
—iZ— bfave

faave
- pkNFFave
—¥— bINFFave
—@®— maxNFFave

No. of Subunits

Figure 34. A calibration run indicating that the PKI system is working properly. The increase of 0.5
faults per added sub-unit is as expected for equal fault scenario priors.

The first illustrative simulation shown in Figure 35 has an ambiguity of 0.25, that is,
each reading vector has only 25% of the total number of scenarios associated with it.
The code A0.25unr/u indicates 25% ambiguity, unbiased but random scenario priors
and a random unweighted likelihood matrix. The numerical values are shown in

Table 6.
Numsub | pkave | bfave | faave | pkNFFave | bINFFave | maxNFFave
3 1.5463 | 1.5463 | 1.4797 | 0.0582 0.0582 0.5006
4 1.4856 | 1.5879 | 1.2687 | 0.1351 0.1618 1.1897
n 2.4595 | 2.6955 | 1.9748 | 0.2537 0.3504 1.451
6 2.9887 | 3.4476 | 2.2131 | 0.4133 0.6482 1.8439
7 3.9228 | 4.5092 | 2.7875 | 0.6098 0.9285 2.0395
8 4.9123 | 5.6407 | 3.3487 0.818 1.1891 2.2835
7




Table 6. The actual numerical values for the simulation of Figure 35

A0.25unr/u

Value of Measure

—&— pkave
—&i— bfave
-~ pkNFFave
—X¥— bINFFave
—&— maxNFFave

faave

Figure 35 A simulation of PKI showing the increase in the average path lengths for PKI, BL and
optimal situations respectively. Note that the PKI method is between the optimal and the BL. method

num subunits

for any number of sub-units.

The code Al.Ounr/u indicates 100% ambiguity and the PKI method is still better

than that of the baseline method as expected.

]

Numsub | pkave bfave faave |pkNFFave|bINFFave | maxNFFave
3 1.4821 | 1.6351 | 1.0286 | 0.2217 0.326 1.1209
4 1.8917 | 2.0187 1.28 0.2804 | 0.3235 1.3545
5 24129 | 2.7334 | 1.5484 | 0.4263 0.578 1.7414
6 2.9751 | 3.3263 | 1.8286 | 0.5945 | 0.7252 2.0926
F 3.5221 | 3.9105 | 2.1165 | 0.6981 | 0.8757 2.4713

Table 7. The actual numerical values for the simulation of Figure 36.
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A1.0unr/u

—&— pkave
—&=-— bfave
faave
- pkNFFave
—¥— bINFFave

—&— maxNFFave
|

value of measure

num subunits

Figure 36. Again, a simulation of PKI showing the increase in the average path lengths for PKI, BL
and optimal situations respectively. Here the ambiguity is 100% but note that the PKI method is still
between the optimal and the BL method for any number of sub-units.

Figure 37 shows the average path length reduction of PKI compared with the
baseline method for an ensemble of 9 runs. The variation results from the use of 9
different random number seeds to generate the probabilities involved. The

percentage APL reduction depends upon the number of sub-units in the system
which provide the joint events which PKI exploits.

These results are obtained using an ambiguity parameter of 0.25, that is, only 25% of
the total number of scenarios are possible for a given input. An ambiguity of 100%
would mean that all fault scenarios are possible to some degree which would
indicate that the alarm reading coding used to generate the probabilistic FDI
information was not very effective. A one to one mapping between the alarms and
the fault scenarios would be the ideal situation with 0% ambi guity.

For the current set of operational parameters, the average ensemble APL reduction is

as high as 13-14% in some cases. Even with a small number of sub-units, it is 8% or
greater.
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Figure 37. Percentage reduction in average path-length per scenario of PKI compared to the baseline
method.

Figure 38 shows even greater gains in performance by the PKI method for the NFF
incident case. The PKI method has reduced the average ensemble ANFFN to
between 25-35% in some cases. This means that, across a number of systems, the
expected NFF number per scenario is about 30% less, i.e. 30% fewer NFF incidents
are expected.

The reduction of NFF incidents is a consequence of the PKI method tending to look
for the sub-units most likely to be faulty. This means that non-faulty sub-units are
more likely to be avoided by PKI than the baseline method. As the sub-units
exhibiting NFF incidents form a subset of the set of non-faulty sub-units, the NFF
incidents are either the same or reduced by the PKI method.

Note that there is no gain in the results for 3 sub-units. Here there is very little scope
for PKI to reduce path length when the paths are so small. However, note that there
is improvement as the number of sub-units increases and, consequently, the scope
for longer path-lengths.
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Figure 38. Percentage reduction in average NFF incidents per scenario by the PKI method compared
to the baseline method.

3.7 Weighted Multiple seed simulations

The empirical results suggest that unweighted PKI using the PPUE is as good as or
superior to unweighted MAP. The superiority rests upon the availability of joint
information. This relationship between PKI performance and the availability of joint
information still has to be investigated. The improvement of PKI over MAP
depends upon the amount of joint information available. Total independence of sub-
units implies that no gain would be possible because joint information is used to
increase or decrease the influence of other sub-units through inclusion or exclusion
of fault scenarios following evidence propagation.

The number of faults to be found during LRU inspections determines the minimum
APL. This is given by the fault average and is the optimum overall APL value
which cannot be improved upon by either the PKI or the MAP methods. Where PKI
is superior, it is through reducing the APL component originating from LRU
inspections resulting in NFF incidents. In other words, PKI seeks to reduce the

number of NFF incidents by using PK to avoid inspecting LRUs where it is likely
that faults will not be found.

3.7.1 Weighted PKI
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In the simulations so far, the sub-units have all been weighted evenly (unity
weighting). In reality, the inspection and repair costs of sub-units (LRUs) differ
widely depending upon component costs, accessibility, time costs and so on. A
refinement of the current PKI system is to include these weightings to give WPKI.

Now, the unweighted version of PKI relies upon the fact that maximising the
posterior probability of a fault minimises the probability of a NFF. This connection
is broken in the weighted case and so the weighted posteriors are minimised directly,
that is, sub-units with the lowest weighted posterior are chosen for inspection This
allows the weighted NFF component of the weighted APL to be reduced by the PKI
process providing that joint information exists. This is discussed formally in
Appendix G. An informal discussion is given in sub-section 2.7.2 below.

Figure 39 shows the average path length reduction of PKI compared with the
baseline method for an ensemble of 9 runs using weighting. The variation results
from the use of 9 different random number seeds to generate the probabilities
involved. The percentage APL reduction depends upon the amount of joint
information in the system that PKI exploits. These results are obtained using an

ambiguity parameter of 0.25. The weighting is a permutation of {1,...,n}where nis

the number of sub-units. For fair comparison, we weight the probabilities of the
MAP classifier in exactly the same way as for WPKI. Thus all references to MAP in
the weighted context imply weighted MAP.

% Average Path-Length Reduction of WPKI

% (W)APL Reduction

-20

No. of Sub-units

Figure 39 The average percentage path length reduction of WPKI compared with weighted MAP.
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Figure 40 shows even greater gains in performance by the PKI method for the NFF
incident case. The PKI method has reduced the average ensemble (W)NFF to
between 35-45% in some cases. This means that, across a number of systems, the
expected (W)NFF number per scenario is about 40% less, i.e. 40% fewer (W)NFF
incidents are expected. The reduction of (W)NFF incidents is a consequence of the
(W)PKI method tending to look for the sub-units with the lowest (W)NFF
probability.

Proof of superiority relies on the fact that, where there are faults, both weighted PKI
and MAP cannot be better than the weighted optimum. The gain of weighted PKI
over MAP is where the weighted no-fault contributions to the PL. measures are
minimised. This is equivalent to maximising the fault probabilities in the
unweighted version.

% Reduction in Ave (W)NFF Incidents
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Figure 40.The average percentage NFF incident reduction of WPKI compared with weighted MAP.

3.7.2 Direct connection of APL minimisation with NFF reduction

In the previous discussion of the context-free simulation algorithm, it was apparent
that there is a common core of the average scenario path lengths where the
probability-weighted path lengths do not differ for the PKI and BL methods. This is
true in both the weighted and unweighted cases because all faults must be found in
both cases and the weighting is the same for any approach. The faults can be chosen

83




J

in any order and incur the same inspection penalty regardless of approach. The
remaining APL contributions are given by a ‘residue’ over and above the method-

independent theoretical optimum. The residue arises where LRUs are inspected and |

no faults are found. Thus, the residue determines the overall APL for any technique
and APL minimisation is concerned with avoiding NFF incidents in both the
weighted and unweighted cases. PKI acts to reduce the probability or weighted
probability of NFF incidents by choosing LRUs with the lowest (weighted)
probabilities of no-fault LRU states. Thus LRUs exhibiting no faults or those highly
weighted will be less likely to be chosen for inspection.

A greater percentage reduction in NFF incidents alone is noted for PKI than overall
(including faulty LRU inspection) because reduced APL is gained by minimising
NFF incidents only. There is a component of the APL common to both PKI and
MAP (or any possible technique) and is irreducible because ALL faults have to be
found.

Now, the unweighted approach relies on the fact that P(C‘. ) * P(C,.”) =1 so that
when the probability of a fault is maximised, i.e. P(C,) o P(Cj) in all cases where
i #j

The relationship P(Cj)+ P(C;) =1 ensures that P(Cf) < P(C;) is the case. Thus,

the probability-weighted residue will be smaller where a NFF incident occurs.

Now, in the weighted case, W,(P(C,)+ P(C?)) =W, and W,( P(c, )+ P(c5)) =W,
and if W, # W, in all cases, then the relationship between LRU fault probabilities is

broken.
So, W,P(C,) > W, P(C, ) does not imply W, P(C¢) < W, P(CS).

As it does not matter which order the faulty LRUs are found and the residue is solely
dependent upon the occurrence of NEF incidents, the choice of weighted LRUs is

compromised. If the relationship W, P(Cf) <W, P(Cf) cannot be guaranteed, then

the minimisation of the residue by PKI is not assured.

The way to minimise the residue is to use the relationship W, P(Cf) < W}.P(Cj)

directly. Where unity weighting is used, the relationship P(Cj ) > P(C j) is
preserved.

To summarise, the order in which faulty LRUs are found is irrelevant in both the
weighted and unweighted cases. The APL will always have a minimum value which

depends solely upon the faulty LRUs because all faulty LRUs have to be inspected.
The optimisation of maintenance strategies arises from minimising the NFF
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incidents and thus the APL contributions from inspecting non-faulty LRUs. Now, in
the weighted case, it is better to reduce the APL contributions directly by minimising
the weighted probability of a fault not being found. This guarantees that the residue,
over and above the optimum APL, will be a minimum.

3.8 The PKI Performance Rule: A Discussion

In both the unweighted and weighted PKI cases, PKI appears to be consistently
better than the MAP approach when using the path-length and NFF incident
measures. The empirical investigations lead to a conjecture that PKI is always at
least as good as, if not superior to the MAP approach. Theoretical investigations
have confirmed this conjecture and lead to the following theorem:
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Theorem: The PKI performance theorem.

The performance of PKI is always at least as good as that of the baseline method and
possibly better.

A proof of this Theorem for the unweighted case is given in Appendix F. An
analogous proof for the weighted version is found in Appendix G.

4 Bayesian Belief Networks

This Chapter will introduce the ideas of Bayesian belief networks (BBNs) and how
they relate to the task of posterior knowledge integration. It will be shown that the
PPUE and BBNs represent two extremes of a continuum of information regarding a
FDI situation. The PPUE represents the extreme of relying solely on empirical data
to provide the basis for probability updates; this is the empirical approach. The
structural approach, using BBNs is the opposite extreme where probabilities are
given (and updated) in terms of known causal links arising from engineering
knowledge. It will be shown that the two approaches are interchangeable in the
general context of PKI. Figure 41 shows the situation schematically.

PKI

e | PPUE
Posterior | Revised
Knowledge| | " Posterior
BBN Probabilities

Inspection/

other knowledge

Figure 41. Either the PPUE or the BBN approaches can be used to update the posterior probabilities
as part of the PKI process. Further work may uncover a way of combining the two approaches.

4.1 Fault distinction and causality.

 faults can be classified conveniently into two types:
1. Sensor faults (SFs), and
2. Actual faults (AFs)
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1

e Sensor faults are faults with the sensing devices as opposed to actual deviations
in sub-system behaviour. A schematic example is shown in Figure 42.

SF SF
2

A 4
A 4

f1
__...._,.
AF AF

Figure 42. Two potential faults in a causal link. Faults may be sensor-based or actual.
If actual fault f1 “causes” actual fault f2, extra information may be gained through a
knowledge of causality. For example, if f1 occurs without f2, it is highly likely that
a SF has occurred. If f2 occurs then information further downstream is required to
differentiate between SFs and AFs. These considerations introduce the idea of fault
causality.

4.2 Cause and Effect

Figure 43 shows a possible sub-system of a larger system to illustrate the ideas of
cause and effect. Conditions in components A and C occur independently of those
in component B and vice-versa. However, the occurrence of a condition in
component A entails a condition in component C. A condition in C can also occur
independently of conditions in A. Thus, there is a causal link between A and C.

—> A — C

» B

Figure 43. A schematic representation of a group of interconnected sub-systems which form partof a
system model. Here, sub-systems A and C are causally connected.

Figure 44 illustrates this situation in terms of sets. For Ac C, (A # C) the

condition denoted by class C will always occur when the condition denoted by class
A occurs. Thus,

P(ANC) P(A
P(cla)= Anc)_P4)_
P(A) P(4A)
This is not necessarily the case the other way round where
P(ANnC) P(A
P(AIC) = (P(C) ) = PEC} <l if class A and class C are distinct (not equal). The

case that A = C is excluded because two such classes would be indistinguishable.
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Figure 44. A Venn diagram showing the relationships between the event sets of figure 42. When class
A occurs it causes class C to occur. Note that class C events do not necessarily generate a class A
event.

In many cases, determining the direction of causality will not be straightforward
when using the PPUE. For example, given P(CI‘C2 N xk) is sub-unit affected in the
sense of “causality” or in the sense of “information passing” as discussed below.

P(C1|C‘2 M xk) can give rise to JD(C?_IC1 M xk) by the use of Bayes theorem.

Figure 45 shows actual causality between sub-units A and B. That is, sub-unit A can
cause changes in sub-unit B. Here, the sub-units will be represented as circles or
nodes as in Figure 46.

A e B

Figure 45. A schematic illustration of actual causality between sub-units.

G, (¢

Figure 46. The representation of causality as a directed link between nodes representing sub-units.

Causality reflects the ability of one sub-system state to alter another and information
about the “causal” state gives information about the “recipient” state in the direction

of causality. The idea of actual causality is related to classical deductive logic of the
form A, A= B..B

However, what if information is available about the “recipient” sub-unit as shown in
Figure 477
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Figure 47. The passing of non-causal information in the reverse direction. Observed events may give
rise to information concerning the causes of those events.

Information about a recipient sub-unit given information about the causal sub-unit or
event but this is NOT causality. The information (AFTER the causal “event”)
reflects the likely state of the causal sub-unit. This can be symbolized by
B.A=BsilH

In other words, what do fault readings tell us about the possible causes of faults?

In this situation, the causality is from faults to readings and readings do not “cause”
faults but give information about likely causes. This is abductive logic or reasoning
from conclusions to causes. It is “acceptance of a conclusion on the grounds that it
explains the available evidence” (Krause and Clarke, 1993) and is used in Bayesian
belief networks to update probabilities of “parent” variables. This will be covered
in the remainder of this chapter.

4.3 lllustrative discussion problem:

Three fault classes, C;,C3,C3 given prototype X.

A
LN

C

Cs

Figure 48 A simple numerical example to illustrate the issues of investigating causality using
empirical data.

The total number of occurrences of each FC are given by
n(C,N%)=15
n(C,N%)=13
n(C,NR) =12
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The total number of scenarios is given by

n(%) = n(C, NR)+n(C,NR)+n(C,NR)
-n(C NN G)-n(CNEA Cy)-n(C,N&N G)
+(C,NENCG,NG)

w(®) = 15413412 - 9—-5-5+3=24

Assumption of exaustivity:

VX € category(X) = X € U::C

Now,
n(&NG) _1s

%) = ———% = —— = 0625
P(GIR) = n(x) 24

.. n(xnG) 13

Cl%) = ———2 =— = 05417

PER="0 "2
P(CJR) = n&nG) 12 e

n()"{) 24

The posterior probabilities, glven by vector x belonging to input category (cluster)

denoted by prototype X, give a prediction as shown in Figure 49.

O © ©

0.625 0.5417

Figure 49. The posterior probabilities of FCs occurring given a reading vector.

Note that p( N }?) + p(C‘2 N 5()+ p(C3 '3 i) # 1 unless the classes are exclusive.

Probabilities of two classes occurring together given the evidence:

i e G)_O _oys
n(X) 24
o(C. Cty = HED GOG)_ S _ o083
Jz(x) 24

n(xN C3 N G) _S_ 02083
n(%) 4

p(C, A G,IR) =

p(C,NGIX) =
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Interdependence of classes:

IR ) = ()"(r\C) =-1—3—0.6923
2
R _n(ﬁmclﬂcz)__Q__
BC x50 0)= n(i’ﬁC]) —15—0.6

Correlation between classes 1 and 2 Class 2 is a slightly better indicator of class 1
than vice versa. Note that, p(C,I1xNC,) # p(C,IX) and p(C,IXNC,) # p(G,IX)
indicating the dependence. The empirical data does not indicate the direction of
causality which needs to be indicated explicitly.

Similarly,
R n(xNC, NC, 5
p(CIRNC,) = (n(ﬁm‘c)‘)zazomm
3
p(CI&N C) = n(xrjcl ) 8 _ 03333
n(met)
. xNnCnC 5
p(CIRAC,) = a 1-1(?((\2C) ;) == = 04167
3
' xNC.NC 5
p(C. |>“mG.): w{&n G, 0G) = - =0.3486
? 2 n(iﬂCg) 13

Integration of posterior knowledge:

The information that class 2 has not occurred has now been given. How is this
knowledge to be incorporated?

ONONO

0.625 € 05417 0.5

Figure 50. Apply evidence concerning FC2.

PGIRNG) == oy = 11 = 03455
p(CJIRAT,) = "(XTQQCZ) — T _ 06374
n(xm CQ)
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0.5454 e 00 0.6364

Figure 51. The effects of evidence concerning FC2 on the other posterior probabilities.

Now, the probability of class 1 occurring has decreased and that of class three has
increased. All this has been achieved using empirical data. However, the causality
of the system consisting of the sub-units is unknown. What if causal information is
available from a causal model? Incorporating this into the PKI process may reduce
the probability estimation overheads. The technique of Bayesian Belief networks is
a possible way of incorporating prior engineering knowledge into an FDI system
which is related to the PPUE. The remainder of this chapter will explore this
relationship.

4.4 PPUE and Bayesian Belief Networks

4.4.1 Introduction: Causal Networks

Systems can be represented by causal networks. (Jensen,1996) A causal network
consists of a set of variables, which represent sub-unit states of a system, and
directed links between variables, which represent causal relationships between
system sub-units. In formal mathematical terms, a causal network is a digraph or
directed graph (Wilson and Watkins, 1990). Figure 52 shows a causal network
which represents a simple three sub-unit system.

Figure 52. A simple causal network.

4.4.2 Bayesian Networks

In order to quantify the relationships between the system state variables, a
probabilistic calculus is required. One such calculus is the Bayesian probability
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calculus or classical probability calculus. Bayesian probability calculus allows the
quantification of causal links by attaching values to them in accordance with the
fundamental definitions and axioms.

The probability of a hypothesis, h given evidence, e has a number of possible
axiomatisations. One axiomatisation of probability as a continuous monotonic
function P(.) is

Al 0< P(he)<1

A2 P(True|e) = ]

A3 P(He)+ P(—He)=1

A4 P(ghle) = P(h|ge). P(gle)

(Krause and Clark, 1993)

The following theorem can be derived from axiom A4:

P(h|e) = P(i+)jw (Bayes’ Theorem).

It will be useful throughout this paper.
The notion of conditional independence is crucial to the process of transmitting
evidence in Bayesian belief networks as discussed in later sections.

Conditional independence of A and C given the evidence e and B.

The varjables A and C are independent given the variable B if
P(A|B,C.e) = P(A|B,e) P(Ble)

not forgetting the evidential context signified by e.

Marginalisation:

P(Ale)= P(A, Xle)+ P(A, X e)

where X is some event set and the superscript c signifies the complement.

eg.let X =B C

P(Ale)= P(AN (BN O)le)+ P(AN (B C)°le)

Where, for the network of figure 51
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p)=(ULc U] )-

P(C,)+ P(C,)+ P(Cy)+ P(NF)- P(C, NGC,)-P(C,NGC;)-P(C,NCy)+ P(C,NC,NGCy) =1

and P(NF) = P([U;c,.]cj.

This is the unity constraint. In other words, the event space is closed.

For PKI, we are given
P(G,), P(C,), P(C,), P(NF), P(C, N G,), P(C, N ), P(C, N G),

P(C,nC,NCy)

These probabilities can be constructed from exclusive probabilities estimated from
empirical data (Marriott and Harrison a,b). NB, the dependence upon x has been
omitted without loss of generality. Other constraints are also effective and can be
extracted from the causal network as discussed below.

4.4.3 Connection Types

4.4.3.1 Serial Connection

Figure 53. A serial connection of a Bayesian belief network.

Evidence may be transmitted through a serial connection unless the state of the
variable in the connection is known. In that case, C, and C, are rendered

independent as illustrated in Figure 53.

4.43.1.1 3.3.3.1.1 Forward Flow of Evidence in a Serial Connection
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Figure 54. The forward flow of evidence.

Here, the flow of evidence is P*(C, ) - P (Cz) - P‘(C}) and follows the direction
of causality as shown in Figure 54.

First, P (C,) is specified which determines the complement, P*(Cf) =1- P‘(Cl).
Now, the quantities, P(Cz‘C] ), P(Clef) are specified for the given BBN. To

calculate P*(Cz), the revised joint probabilities P*(Cl M Cz)and P*(Cf N Cz)
have to be calculated so that a marginalisation can be carried out.

Now,

P'(¢,nG,)=P(c)|c )P (c)
~ P(Cl M Cz) 3

~
o

and,

Pi(cinG,)=P(cc )P (cr)
& i?%;TQ)P*(Cf)
F*(cF)

=Pl L ) )

Marginalising gives,

P(G)=P(c,nG)+P(CinG,).
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Now similarly,

P'(c,nc,)=P(c)c,)P(c,)
P(c,ncC,)
ey

Marginalising,

P'(c,)=P'(c,nC,)+ P (CinG).

443.1.2 3.3.3.1.2 Reverse Flow of Evidence in a Serial Connection

CIORO

<
<

Figure 55 Reverse flow of evidence.

In this case, the flow of evidence is in the opposite direction to causality. This is
abductive reasoning from effect to cause. The flow of evidence,

P‘(C_q) - P*(Cz) - P*(Cl) is illustrated in Figure 55.

Here, P"(C;) is specified which determines P*(C¢)=1-P*(C,).
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Now, P(C3’C2) is specified for the BBN. This determines
P(cslc,)=1-P(c)|c,).

To calculate P*(Cz), the revised joint probabilities, P’ (C2 M C3) and P*(CZ N C‘f)
have to be calculated so that a marginalisation can be carried out.

P'(c,nc,)=P(c)c,)P(c,)

P'(c,ncs)=p(c,

cs)P(cs)

The conditional probability, P(C,|C, ) is not specified in the BBN so the Bayes' rule
is used,

(clc.)r(c,)
P(C)

P
P(CJC}):

Similarly with

P(ci|c,)r(c,)
P(cs)

P(c)|cs) =

where P(C;

c,)=1-P(c)c,).

Marginalisation
P'(C,)=P'(C,nC)+ P'(C,nCE)
P(c,na,)=Plclc,)P(c,)

P'(c,ncs)=Plc

¢ )P (cs)

The conditional probability, P(CI |C2) is not specified in the BBN so the Bayes’ rule
is used,

rlcle)=

Similarly with
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p(ctlc,)p(c,)
P(C;)
c¢)=1-P(cc).

P(c|c)=

where P(C:f
Marginalisation

P'(c,)=P(C,nG)+P'(C,nCE)

44.3.1.3 3.3.3.1.3 Bi-directional Flow Following the Instantiation of a Connecting Node

Figure 56 Instantiation of a connecting node.

Here, P*(Cz) is specified. This determines the complement, P*(Cf) =1-P (Cz) ;

The flow of evidence is P”(Cz) - P*(Cl ) P"(C}). The state of the variable in the
connection is known and so blocks transmission of evidence between C, and C,
rendering them independent.

P’ (¢ nc,)=P(clc,)P(c,)
P'(c,ncs)=P(ccs)p(cs)

The conditional probability, P(CI}CQ) is not specified in the BBN so the Bayes’ rule
is used,

Pclc)r(c)
P(c)

P(C,|C2):

Similarly with

P(ctlc,)p(c,)
P(c;)

¢)=1-P(c)c,).

P(clcs)=

where P(C;
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Marginalisation

P'(c)=P(c,nG,)+P(C nCE)
P'(c,nc,)=P(cc,)P(c,)
P(c,nC,)

=—— F(c)

P(C:)

and,

Fl )= P(Cz CE)P*(C-S')

Marginalising,

P'(C)=P(C,nGC)+P(CinG).

(=
ORNO

Figure 57 Diverging connection.

4.4.4 Diverging Connection

Evidence may be transmitted through a diverging connection unless it is instantiated.
That is, evidence may be applied to a child node which then affects the other child

nodes.

Instantiate a single child node and the parent can be instantiated, thus, rending the
remaining child nodes independent and instantiated.
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Figure 58 Multiple children in a diverging connection.

/

/s

E

Influence can pass between all the children of C| unless the state of C, is known.

@

Figure 59 Transmission of evidence between child nodes.

4.4.4.1 Reverse Flow of Evidence in a Diverging Connection

Here, the flow of evidence is
P'(c,)- P'(c,)- P'(c,)

thus,
P'(c,nc,)=P(cc,)P(c,)
and

P*(c,nct)= P(c|cs)p(cs)

The conditional probability, P(C1|C3) is not specified in the BBN so the Bayes’ rule

is used,
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P(clc,)=

Similarly with

4 Pleila)r(c)
&)= P(c)

P(c,

where P(C_f

¢,)=1-P(cc).
Marginalisation
P'(c)=P(c,nC)+P(C )

To calculate P*(C, ), the revised joint probabilities, P(c, n Cz)and P(cen G,)
have to be calculated so that a marginalisation can be carried out.

Now,

and,
P*(ci nG,)=P(c)|cr )P (cy)
B P(Cf N CZ) .
-~ Pcy)

o
a

Marginalising,
P'(C,)=P'(C,nG)+P(CF N G,).

44.4.1.1 Bi-directional Flow Following the Instantiation of a Parent Node
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Figure 60. When the parent node is instansiated, the children are independent.

Here, the independence property is used to simplify the calculation (Krause and
Clarke, 1993). Thus,

P(C,nC, N C,) = P(G,|C, NG, )P(C|C, ) P(Cy)
= P(C2|C1)P(C11C3)P(C3)

Figure 61.

Figure 61 shows the other child node as being instantiated in the “two child”
example. This case is analogous to that illustrated in Figure 59.

4.4.5 Converging Connection

For a converging connection, The notion of conditional dependence is required.
Here, evidence may be transmitted through a converging connection if either the
variable in the connection or one of its descendants has received evidence.
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Figure 62. Evidence is applied to the node in the converging connection.

Figure 63. Applying evidence to a descendent of the connecting node.

If the state of C, is unknown, then C, and C, are independent. The certainty of C,
depends upon all parent nodes. If evidence is applied to C,, either directly, or
indirectly through one of its child nodes, then the parent nodes may communicate,

All methods of transmitting evidence through variables is covered by the three cases.
Given, P(C,) and P(C,), P(CY) and P(C) are specified. The child probability
may then be calculated using marginalisation. Thus,

P(C)=P(C,nC,nC)+ P(CEnC,nC )+ P(C N CEnC)+ P(CE A CEnG,)

Now,
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P(c,n¢,nG)=P(clcne,)P(c, nc,)
= P(c)lc,nc,)P(cc,)p(c,)
P(c)lc,n¢,)e(c)P(c,)

Il

because node 3 is not instantiated.

P(ctne,ne,)=P(c,

CinG)P(cEne,)

- Hejer e rlce)rlc)
= P(cla ne,)fi-pcle)]P(c,)
= P(clc, nc,)i- P(c)]P(c,)
= P(clc, nc,)p(ce)P(c,)

4.4.6 An Example Network

©
ORNO

Figure 64. An example belief network.

From the network diagram, there is no causal relationship between C, and C,. This
gives a further two constraints as C, does not depend upon C, and vice versa.

For example the following probabilities may be estimated:
P(c,)=06,P(C,)=05, P(c,)=04,P(C,nC,)=04, P(C,nC,)=03

Leaving

P(NF), P(C,nC,),and P(C,nC, A C,) which can be calculated using
information from the Bayesian network.
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4.4.6.1 The PPUE

Given the sub-unit class probabilities, the conditional probabilities can be calculated
to show the effect of a subset of sub-units upon another subset of sub-units.

For example

which quantifies the effect of sub-unit 1 on sub-unit 2. This is a special case of the
PPUE. Note that some of these causal relationships may be quantified as part of

prior information and may vitiate the need for the estimation of some of the
probabilities.

Dependencies upon the complement of a sub-unit event may also be calculated; for
example

PG G - -
Cr)= CYa I)ZP(CZ) PGNG)_ 05 o s

P(C"’ p(c;) 1-P(C) 04

which is also a special case of the PPUE. These quantities allow us to construct a
table for P(CZICI) VIZ.:

P(G,|c)) G cs

G 0.6667 0.25

ge 0.3333 0.75
Table 8

Where P(C;

C)=1-P(C)|C,) and P(C;

ch)=1-P(Gy|cy)

Similarly,
PC3mC) 03
P(C_JCI):_(P(—C,[)"[_—BE:O
P(cilcr)= P(GNC) _PC)-P(C,nG) 04-03 s
TPy T 1-RG) o4

These quantities allow us to construct a table for P(C3|C1) viz:

P(c,c) G | o
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C, 0.5 0.25
F 0.5 0.75
Table 9

4.4.6.2 The Bayesian Belief Network

For Bayesian networks, the prior P(C,),would be given together with P(C,|C,),

P(c,

/). P(Ci|c,) and P(C,

‘).

The tables would allow us to calculate

P(C, N C,)= P(C,|C,). P(C,) = (0.6667)(0.6) =
Plo, nof)= rleglc.) PG )—(0.3333)(0.6) =02,
P(Ci N C,)=P(Cy|Cr ) P(CT) = (025)(04) =
P(cl nc5)=P(cs|c; ) P(C 1):(0.75)(0.4):0.3,
giving
P(C2 N Ci) G Cy
C 0.4 0.1
o 0.2 0.3
Table 10
and similarly,
P(C, N Cy)= P(Cy|C)). P(C,) = (05)(0.6) =
P(c N CE ) P(cs]c,) P(C,) = (05)(06) =
P(Cf (c ) P(cy) m(025)(04)~01
P(C; nCs)= P(ci[ci) P(C)) = (075)(04) =
giving
P(C,nC) G GF
7] 0.3 0.1
o 0.3 0.3
Table 11
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For the Bayesian network, we marginalise to get:

P(C,)=P(C,NC,)+P(Cf N C,)=04+01=05
P(C,)=P(C, N Cy)+ P(Cf N C;)=03+01=04

as expected.

4.4.6.3 Relationships Between the Network Node Variables

PG rey)= PG o)

Proof:
From conditional independence:

P(C,NnC,NC,)
P(C, )

_ P(C,nC,|C)P(C)

- PG|eHP(C)
_P(G}|C)PIC|C)

- PGc)

= PG

PlelenG)=

P(C i & ni ) = PlGI6: n G JPLEHG, JB(E)

= P66 )P(E ) P(E:)

P(C,nC; nC,)=P(C5|c, n C,)P(C|G,)P(Cy)
(1- P(c,]c, ncy))P(cl|c;)P(cy)

1- P(G,|C,))P(C)|C,)P(Cs)
P(Cs|c,)P(c)|c,)P(C)

Il
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P(CE NG, mc)zp(c mC3
= P(Gi[ci)P(c,
- Aea)ec

c)r(c)

Gr(C
)P )

e
—

I
I

BlEF nbEm €)= P(C“ mq
)p(e:
¢ (et

cr)e(cy)
=B

G (e
)P )

= Al

For both Bayesian networks and PKI:

(
P(C,nC5 N Cy)=P(C; C,)P( )P(c ) = (0.3333)(0.75)(04) =
P( ‘NC,NGC ): P( )P
(c )= P(cilcy)p

P(C, nC, N C,)= P(G,|C,)P(C,|C,)P(C;) = (06667)(0.75)(04) = 02

cle
clc P(C) (025)(025)(04) = 0.025
BleF nefne (ctle

)P(C,) = (0.75)(025)(04) = 0075
Marginalise:

P(C,nC,)=P(C,nC, N C,)+ P(CE N C, NC,) =02 +0025 = 0225
P(C; N Cy)= P(C, N C{ N GCy) + P(CE N CE N Cy) =0140075=0175

The values P(C, N C3) and P(C, N C, N C,) are added to the probability list
giving:

P(C,)=06,P(C,)=05,P(C,)=04 ,P(C,nC,)=04,P(C, " C,)=03
P(C,nC,)=0225,P(C,nC, N C,)=02

P(NF)=17177

Applying the ‘unity’ constraint gives:
06+05+04+ P(NF)-04-03-0225+02=1
Which implies that P(NF) =0.225.

4.4.6.4 A Fault Occursin C3

Say C3 has a fault; this means that evidence is introduced at the point shown in
Figure 65. We want P(C|C,).
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Figure 65. Evidence is applied to the child node representing fault class 3.

By Bayes’ rule,

P(ci|c)P(c)  (05)06)
p(clc,)= (P(C)J =—oa =075.

For PKI, (by PPUE)

P(C, mc) 03

P(clcs)= P(c,) 04

—=0.75

The probability of C1 being faulty has now increased from 0.6 to 0.75. Note that
this relationship between C3 and C1 is not causal!!!! It is about the passing of
information.

For BBN,
(¢, nc)=pP(clc,)P(c,)=(©075)10) = 075
(CC 71 O )= B[, P (c = (025)(10) = 0.25

or

JD(Cl .)P*(c,) = P(cc,) =075
= P(c; ) = P(ct|c,)=025

because P*(C3) =L

(Bayes on C3 complement)

P(csla)p(c)  0s)08)
p(cs) 05

Also, P(C)|cs)= =06
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P'(c,nce)=P(ccs)p(cs) = 06)0) =0
P*(ce nct)=P(ctles)P(cs) = 02500) =0
because P"(C5)=0.

P'(c,)=P'(C,nG)+P(C,nCE)=075+0=075

and
P(ci)= (e nes)+ P ncg) =025+ 0= 075

Here, P*(C, " C,)and P*(Cf N C3) are the new values for P(C, )and P(Cf)
because C3 has occurred!!!!

So,

PGy =1 :
P(C)=F(c, G )=075

P'(c,nc,)=P(c,

C ) P'(C,) = (0:6667)(075) = 05,
P*(Cf nC,) = P(G,|cy). P*(CF) = (025)(025) = 0.125

P'(C,)=P'(C,nG,)+ P, nC, ) =05+0125 = 0625
Now,

P'(C,nC, N G)= P(G)|c, nc,)P(c)c, \F(E)

= P(G,]c,)P(C)|c; )1

= P(G,|C))P(c)|c;)

giving

P{C,NCn€)= Alcle )rle, |C,)P"(Cy) = (0.6667)(0.75)(10) = 05

similarly
P'(C,nCin G, )= Plcz

C )P(C|C,)P"(C,) = (03333)(0.75)(10) = 025
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P'(C:nGnG)= He:
P'(CinCinc,)= P(c;

cr )P (ctle, )Pt (c,) = (025)(025)(10) = 0.0625
Ct)P(Ct|C,)P(C,) = (075)(025)(10) = 01875

Marginalise:
P(C,nGC)=P(C,nC,NC)+ P (CENC, A C,) = 05+00625 = 05625

P*(C; N c3): P (C,nC; N Cy)+ P (C N CENCy) = 025401875 = 04375

The value P*(C, N C,) is the new probability of C2, P° (C,), because C3 has
occurred.
So,

Pcy=1
P(C)=P'(C,nC,)=075
PC G, ) =05

P (G,)=P'(C,nC,)=05625
PG, nCy)=035

As C3 has occurred, P(NF) =0 which is confirmed by

P(C,)+ P(C,)+ P(C,)+ P(NF)- P(C, C,)- P(C,NGCy)- P(C,n C,)+ P(C, N C, Gy =1
0.75+05625+ 1+ P(NF)-05-075-05625 = 1

= P(NF)=0

4.4.7 What about when probabilities are changed in the range (0,1)?

Now,

F(C ™G )
= P(CJQ)P'(CR)
_P(CnG)
P(C)
P'(Cy)

P(C C_J—P )

P'(Cy)
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4.4.7.1 The Probability of C3 is Reduced.

Start with original values and substitute

*

P(c,)=02

P*(C,nCy)= P(C|C,)P"(C;)=(0.75)(02) = 0.15.

Equivalently,
) P(C
P’ (C,nC)=P(C,NGC) P((C3))
3
02
=(03) —
( )[0.4)
=0.15

Using the ‘old’ values ( applying the PPUE) gives
P(Cl M C‘:) _ P(Cl)_ P(Cl ﬁc}) _ 06—03 _

P(c C.f).: ) o ==0s
Therefore,

P(C N G5)= P(C|cs)P(C)= (0508 = 04

6 G )= P(C EE) ‘I; ((c;))

(2

=04

Marginalising,

P'(C)=P'(C,nG)+P'(C,NC5)=015+04 =055

P y=02
P(C,NGC;)=015

P{C,) =055
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P(C, " C,)= P(G,|C,).P(C,) = (0.6667)(055) = 03667,

P(cinG,)=P(C,

Cr ). P(CF)=(025)(045) = 01125

Again,
" P'(C
P'(C,NGC,)=P(C,nC,) P((Cl))
1
055
= (04) —
4(35)
= 03667
Py
P'(Cf N G,)=P(Cf N G,) P((C:))
1
045
= (0.1)] —
( )( - 4)
=0.1125
Marginalising:

P'(C,)=P'(C,nCy)+ P*(Cf N C,)=03667 +0.1125 = 04792
P'(C, N C, N Cy) = P(G,|C,)P(C,|C;)P*(C,) = (0.6667)(0.75)(0.2) = 0.1

P'(ccnc,nC,)=P(C,

ce)p(ce

C,)P*(C;) = (025)(0:25)(02) = 0.0125
Marginalising:

P’ (G, NGy )= P (€, G, M) +P (€] MG, Cy)= 01400125 =01125

P(C) =02
P(€,mC,) =015

P'(C,)=055
P(C, i, ) = 013667
P(C,)=04792
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P’(C,nC;)=01125
P (C,nC,NC)=01

Applying the ‘unity’ constraint gives:
055+04792+ 02+ P(NF)-03667-015-0.1125+01=1
Which implies that

P*(NF)=03.

PC:
P (NF) = P(NF)( ( : )] = (0.225)(%2-] =03

P(C5)

4.4.7.2 How would this be done by PKI (PPUE)?

Given the original values,

P(C,)=06
P(C,)=05
P(C,)=04
P(NF)=0225.
P(C,nC,)=04

Ple rmidy)= 03

P(C, nC,)=0225
P(C,nC,NC,)=02

the PPUE can be applied.

P(C,nC;) 03
PG |c;)= —(P:(cj) 1) _ 04075

P(C)-P(C,nC) 06-03

P(C‘ P(U)-P(C,)  1-04 =08

G)=

P(C,nC;) 0225
P(c,) — 04

P(G)|Cy)= = 05625
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. ) _P(G,)-P(C,nC;) 05-0225
°)=

P(Cz . P(U)-P(C,) =~ 1-04

=04583

P*(C,nG,)= P(C|C;)P"(Cy) = (075)(02) = 05

P'(C,nC5)= P(C|cs)P"(c5) = (05)(08) = 04

Marginalise:
P'(C)=P'(C,NC)+P'(C, N C;)=015+04 =055

P'(C,nG)= P(G,|C,)P’(C,) = (05625)(0.2) = 0.1125

P'(C, N C5) = P(G|Cs)P7(Cs) = (04583)(08) = 03667
Marginalising:

P'(C,)=P'(C,nG)+ P*(C, NG )= 04792

P(C, NG, mq):%:OS
P(C,) 04

P(C, N GG )=

P'(C,nC, N C)=P(C, N G|C)P'(C,)=(05)(02) =01

P C,)-P -
C;): (CNnG)-P(C,NC,NC) 04 02 _02 _anas

PlC,nC =
Clale PU)- P(C,) 06 06

P(C,nC,NCs)=P(C, NG,

Cs)P*(C5) = (03333)(08) = 02667
Marginalising:

P(CNG)=P(C,NC,NC,)+P(C,NC, N CE)=03667
Taken together, these results again imply that

P*(NF)=03.
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PPUE

P(Ct
Proof:
P(Cile)= P(UNCf

g)=1-P(Ce)

e)=P(Ule)- P(U N C/le) = 1- P(C]Je)

What about knowledge of C1?

4.4.8 A Slightly More Complex Example

Figure 66 A more complex example.

The network can be decomposed into two sub-nets connected by C,. One sub-net

consists of a single diverging connection and the other sub-net consists of a single
converging connection.

Figure 67. The BBN is split into two sub-networks connected by C1.
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Given the values of the two parent nodes, the values of the child nodes may be
derived.

For example,

P(€,)=03

P(C,)=02

which imply that P(Cf) = 0.7 and P(CzC ) = (0.8 respectively.

In order to propagate the information on the state of the two parent nodes through
the network, the causal relations governing the links are required.

For the first sub-network, P(C3|C1): 0.8 and P(C‘3

Ci ) =04 which imply that
P(cs|c,)=02 and P(C:

o ) = 0.6 respectively as shown in table

p(c)lc,) G c
& 0.8 0.4
c: 0.2 0.6

Table 12

P(c,
P(C,|cr nCs)=03
Which implies that
P(cilc,nG,)=01
P(cilc, m C5)=04
P(Ci|Ct N, )=05
P(ci|ci nct)=07
respectively.
P(cc.c,) G 4
G, 0.9,0.1) =« (0.6,0.4)
o (0.5,0.5) (0.3,0,7)
Table 13
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First, calculate the certainty of node 3 in the first sub-net by finding the ‘double
products’ P(C; N C;) and P(C{ N C;) and then marginalising.

P(C, N Cy) = P(G|C,)P(C,) = (08)(0.3) = 024
P(Cf N Gy) = P(GH[CT)P(CP) = (04)(0.7) = 028

P(c
P(C,nC5)=P(Cslc
Pe} v &5y=F{cEle

)P(C)) = (02)(03) = 0.06
)P(Cf) = (0.6)(0.7) = 042

Marginalising:
P(Cy)=P(C,NCy)+P(Cy N C,)=024+028=052

Next, the ‘triple products’ are calculated in the second sub-net

P(C,nC,nG,)=P(c,lc, nc,)P(c)P(c,) = (09)(03)02) = 0054
P(c,nC n¢5)=P(cc, NG5 )P(C,)P(C5) = (06)(03)(08) = 0.144

(
( S

PG AeCF 1, ) = P( ]Cfmc oy P(C) (05)(0.7)(02) = 0.07
( )= Flcfe

P(c,ncence)=P(C mCC)P =(03)(0.7)(08) = 0.168

the complements:

P(Cf G ity ) = Heni, ,)P(C,) P(c) (0.1)(0.3)(0.2) = 0.006
P(C; nC nC5)=P(CElc, me)P( , = (04)(03)(08) = 0.096
P(C;nCiNG,)= P( )P f (c ) (05)(0.7)(02) = 0.07
Flct Aicp e g = P( mC“)P Cf)P(CE) = (0.7)(0.7)(08) = 0392

Marginalising:

P(C,nC)=P(C,NC,NC,)+ P(C,NC, N Cf)=0054+0144 = 0198
P(C,nC)=P(C,nCf N G,)+ P(C, N Cf N C5)=007+0168 = 0238

P(C,)=P(C, " C,)+ P(C, N C})=0198 +0.238 = 0436
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4.4.8.1 The Probability of C4 is Increased.

ofho

Figure 68

Here, evidence is applied to node 4.

P*(C,)=09
._P(c)_ 09 _
R = P(c,) " 0436 2.0642
and
RC, = () _ o = OI773

p(cs) ~ 0564

The second sub-net consists of a divergent connection making C, and C, dependent
when C, is instantiated. For the first sub-net, C, can influence C, and, hence, C,
owing to an uninstantiated parent node in a divergent connection.

Abductive reasoning is required to go from C, to C, and C,.

For a convergent node, the child node is specified in terms of the link probabilities
conditioned on the parents.

For a marginalisation to be carried out following evidence applied at the child node,
the relevant joint probability components have to be calculated. For example,

P (C)=P'(C,nCNG)+P(CinCNG)+ P (C,nC nEE)+ PH(CEnC N CE)

Where,

P'(c,nc nG,)=P(c nGlc,)P(c,)

119




and so on.

Now,

P(c,lc,nc,)P(c, A c,)
P(c,)

P(c,nc)lc,)=
By Bayes’ rule.

Therefore,

P’(c,nC nG)=P(c,nGc,)P(c,)
P(c,nc nc,)P(c,)
) P(c,)

where,

P(c,nC,nG,)=P(clc NG, )P(c,)p(c,)

from before.

For a marginalisation to give P*(Cz) » a further four joint probabilities are required

giving 8 in all. Following a similar line of reasoning for the remaining 7 cases gives:

(C,nC NG,)=P(C,nC NGC,)R; = (0054)(2.0642) = 01115
(c.nc mCC) P(C,nC, N C5)R; = (0144)(2.0642) = 02972
g ,)=P(C, NCf NG, )R; = (007)(2.0642) = 0.1445
ener mCC) P(C,nCt N C5 )R, = (0.168)(2.0642) = 0.3468
G B GAG, ] P(C;nC nC ,)RC; = (0.006)(0.1773) = 00011
(Cineincg)= P(C; N C, N C5)RC; = (0.096)(0.1773) = 00170
i )= B NG ne, )RC; = (0.07)(0.1773) = 00124
I )=P(

P
P
P
P
P
P
P
P P(Ci N Cf N C5)RC; = (0392)(0.1773) = 0.0695

G Py PpllE

Marginalising:
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P'(C,nG,)=P'(C,nC,NGC,)+ P (C;NC N C,)=01115+00011=01126
P(C,nC;)= P (C,nC N CS)+ P (C; N C, N C5)=02972+00170 = 03142

Marginalising again:

P'(C)=P(C,nC,)+P'(C, N C5)=01126+03142 = 04268

and finally,

P'(Ci nG,)=P(C,nC 0 G,)+ P (C; N C] N C,)=01445+00124 = 01569
giving

P'(C,)=P*(C, N C,)+ P"(Cf N C,)=01126+01569 = 02695

Now, a change in C, will affect C, within sub-net 1:

P’(C,)=04268

. P'(¢) o4628

R = Fc) - 03 = 15427
and

I fory
RC = (Gi) _ 05372 = 07674

p(c) 07

P'(C, N Cy) = P(C, N C,)R, = (024)(15427) = 0.3702
P*(Cf N C,) = P(CF N C,)RC, = (0.28)(0.7674) = 0.2149

P’ (C,nC5)= P(C,nC)R, = (0.06)(15427) = 0.0926
P (Cf N CS)= P(Cf N CERC, = (042)(0.7674) = 03223

P(C,) =P (C,nCy)+ P (C; N C,) =03702+02149 = 05851
So, the initial state of the system given by

P(€, )=03
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P(C,)=02
ElG,) =052
P(C,)=0436

gives rise to the state

P’(C,)=04268
P'(C,)=02695
P{a;) = 05851
2 (G, )=00

when evidence is applied to node 4.

4.4.8.2 A Fault Occurs in C3 (again)

Figure 69

PG =140

w P(C) 10
' P(C,) 05851

= 17091

w PU(C :
cr = )80
T TOPT(CE) 04149

P”(C,NC,)= P (C,nC,)R;" =(03702)(1.7091) = 0.6327
PG, €)= P (C, nCHRC: = B06)00) =00

Marginalising:

P7(C)=P"(C,nCy)+P"(C,nCS)=06327+00=0.6327
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4.5 The Application of BBNs in PKI.

Figure 70

Assume that the reading vector is [0011] and that the scenario vector is [0010]

p(c)c,) G e
0. 0.8 0.4
ce 0.2 0.6
Table 14
p(cc,.c,) G C;
g, 0.9,0.1) (0.6,0.4)
cs (0.5,0.5) 0.3,0,7)
Table 15

The state of the system prior is determined before PKI is applied. Given the values
of the two parent nodes, the values of the child nodes may be derived.

For example,

P(c,)=06

P(c,)=07

which imply that P(Cf) =04 and P(C{ ) = 0.3 respectively.

First, calculate the certainty of node 3 in the first sub-net by finding the ‘double
products’ P(C, N C,;) and P(C;{ N C,) and then marginalising.

P(C, nC,) = P(C,|C,)P(C,) = (08)(0.6) = 048
P(Ci N Cy) = P(C,

C7)P(CE) = (04)(04) =016
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Marginalising:

P(C;)=P(C,nCy)+ P(C; nC;) =048 +0.16 = 0.64

Check:
P(C, " CS) = P(CE|C,)P(C)) = (02)(06) = 0.12
P(CEnC5)=P(C

<|ce)Pece) = (06)(04) = 024

P(C:)= P(C, N CE)+ P(CE N CE)=0.12+024 =036

Next, the ‘triple products’ are calculated in the second sub-net

P(c, nc nG,)=P(clc, nc,)P(c)p(c,) = 09)06)0.7) = 0378
P(c,nC N CE)

P(C,nCiNG,)
P(C,nC:NCE)

P(c,lc, ncs)p(c,) ,P(C = (0.6)(0.6)(03) = 0.108
P(c,|ct n ¢, )P(c)P(c,) = (05)(04)(07) = 0.14
P

Il

c,lcs ncs)p(ce)p(cs) = (03)(04)(03) = 0036

the complements:

P(c: nc nG,)=P(ci|c, nc,)P(c,)P(c,) = (01)(06)(07) = 0.042

P(cs nc, nes) = P(cile, neg)p(c,)P(cs) = (04)(04)(03) = 0,048

P(ci n ¢y nG,) = P(cilcs n 6, )P(ce)P(c,) = (05)(04)(06) =012
( )= P(cslcs m e )P(cy)P(cs) = (07)(04)(03) = 0084

PLEE MGl md;

Marginalising:

P(c,nc)=P(c,nC,nC,)+P(C,nC N C)=0378+0108 = 0486
P(c,nCf)=P(C,nC: N C,)+ P(C, N CE N CE)=0.14+0036=0176

P(c,)=P(c,nC)+P(C, N CF)=0486+0176 = 0662

The posterior probabilities for sub-unit faults (given the reading vector) are
P(c,)=06

P(C,)=07
P(C,) =064
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P(c,)=0662
The MAP order is therefore

sub-units 2,4,3,1

Both MAP and PKI advise checking sub-unit 2 first as there is no posterior
knowledge yet.

Inspecting sub-unit 2 reveals that it is not faulty, thus P"(C:Z ) =,
The first evidence is now applied to node 2 as shown in figure 70.

&

Figure 71
._P(c) o0
© T He) T
and

Now, node 2 is a parent node in a converging connection where the variable in the
connection has not been instantiated. It follows that sub-units 1 and 2 are
independent giving

P*(Cl): P(CJ)IO'G’

and,

P*(C;) = P(C;) = P(C, N C;)+ P(CE N C,) =048+0.16=0.64

as before.

P'(C,nC,NG,)=P(C, nC,NC,)R; =(0378)(0.0) =00
P'(C,nC nCE)=P(C,nC, N CRC; = (0108)(33333) = 036
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C,NCiNG,)=P(C,NCI N C,)R; = (0.14)(00) = 0.0

)=
C,NCf N CE)=P(C, N CE N CE)RC, = (0.036)(3.3333) = 0.12
)=

P'(

P

P'(CinC nGC,)=P(C: N C NG,)R;, =(0042)(00) =
P'(C;nC N es)= P(CE N C, A CE)RC, = (0048)(33333) = 0.16
P(CcinCinG,)=P(C: N CFNG,)R; _(012)(00) 0.0

P'(C: N CE N CE)= P(C: N CE N CE)RC, = (0084)(33333) = 028

P'(C,nC)=P(C,nC NGC,)+P(C,nC NC)=00+036=036
P'(C,nCf)=P'(C,nCinG,)+P'(C, N CF A CE)=00+012 =012

P'(c,)=P(c,nC)+P(C,nCF)=036+012 =048

P'(c,)=0s,
P(c,)=0

)= 064
P'(c,)=048

The MAP order is still sub-units 2,4,3.1 but the PKI order has changed from

sub-units 2,4,3,1 to sub-units 2,3,1,4.

The PKI maintenance methodology indicates that sub-unit 3 is to be checked next.
Sub-unit 3 is found to be faulty. After replacement of LRU 3, the fault indicators are

reset and the system appears to be working normally.

What if the process has to continue?

Now P™(C,)=10.

Figure 72
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. P 10
g Q10 o
P(G) 064
. P (C ) 0.0
RC, = 7 3 036 =00

P (C,NC,) =P (C;nC,)R; =(048)(15625) =0.75
PG, mC= PG mEDRE, = 01500 =

Marginalising:

P"(C)=P"(C,nC)+P"(C,nC)=075+00=075

P*(c,)=0
R P"(C) 075 -

YOPY(C) 06

o = P,, (Cf) = 0 =0.625

P'(Ct) ~ 04

P'(C,nC,nGC,)=P(C,nC NC)R" =(00)(125) =
P'(C,nC,nC)=P(C, N C, N CE)R! = (036)(125) = 045
P'(Cc,nC N G,)=P(C, N C] N C,)RC] = (00)(0.625) =
P'(C,nCEnCE)=P(C, N CE N CERC; = (0.12)(0.625) = 0075
P (C:nC NG,)=P(CiNC NC,)R f=(0.0)(1.25)=0.0
P'(ccnc nct)=P(cinc an)RC* = (0.16)(1.25) = 0.
P'(C:nCEnC,)= P(C: N Cf NG, )RC] = (00)(0625) =
P'(C:nCE N CE) = P(C: N Cy N CERC] = (028)(0.625) = 0175

P*(c,nC)=P"(C,nC,NG)+P"(C,nC N C;)=00+045=045
P'(C,nC)=P(C,nCInG,)+P'(C, nCE N C:)=00+0075=0075

P"(C,)=P'(C,nC)+ P (C, N C)=045+0075=0525
PUE) =075

P*(c,)=0
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PG =10
P“(c,)=0525

The search order has now become 2,3,1,4

Note that in individual cases, MAP will outperform PKT; this is the problem of
misdirection.

Overall, PKI will always be as least as good as MAP. It will be better if joint
probabilities occur through causality represented by the links of the Bayesian belief
network

The utility of Bayesian Belief Networks also rests upon the availability of joint
information. For example, the links between nodes are governed by conditional
probability expressions. If all nodes are independent in a proto-BBN, then there are

no causal or informative links which would allow propagation of evidence and so no
BBN would be possible.

Note that the weighting can be used on the PPUE or BBN methods:; it is used only in
the LRU choice process and not in the probability update process.

5 Conclusions

In general, condition monitoring involves many processes including FDI; FD is the
detection of anomalous conditions that arise during the operation of some plant or
process. FDI techniques usually end at the point of providing information about
which sub-units of a given plant are suspected as being faulty. The indication of the
most likely fault and its estimated probability by a fixed pattern recognition system
is not necessarily the end-point. In reality, condition monitoring is or should be a
closed-loop process involving an end-user who ultimately decides how to use the
information generated by the condition monitoring system. The end-user may, in
turn, require a mechanism of incorporating his or her observations or knowledge into
the condition monitoring system for a more accurate diagnosis. The incorporation
and utilisation of posterior knowledge presents a difficult problem. This research

has attempted both to articulate the problem and to provide a framework for its
solution.

It has been demonstrated that posterior knowledge integration, as a post-processing
technique, improves, on average, fault scenario identification. It is general in that it
is applicable to condition monitoring systems which provide probabilistic fault
scenario data. The end-user is able to feed back information into the condition
monitoring process effectively, thus closing the loop. Context-free simulations
provide a clear indication that, on average, posterior knowledge integration reduces
path lengths in faulty sub-unit identification. This has potential payoffs in terms of
maintenance costs, both direct and indirect. The skewing effect on the quasi-
histograms is dependent upon the number of non-zero scenario probabilities. Here,

128

'
1 ¥
! '




the posterior knowledge integration is sequential, that is, it is included after
individual sub-units were inspected. There are other possible strategies including
using all currently available posterior knowledge together to give modified
posteriors in contrast to using it sequentially. As additional posterior knowledge
becomes available, it may be integrated sequentially, as per the method described in
this documentation.

The above results are preliminary but they show that posterior knowledge integration
has potential use in condition monitoring. Furthermore, the ‘closed-loop’ method is
independent of any predictive condition monitoring system. This stage follows on
from the prediction of faults given a set of monitored features. The method requires
a set of fault scenarios and their corresponding relative frequencies regardless of
how they are estimated.

Now that the possible utility of the posterior knowledge integration technique has
been demonstrated, a number of issues remain to be addressed. The probability
update equation has been applied to sets of FC frequencies as specified in the
simulations. These FC frequencies determine both the initial fault scenario ranking
and subsequent changes. In reality, the probabilities will be estimated from
condition monitoring data and, as such, will be subject to estimation errors. The
combined effects of these estimation errors may alter the scenario ranking and,
consequently, change the maintenance strategy. The effect of estimation errors on
the update equation must therefore be investigated.

At present, the path lengths are weighted only with respect to the scenario relative
frequencies and are not weighted with respect to maintenance cost. In reality, the
costs may rise significantly as time goes on; in the case of aircraft, for example, long
down-times can incur extra costs. The effect of cost weightings will be taken into
account. Further weightings will also apply, e.g. the financial cost of replacing one
LRU may be very much higher than replacing another. The simulations presented
within this documentation have equally weighted scenarios. This means that the
prior probabilities of fault scenarios are the same and that scenarios with many faults
are as equally likely as those with fewer faults. In practice, scenarios with multiple
faults are less likely. This will be represented by using various, non-uniform prior
distributions for the scenario frequencies.

The simulations presented here assume that the number of faults occurring in each
simulation is known a priori. This is to ensure that performance comparisons
between posterior knowledge integration and the baseline methods can be made. In
the real-world, the number of faults will be unknown. Another possible benefit of
posterior knowledge integration is that the modified probabilities may indicate
whether or not it is sensible to search for other possible fault FCs. The baseline
method will not supply any further information as to whether or not more faults
remain. With posterior knowledge integration, a probability threshold may be used,
below which any further search is terminated.
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Posterior knowledge is currently included sequentially following each sub-unit
inspection. In practice, information about one or more sub-units may be available
prior to the current stage of the fault search. A facility for ‘en masse’ posterior
knowledge integration could be included. There is also the possibility of bringing
joint probability information into the system derived from engineering knowledge
and practice, i.e. subjective probabilities.

The properties of exclusivity and independence may be used to pre-process data
before using the probability update equation. Indeed, exclusivity can be detected
from the raw data. Furthermore, by identifying and simplifying dependencies, the
probability estimation problem may be reduced. It is anticipated that prior
engineering knowledge will also be used. It can be proved that the average path
length for the PKI technique always lies somewhere between the optimal APL and
the best baseline method APL as illustrated in Figure 73. Thus, there is the same
number or fewer sub-unit inspections for the PKI method as compared to the
baseline method.

Baseline (MAP A

PKI ?

Increasing APL

T
|
|
|
J
|
[
|
|
[
|

OPTIMAL

Figure 73. The PKI approach (WPKI) will always give an average path length which lies somewhere

between the baseline approach and the theoretical optimum with zero residue owing to NFF incidents.

Empirical investigations illustrate that application of PKI to the FDI process reduces
both the expected number of sub-unit inspections and the expected number of NFF
incidents per scenario. It is likely that more rigorous, formal proofs exist (over and
above those of Appendixes F and G) which show that PKI (WPKI) is at least as
good as the baseline method in both the path-length and NFF cases, if not better.
The percentage improvements vary depending upon a number of parameters
including the number of sub-units, the amount of joint class information and the
ambiguity associated with a given input reading.

5.1 Summary of Weighted Posterior Knowledge Inclusion Research

e NFF incidents increase maintenance costs.

¢ Including posterior knowledge in FDI shows that isolating faults during the
maintenance process may be optimised compared to a baseline approach.

e PKlis as good as, if not better, than the comparison approach when joint
probability information is available (this reflects causality). Both simulation and
theory confirm this.
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Weightings, which reflect differing maintenance costs, may be used; this is a
more realistic approach and is referred to as weighted PKI or WPKI

The original version of WPKI relies upon estimated probabilities. However, the
WPKI approach is general and may use other methods of updating probabilities.
The work has been related to the established filed of Bayesian belief networks;
Indeed, a BBN may be substituted in the WPKI process.

The current WPKI probability update method and the BBN approach represent
two extremes of an information continuum, that is, empirical vs. structural
(engineering knowledge.)

5.2 Areas of Further Work

Implement BBN version of WPKL

Investigate a hybrid approach combining empirical and structural aspects.
Investigate independence, joint information and the relationship between the
amount of joint information and the potential benefits of WPKI.

Investigate further sources of posterior knowledge. Quantisation beyond binary is
a good start.

Investigate ‘batch’ methods of posterior knowledge integration so as to increase
the efficiency of information usage; this is in contrast to the sequential PKI
applied in this work and will allow all available knowledge to be integrated in one
action followed by sequential integration as more information becomes available.
Implement prototypes in Delphi, Visual C++ or other environment.

Investigate condition databases and the coding of engineering information.

5.2.1 Justification for Further Work

Implementing the BBN version will allow the use of known causal relationships
and prepare the way for the hybrid approach.

A hybrid approach (empirical/structural) will allow the use of incomplete
engineering knowledge to be augmented by a refined empirical approach.
Investigating the relationship between data dependence (causality) and the WPKI
approach will indicate under what conditions the approach is likely to have real
cost benefits.

Investigating further sources of PK beyond binary inspection data will enhance
the maintenance process.

Batch methods of PKI will allow maximum use of information prior to a
sequential approach.

Prototype development will push the research towards commercial reality and
help to establish real needs and working assumptions.

Finally, investigating condition database structure and the representation of
engineering knowledge will facilitate the hybrid approach; such a hybrid system
will allow the initial entry of engineering knowledge (causal relations) and then
use empirically derived fault information to “fill the gaps’ and give revised fault
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search probabilities. Bayesian belief networks require the full specification of
causal connections; a hybrid approach will remove this disadvantage.
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6 Matlab Prototype Documentation for Weighted Context-
free Posterior Knowledge Integration (WPKI)

6.1 General Notes

This is a self-contained weighted context-free system prototype which is used to
demonstrate the utility of weighted PKI. Posterior knowledge is integrated
sequentially, that is, a possible reordering of posterior class probabilities occurs on
each simulated LRU inspection. The code may be modified to allow the integration
of posterior knowledge en-block if it is available. The core WPKI code which
would be included in a maintenance system will be indicated throughout the
documentation.

This version uses the posterior probability update equation (PPUE) only; notes on a
possible modified version are included in the final part of the documentation.

Extensive comments will be found throughout the code modules.

Context-free

simulation code

Core WPKI
Code

Figure 74. The Core WPKI code is the central part of the context-free simulation code.
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Context-Free Algorithm:

1. Specify parameters.

2. Generate data (forward simulation) or calculate exact posteriors
3. Get data statistics.

For each reading vector

4. Do PKI/MAP

5. Calculate ensemble statistics.

6.1.1 Generate data:

In order to generate data using the forward approach (scenarios to readings),
scenario priors have to be specified, thus, P(S)= [P(sl) ...P(s,,) ] represents the

prior probabilities of those scenarios occurring.

State likelihoods also have to be specified so that states may be generated from the
scenarios.

8:) |

P(xS) = P(x;|S,.) P(X;S,.) P(x,."]Si)

_P(x;]S,) P(x,;,|S[) P(x

m

_P(x]|82n) P(xk|Szn) P(xm

First, scenarios S, are generated according to their priors. Then the corresponding
row-vector of likelihoods is used to generate a sensor reading, X, .

Use Bayes’ theorem to calculate the expected posteriors if data not going to be
generated. This will give the exact conditional posteriors

P(XkISi)P(SE)

A=

Where P(x,) = 2 P(x,[S,)P(S;)

These are used to form a ‘posterior matrix’ of the form
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_P(Sf]xl) o PEx) o P
P(Slx) = P(S;|xk) . P(S,:|xk) . Ps..bu)|

x"l )

21

_P(Sl.[xm) P(S.xm) P(s

Where data is generated using a forward simulation, the data is generated from
which the empirically derived posterior matrix, F(Six) is computed. Compare

P(x|S) with }3(8|x) to check the simulation. PKI is then carried out using the

estimated posterior matrix data.

6.1.2 Context-Free Performance indicators for both Path lengths and NFF
inspections.

Protocol:

Take each state vector in-turn. There is a row vector of posterior probabilities,
P(S|x k) associated with each possible input reading.

Where,

P(SIx)=[P(Sx) ... P(Six.) ... P(S,

«)]

Now, each scenario is taken in-turn and treated as being the actual fault scenario (for
a given state vector; both PKI and BL methods are used to identify the actual
scenario.

» For each reading vector

P  For each scenario
with nonzero probability
Carry out PKI/MAP

and record the “statistics”

>

Figure 75. When the simulation data is specified, the context-free WPKI process is carried out by
finding the APL for each state vector and weighting the APL by the state vector prior.
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6.1.3 Detail of PKI process:

The LRUs are weighted using an integer cost weighting. The cost weighting reflects
the relative cost of inspecting each LRU.

The LRU to be inspected is chosen on the basis of the posterior probabilities
conditional upon the readings. The exclusive conditional scenario posterior
probabilities,

P(S|xk)=[P(Sllxk) P(S,.lxk) P(Sznlxk)]

are used to construct the posterior probabilities, P(C,. |x k)by summing the exclusive
scenario probabilities of scenarios having the ith LRU faulty.

The complement of the posteriors are calculated and then weighted before the LRU
is chosen with the lowest weighted probability of not being faulty. This is
equivalent to choosing the LRU with the highest posterior probability of being faulty
in the unweighted case.

6.2 Context-free Simulation Code

6.2.1 Module: wpkibat.m

Top-level batch file for context-free simulations.
Calls wtchain and wpkicha routines.

Witchain carries out the data simulation process which is used to illustrate the WPKI
technique. It does not form part of the core WPKI code.

wpkicha carries out the WPKI process for the data and contains the core WPKI code
embedded in a WPKI/weighted baseline comparison routine.

6.2.2 Module: wtchain.m

Second level module for generating probabilities involved in evaluating WPKL

Calls wtdparam which sets up the simulation parameters.

Calls fwdsim which generates data

Calls getstats which gathers the statistical information on the data

Calls bayes which computes posterior probabilities from likelihoods
Calls ambig which removes scenario probabilities to reduce ambiguity

6.2.3 Module wtdparam.m
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6.2.4 Module fwdsim.m

Uses forward simulation to generate data unless the theoretical values are used: in
this case the actual data generation is bypassed.

Calls genlike
Calls biasprior

Calls genlike
Calls genfwd

First P(S) is used to generate the fault scenarios. Next the likelihoods, P(x|S) are
used to generate state vectors.

6.2.5 Module: genlike.m

Generates the likelihood matrix, P(x/S)

6.2.6 Module: genfwd.m

Calls int2bins
Calls vecsel

Generates a file of simulated binary fault data of the form (xk S ) that is, an input

i
(state) vector, points to an output (scenario) vector. This corresponds to readings
gathered together with verified fault scenarios.

6.2.7 Module: getstats

Calls bin2int
Calls neprecon

This module reads in the data file, constructs a matrix of exclusive scenario relative
frequencies and reconstructs the non-exclusive versions. Although the non-
exclusive probabilities are not used here, they may be useful.

6.2.8 Module: bayes.m

Takes the likelihood matrix, P(x|S)
and the scenario prior vector, P(S)

and uses Bayes’ theorem to give the scenario posterior matrix P(S|x)
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This routine is used where the exact posteriors are computed directly from the
likelihood matrix and scenario posterior matrix

6.2.9 Module: ambig.m

This routine removes scenario posterior probabilities associated with a given input to
reduce the ambiguity of scenario choice.

6.2.10 Module: wpkicha.m

Second level module for evaluating WPKI given the probabilities generated or
calculated previously. The WPKI cycle is carried out for each input vector

Calls cfsmat
Calls cstpcmat
Calls inistats
Calls wtdcode
Calls pkstats
Calls blstats

This is module contains core WPKI code which can be embedded in a maintenance
system. The relevant code will be highlighted and discussed further in the
maintenance implementation section.

One of the functions of wpkicha.m is to gather “statistics” on the performance.
Note that the conditional posterior probabilities are exclusive, that is, am from n
problem has been decomposed into a 1 from 2" problem. The non-exclusive

probabilities are reconstructed from the exclusive ones.

Calls c £smat which creates a full fault scenario matrix for identification using the
posterior probabilities. For example, the set of scenarios for three LRUs is

C)v—-‘»-—-»—-»—looo
O = —_ O = =0
OO RO ~O-
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Calls cstpcmat which sets up a matrix containing a vector of scenario indices for
each posterior probability. This enables PKI to exclude or include given scenarios
depending upon the current LRU inspection. For example, if a LRU is found to be

faulty (LRU bit on), then all scenarios with this LRU operating correctly are
excluded.

For example, for three LRUs

= 5 6 7
£ 6 7
1 3 5 7

where LRU one is faulty in scenarios 4,5,6 and 7 and so on. In this case, if LRU one
is found not to be faulty, then scenarios 1,2,3, and 8 are the remaining possibilities.
By calculating which scenarios include/exclude a given LRU, the new conditional
posterior probabilities may be calculated. For example, if LRU 2 is found to be
faulty, scenarios 2,3,6 and 7 are retained only.

Calls inistats which initialises the variables used for collecting information on
the two techniques to be compared.

6.2.11 Module: wtdcode .m

Calls getnff
Calls winsplru

This module carries out the WPKI routines.
For a particular set of parameters, the exclusive scenario posteriors conditioned

upon the input, P(Slx) , are

scenario_posteriors =

0.0570  0.1466 0 0.0674 0 0.2594  0.1599  0.3097
0.1465  0.0254 0 0.1520 0 0.1450  0.1124  0.4186
0.2465 0 0.0866 0 0.0209 0.0878 0.0434  0.5148
0 0.0846  0.0316  0.0934  0.0789 0 0.0825  0.6289
0 0.1476  0.0420  0.1305 0.2814 0 0.0603  0.3382
0.2909  0.1822  0.2294  0.0453 0 0.1176  0.1346 0
0.0142  0.1114  0.2518 0 0.0898 0 0.1438  0.3888
0 0.2870  0.0086 0 0.1457  0.0009 0.3831  0.1748

The scenario frequency data for the
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freqdat =
0.0570  0.1466 0 0.0674 0 0.2594  0.1599  0.3097

Here, the LRU fault probabilities (posteriors) conditioned upon state vector 1 are
shown.

The wtdcode module will go through each scenario which has a non-zero

conditional probability i.e. P(S X |x y ) # 0 and attempt to identify that scenario using
PKI.

The routine getnf £ establishes the potential no fault found incidents from the state
vectors and the scenario vectors.

While there are LRU inspections, the WPKI process is carried out for a single plant
scenario to be identified.

If there are LRUs to be checked, winsplru is called.

6.2.12 Module: winsplru.m

Calls nofltlru
Calls postlru

This module is core WPKI code which can be used to inspect single LRUs and
update the posterior probabilities according to the posterior probability update
equation (PPUE). Winsplru.m will be called repeatedly until the current plant
scenario is identified or all LRUs have been inspected.

It requires the exclusive conditional scenario posterior probabilities,

<)

as an input. The posterior probabilities of individual LRUs being faulty will be
reconstructed from these by the PPUE.

P(S‘xk):[P(SJxk) P(S,.|xk) P(S2n

To calculate the conditional posterior probabilities, P(C‘. |x k) the exclusive scenario

probabilities of scenarios having the ith LRU faulty are summed.

Initially, when there is no posterior knowledge present, no scenarios are excluded
and the conditional posterior probabilities are those of the preceding FDI process.

The posterior probabilities of the LRUs are calculated using the exclusive scenario
probabilities. In this case
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posteriors =
0.4867 0.5659 0.2169 0.3097

Together with the weighting vector of [3 2 1 1] the weighted posterior complement
1s

wtd_post_comp =
1.5400 0.8682 0.7831 0.6903
The lowest weighted complement posterior probability (lowest weighted probability

of no-fault) is used to indicate the LRU to be inspected out of the remaining
(uninspected) LRUs.

unitindex =

4
The chosen LRU is the dummy LRU (4) meaning that the system is likely to be
running correctly (with these weightings!). It is less costly to check the sensors in

this case.

The routine nofltlru is now called to remove the no fault LRU from the
competition. The module winsplru is called again.

posteriors =

0.7050 0.8198 0.3143 0
wtd_post_comp =

0.8849 0.3604 0.6857 1.0000
unitindex =

2
The module postlru is then called
faultcode(unitindex)
ans =

0

newfaultprobs =
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Columns 1 through 7
0.4583 0 0 0.5417 0 0 0
Column 8
0
Now only scenarios [001] and [100] are suspected.
All faults are not found (scenario is not identified) so the cycle continues with
winsplru again.

posteriors =

0.5417 0 04583 0

wtd_post_comp =

1.3750 2.0000 0.5417 1.0000
unitindex =

3

The module postlru is then called again

faultcode(unitindex)
ans =
1
newfaultprobs =
1 0 0 0 0 0 0 O
lruinspect=0
All faults detected (unit 3) in scenario [0 0 1].

The weighted path length is 3.
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6.2.13 Module: postiru.m

6.2.14 Module: nofltlru.m

This removes the no-fault scenario probability and renormalises the remaining
probabilities.

6.3 Scaleability and Hash Coding.

One of the potential problems of the current system may appear to be the

scaleability. For example, for K input vectors and N LRUs, the theoretical number
of probabilities to be estimated to give the ‘posterior matrix’

_P(S:,|x,) P(S§|x1) P(Sz:n[xl)_

o

2!1
o xm )_

PsR)=| P ) - PSR . s

P o PSJs) . P(S

is given by K2". Furthermore, other probability vectors will be of the size 2" .

Thus, the storage requirements appear to be high even for a modest number of
LRUs.

However, it is extremely unlikely that this will be the case because,

e not all state vectors will occur, and
o very few of the possible scenarios are likely for a given state vector.

The last point is guaranteed by FDI design because, if there were multiple scenarios
for each state vector then the FDI process would be ambiguous and, thus,
uninformative; the ideal situation is where one state vector points to a single fault.

In reality, a state vector may indicate a small number of faults and requires further
information to disambiguate the FDI situation. -

A modification to increase scaleability of the system for commercial use is to use a

hash table which codes for any of the K,2" or K2" quantities which are present.

For example, consider a twenty LRU FDI situation which, for a given input, only has
4 scenarios, say,

0600O0O0O0ODO0OOOOODOODODOOT1O0T1°1

0000O0O0OO0OO0OO0DOO0OO0OODOOTILT1O0T1:1

000O0O0OO0OO0OOO0OO0OO0OO0OODDOOOT1T1T1°1
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A scenario matrix row (for a given input vector) will contain,
[1127 15 1]

which codes for the given scenarios. Another matrix will include a row giving the
scenario probabilities. Space may be allocated as required.

6.4 Maintenance System Toolbox Implementation Guidance (PPUE
version only)

Stand-alone batch file, standbat.m illustrates the active WPKI code and what is
required as an interface in a maintenance system. Example: three sensor state
vector, three sub-unit system

The current state vector is
inputcode=[0 1 1]

indicating that sub-units 2 and 3 are faulty.
In reality,
inspect_info=[0 0 17;
is the real situation with sub-unit 1 faulty only.
The exclusive fault probabilities are given by
newfaultprobs =
Columns 1 through 7
0.2465 0 0.0866 0 0.0209 0.0878 0.0434
Column 8

0.5148

For example, sub-unit three [0 0 1] has a probability of being faulty (exclusively) of

0.2465

The conditional posterior probabilities are then calculated as
posteriors =

0.1521 0.2178 0.3974 0.5148
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For example, the rotal posterior probability of unit three being faulty is 0.3974

this comes from scenarios [001],[01 1], [10 1] and [1 1 1] which all involve sub-
unit 3.

The complement is then taken, giving
post_comp =
0.8479 0.7822 0.6026 0.4852

This is because for wei ghted PKT, the weighted probability of no-fault is minimised
which is equivalent to an unweighted maximisation of finding a fault.

When the wei ghting vector [32 1 1] is applied, the weighted posterior complement
becomes

wtd_post_comp =

2.5437 1.5645 0.6026 0.4852

The lowest weighted posterior complement belongs to the no-fault case
unitindex =

4

This means that it is more cost-effective to check the relevant sensors because of the
weighting and the hj gher probability of there bein g no fault (correct operation).

The hypothesis that there is no-fault in the system (state [0 0 0]) is then flagged so it
cannot be chosen again:

Iruschecked =

0 0 0 1

In this case, there is stil] a fault to be detected. Here, this is known beforehand for
the purposes of simulation; in reality, a decision wil] be taken whether or not to
proceed further depending upon engineering knowledge and the current posterior
probabilities indicated by WPKI.

In corenof.m

numfault>0
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indicating that the process continues until the scenario (plant state) is identified.
This decision would be taken by the user in reality.

Because the maintenance process is continuing, the no-fault state probability is
disregarded giving

newfaultprobs =
Columns 1 through 7
0.5081 0 0.1784 0 0.0431 0.1809 0.0895
Column 8

0

Note that these new scenario probabilities are normalised because they are exclusive.
The no-fault choice dies not necessitate an LRU inspection therefore both

wtd_pkdepth and wtd_NFF_inspection_count are not incremented.
The new posterior probabilities are given by
posteriors =
0.3135 0.4488 0.8191 0
The complement is then taken, giving
post_comp =
0.6865 0.5512 0.1809 1.0000

When the weighting vector [3 2 1 1] is applied, the weighted posterior complement
becomes

wtd_post_comp =
2.0596 1.1023 0.1809 1.0000

The lowest weighted posterior complement belongs to the cases where LRU 3 is
faulty

unitindex =

3
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This means that LRU 3 is least likely to be non-faulty according to the cost-weighted
probabilities. Conversely, LRU 1 is most likely to be non-faulty and has a higher
inspection cost.

So, LRU 3 is inspected

Now,

wtd_pkdepth =

!

indicating the cost of inspection.

lruschecked =
0O 0 1 1

LRU 3 is to be inspected.

The scenario indicator vector
indicator =
1 0 1 0 1 0 1 0

indicates that scenarios 1, 3 5, and 7 are involved
(00 1],[011],[101]and [ 1 1]) because they all involve LRU 3 being faulty.

If LRU 3 is inspected and found to be non-faulty, these four scenarios will be
excluded as possible scenarios for the current state. If LRU 3 is found to be faulty,

the current scenario (system state) will be among this group.

By including or excluding scenarios according to the state of the currently
investigated LRU, the PPUE is being implemented.

{PPUE example given the current probabilities}
The new exclusive fault probabilities are
newfaultprobs =

Columns 1 through 7
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0.6203 0 0.2179 0 0.0526 0 0.1092
Column 8
0

Note that these have been renormalised. A stopping criteria might be to keep a
record of the original remaining probabilities and check if they drop below a given
threshold. The weighting of the current sub-unit (3) is one so the current weighted
inspection cost is given by the accumulator

wtd_pkdepth =
1
Now,

(sumffound==numfault)

is true because the number of faults found is equal to the number present and so
lruinspect=0;

that is, there are no more inspections. This stopping criterion is used for simulation
purposes where it is known in advance what is the actual fault scenario to be
identified.

Other criteria (probability threshold or no-fault re-test) may be used. The user may
set lruinspect=0 when he or she is satisfied with the maintenance outcome.

There have been no inspections resulting in a fault not being found so,
wtd_NFF_inspection_count =

0

The next example is for the same input code of [0 1 1] and a new target scenario to
be identified given by

inspect_info=[0 1 0];

The exclusive scenario conditional probabilities given the same input are given again

by
newfaultprobs =

Columns 1 through 7
0.2465 0 0.0866 0 0.0209 0.0878 0.0434

Column 8
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0.5148
As before,
posteriors =

0.1521 0.2178 0.3974 0.5148
post_comp =

0.8479 0.7822 0.6026 0.4852

wtd_post_comp =
2.5437 1.5645 0.6026 0.4852
unitindex =

4

Iruschecked =

0 0 0 1

and so on until unit 3 is chosen again with

wtd_post_comp =

2.0596 1.1023 0.1809 1.0000

I as before.

This LRU is inspected and so the cost accumulator
wtd_pkdepth =
1
Again, the routine postwpki . mis entered to integrate the posterior knowledge

obtained from inspecting sub-unit 3.

must be excluded from further probability operations. The indicator for scenarios
involving sub-unit 3 is again given by

l This time, sub-unit 3 is non-faulty and all scenarios which have sub-unit 3 faulty
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indicator =

1 0 1.0 1 O 1 O
The scenarios are to be excluded and so the complement is used

complement =
0O 1 0 I 0 1 0 1
From the previous exclusion of the no-fault (normal operation case):
lastindicator =
11 1 1 1 1 1 O
Combining these two vectors gives a new indicator of,
lastindicator =
0O 1 01 0 1 0 O
which includes only three pdssible scenarios. Scenario 2 is amongst them.
Now, the normalised new fault probabilities are
newfaultprobs =
0O 0 0 0 01 0 O
because scenario 2 had never occurred in conjunction with this state vector before.
In other words, the FDI system has never had this set of readings for this scenario

prior to this time. Scenario 4 [1 0 0] has also not given rise to a state vector of [ 0 1

1] before. The inspection of sub-unit 3 yielded no fault, thus there is a no fault
found (NFF) incident to be recorded,

wtd_NFF_inspection_count =
1
The weighting of sub-unit 3 is one and so the NFF inspection is unweighted.

The only remaining scenario is scenario 6 [1 1 0] where sub-units 1 and 2 are faulty
together.

The new posterior probabilities
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posteriors =

1 1 0 O

indicate that both sub-units are suspected as being faulty on the information gathered
so far. If sub-unit 1 is checked first—giving a NFF conditionr—the posterior
probabilities will drop to zero but the fault will not go away. This means that sub-
unit 2 has to be inspected and the scenario will be identified. This time, the
maintenance cost is high because all sub-units have been inspected; the new
association between state vector [0 1 1] and fault scenario [0 1 0] will be included in
the FDI statistics.

Specify a new model or stored mode] (Interface code).
New model (starting from scratch):

Specify:

. model name/file,

2. number of reading sensors,
3. number of sub-units,

4. LRU cost weightings

6.5 Bayesian Belief Network Code Modifications

A BBN may be used in place of the PPUE. The BBN can be represented by a link
matrix and a set of conditional probability tables. It may be possible to call pre-
compiled BBN routines which are available.

6.6 Further Modifications

The current implementation identifies scenarios that are specified by the system in
order to test the theory and assess the utility of PKI: in reality, this information is not
available and a set of ‘stopping criteria’ should be devised. One approach is to use a
posterior probability fault threshold. This could be combined with state vector
monitoring. This combination would be used to analyse the likelihood of faults. For
example, if the readings are indicating that all faults have been found, the revised
posterior probabilities would either tend to confirm or deny this.

7 Further Work
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Knowledge of sub-system causality will vary from being totally complete to totally
unknown. In-between these extremes, it will be incomplete to varying degrees.

Figure 76.

The first task will be to build an incomplete system model from existing engineering
knowledge (prior) in the form of a digraph or set of digraphs with quantified links.
The set would consist of a set of BBN sub-nets. Sub-units upstream—in a causal
sense—are the parents of nodes downstream. Known causal relationships can feed
into the PPUE process. The model building must be incremental so that new prior
knowledge may be added without disrupting the system. Research is required to
ascertain the relationship between the empirical PPUE-based method and a partial
BBN. In reality, information is usually incomplete which reduces the range of BBN
applicability; a hybrid empirical-structural WPKI method would counter this.
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