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Peptide hydrogels have important applications as biomaterials and in nanotechnology, but utilization
often depends on their mechanical properties for which we currently have no predictive capability.
Here we use a peptide model to simulate the formation of percolating amyloid fibril networks,
and couple these to elastic network theory to determine their mechanical properties. We find
that the time-variation of network length scales can be collapsed onto master curves by using
a time scaling function that depends on the peptide interaction anisotropy. The same scaling
applies to network mechanics, revealing a non-monotonic dependence of the shear modulus with
time. Our structure-function relationship between the peptide building blocks, network morphology
and network mechanical properties can aid in the design of amyloid fibril networks with tailored
mechanical properties.
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Amyloid fibril networks form via two stages. Firstly,
peptides or proteins assemble into amyloid fibrils that
share a common cross-β structure of intertwined layers
of β-sheets extending in a direction parallel to the fibril
axis [1, 2]. Fibril lengthening and thickening can be
attributed to strongly directional backbone hydrogen
bonding and weaker side-chain interactions, respectively.
At later times, the amyloid fibrils may entangle into a
percolating network [3] with a morphology characterized
by multiple length scales. Although amyloid fibrils
are often associated with devastating diseases such as
Alzheimer’s and Parkinson’s [4], amyloid networks are
emerging as an important class of material with appli-
cations in biosensing, nanoelectronics, tissue engineering
and drug delivery [5–7]. However, many of these ap-
plications depend strongly on the network’s mechanical
properties, for which we currently have no predictive
structure-function relation between the bulk network
stiffness and the properties of individual proteins, with-
out making assumptions regarding the fibril morphology,
cross-linker dynamics, and the local deformation regime.

Theoretical and experimental studies characterizing
the mechanical properties of single, isolated amyloid
fibrils show that their elastic modulus and bending stiff-
ness are comparable to semiflexible filaments like actin,
keratin, collagen and spider silk [8–11]. Recent rheology
experiments demonstrate that the shear modulus of
amyloid fibril networks can be altered by changes in the
amino acid sequence of the peptides [12, 13] and the ionic
strength of the solution [14–17], indicating that design
principles might exist. The viscoelastic response of semi-
flexible polymer networks can be immediately related to
the properties of individual filaments under the assump-
tion of affinity, i.e. that the microscopic deformation field
follows the applied macroscopic strain [18–22]. Relaxing
this assumption has thus far only been possible for the

zero-frequency response of athermal networks, formally
corresponding to the elastic plateau where the crosslinks
can be regarded as fixed [23–25]. Importantly, all of
the mentioned theoretical approaches assume that the
filaments are identical, having the same bending rigidity,
or equivalently persistence length, at every location. This
is a valid assumption for filaments such as actin, but
not for amyloid fibrils where the fibril thickness varies
throughout the network [26–28]. Furthermore, these
previous studies considered procedurally-defined, static
networks; the time evolution of the network morphology
was not considered. The objective of this Letter is
to model the formation of amyloid fibril networks to
determine their mechanical properties without making
the aforementioned assumptions.

Our simulations use a peptide model similar to those
used in recent studies on amyloid fibril aggregation [29–
32], where the peptides in their virtually fully extended
(β-strand) conformation are described as hexagons posi-
tioned on a two-dimensional (2D) triangular lattice that
assemble into a cross-β structure characteristic of amy-
loids (see Fig. S1(a) in Supplemental Material (SM) [33]).
The use of a triangular lattice ensures that the net-
work’s mechanical properties are isotropic at large length
scales [37], as well as enabling the correct stacking of β-
sheets in fibrils [38] (see Fig. S1(b) in SM). The hexagon
has two opposing strong bonding sides that allow the
formation of directional backbone hydrogen bonds, with
the remaining four weak bonding sides controlling fibril
thickening. The strong and weak bond energies are
denoted ψ = E/kBT and ψh = Eh/kBT , resp., where
kB is Boltzmann’s constant and T temperature. The
cross-β structure so formed reproduces key aspects of
the atomic structure of fibrils formed by e.g. the TTR
peptide [2], and the structure of fibrils formed by short
segments of insulin observed in microcrystals [39]. Here
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we fix ψh = 1 while varying ψ, to study effect of the ratio
ξ = ψ/ψh of the hydrogen bond energy to the side-chain
bond energy. A value of ξ = 14 has been estimated for
the Aβ40 peptide [31].

In order to model the formation of amyloid fibril net-
works we perform Monte Carlo (MC) simulations similar
to those described in Ref. [29]. We perform displacement
moves of peptides to nearest neighbor lattice sites, and
rotation moves so that the peptide can change its orien-
tation. At the beginning of a simulation, N peptides
are randomly placed and oriented on a periodic 2D
triangular lattice of linear size L. In all our simulations
we set L = 256. As we only use physically plausible
moves, our model peptides exhibit the layer by layer
growth mechanism observed in computer simulations of
the self-assembly of short peptides into fibrillar aggre-
gates [40, 41], and there is a correspondence between the
number of MC steps (MCs) and real time as suggested
in Refs. [29, 32, 42]. A typical configuration is shown in
Fig. 1(a). The morphology of the fibril network obtained
is very similar to those observed experimentally for Aβ25-
35 [43] and short synthetic peptides (e.g. for GAV-
9 [44]). We use the Hoshen-Kopelman algorithm [45]
to identify individual amyloid fibrils, which enable us
to characterized them by their thickness i and length
m (see Fig. S1(b) in SM). The identification of fibrils
also allows us to obtain a elastic network representation
of the system as shown in Fig. 1(b). The crosslink
positions are taken to be the geometric centers of the
overlap region between different fibrils (see Fig. S2 in
SM), with the distance between two connected crosslinks
defined as the crosslink length l. Note that not all
fibrils identified in the system are part of the percolating
network (Fig. 1(a)).

The time evolution of the mean fibril thickness 〈i〉, the
mean crosslink distance 〈l〉, and the mean fibril length
〈m〉 is shown in Fig. 2 for anisotropy ratios ξ = 7,
10, and 14, at a coverage θ = N/L2 = 0.5. As can
be seen in the insets to this figure, all lengths enter a
coarsening regime where they monotonically increase, i.e.
the fibrils become thicker and longer and the crosslink
positions become further apart as the network evolves.
Increasing the anisotropy ratio ξ delays the onset of
coarsening. A similar effect, where the dynamics of
the system is slowed down due to stronger effective
interparticle interactions, has been observed in colloidal
gels and glasses [46, 47]. As demonstrated in Fig. 2, the
time dependence of each morphological quantity of the
network obtained for different anisotropy ratios can be
collapsed onto a single master curve by rescaling the time
as tξ = te−∆ξ, where ∆ξ = ξ − ξ0 with ξ0 an arbitrary
origin (here we take ξ0 = 7). It is not only the mean of
the morphological quantities that collapse, but also their
distribution functions as shown in Fig. S3 in SM. The
coarsening exponents αi = 0.16± 0.02, αl = 0.18± 0.02,
and αm = 0.17±0.02 of the morphological quantities can

(a)

(b)

FIG. 1. (a) Amyloid fibril network obtained for ξ = 10 with
N = 31130 peptides on a 2D lattice with linear size L =
256 at time t = 105 MC steps. Fibrils that are part of the
percolation network are shown with a black border. The three
possible orientations of the fibrils on the triangular lattice are
distinguished by three different colors (yellow, brown, and
orange). (b) Corresponding elastic network representation
where fibril crosslinks are represented by circles and the fibrils
between crosslinks by line segments.

be obtained by fitting the data points for times ln(tξ) > 6
to 〈i〉 ∼ tαi

ξ , 〈l〉 ∼ tαl

ξ , and 〈mξ〉 ∼ tαm

ξ , respectively.
The mean fibril length was additionally scaled by an
arbitrary function w(ξ) (inset of Fig. 2(c)), giving 〈mξ〉 =
〈m〉ew(ξ), but this does not affect the scaling with time.
The measured exponents are consistent with a common
value ≈ 0.17, demonstrating that all network lengths
obey the same scaling during coarsening. Note that, if
one identifies the fibril area s ≈ i ×m as a domain size,
the growth law s ∼ tαi+αm

ξ is consistent with the 1/3
exponent derived analytically for the isotropic case, i.e.
the 2D spin-exchange Ising model [48, 49], despite the
fibrils in our networks forming anisotropic shapes.

We now turn our attention to understanding how the
structural changes in the network affects its mechanical
properties. Starting from the network representation
as in Fig. 1(b), one can mimic an applied strain γ
by imposing horizontal displacements to the boundary
crosslinks as shown in Fig. S4 in SM. The internal
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FIG. 2. (a) Scaled and unscaled (inset) time dependence of the mean thickness 〈i〉. (b) Scaled and unscaled (inset) time

dependence of mean crosslink length 〈l〉. (c) Scaled time dependence of mean fibril length 〈mξ〉 = 〈m〉ew(ξ), where the values
of the function w(ξ) used are shown in the inset. The data is obtained from configurations for a coverage θ = 0.5 at times
t = 4n MCs, with n = 1, 2, . . . , 12. Averages were obtained from 25 independent simulations. Error bars are smaller than the
symbols. Dashed lines are fits for ln(tξ) > 6 as discussed in the text.

crosslinks then relax to new positions, causing an increase
∆Eelastic in the total elastic energy of the network. For
the linear response (γ ≪ 1), one can use ∆Eelastic to
extract the shear modulus [25, 37],

G =
2∆Eelastic

γ2A
, (1)

where A is the total system area. The shear modulus
G thus depends on the displacement vectors ~uν of all
crosslinks, which contribute to ∆Eelastic as detailed in
SM. These displacement vectors ~uν are obtained by
performing high-dimensional numerical optimization to
minimize ∆Eelastic with respect to each displacement
degree of freedom [23]. For all measurements we consider
γ = 0.02 to avoid non-linear responses due to high strain
values. Our method generalizes a previous lattice-based
model [25] by permitting variations in fibril thickness and
crosslink distances (see SM).
In Fig. 3 we present results for the time-dependent

behavior of the normalized shear modulus G/Ef , where
Ef is the Young’s modulus of a fibril. It is evident that
small changes in both the anisotropy ξ and the coverage θ
lead to large changes in G spanning orders of magnitude,
with an overall trend for higher values of G/Ef with
increasing θ. Moreover, the variation is non-monotonic
in time, in contrast to the monotonic coarsening of the
morphological quantities discussed above, and there are
time periods when the thinner fibrils (formed for ξ =
14) yield stronger networks than thicker fibrils. Most
experiments on the formation of amyloid fibril networks
are performed on a time scale of tens of minutes, where
the shear modulus displays either an increasing or a
constant behavior [14, 16, 50, 51]. However, one set of
longer experiments for β-lactoglobulin gels suggested a
slight decrease in G after hours [52], and atomic force
microscopy imaging has demonstrated significant changes
to network morphology over a timescale of days [43, 53],

for which mechanical properties are not usually mea-
sured. This suggests extending the data acquisition
window may reveal a similar non-monotonicity to Fig. 3.
Although we simulate a 2D network,a rough estimate for
the shear modulus Gexp as measured in 3D experiments
can be made by scaling our results by Gaff

3D/G
aff
2D, where

Gaff
2D and Gaff

3D are the affine predictions in 2D and
3D, respectively. Employing standard results [23, 25],
Gexp = (8Ef/15ℓc)(G/E

f ) for tightly-entagled networks,
where ℓc is a length scale comparable to the cross-
link distance 〈l〉. Taking the Young’s modulus of a
single fibril to be Ef ∼ 109 Pa [10] and ℓc ∼ 10 nm,
we obtain values for Gexp spanning 102 Pa to 104 Pa,
which is the same range observed for β-lactoglobulin

FIG. 3. Time-dependence of the normalized shear modulus
G/Ef obtained for networks with coverages (a) θ = 0.5, (b)
0.525, and (c) 0.55. Averages and errors bars were obtained
from 25 independent simulations. Additional points at times
t = 10n (n ∈ N) are also included.
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FIG. 4. Scaling behavior of (a) shear modulus ratio G/Gaff

and (b) mean network connectivity z against the rescaled time
tξ. Data collapse is obtained separately for each coverage
θ. Vertical grey bars denote regions near the maximum and
minimum of G/Ef . (c) and (d) show the values of the
scaling functions g(ξ) and f(ξ) for the shear modulus ratio
and connectivity, respectively.

gels [52] and other peptide-based gels (e.g. Refs. [17, 51]).
In addition, the behavior of G/Ef resembles that of
weakly-interacting colloidal aggregates which measurably
weaken prior to visual collapse [54]. We hypothesize this
weakening shares a common mechanism to that observed
in our results, although the final collapse under gravity
(with its associated step change in the bulk symmetry)
presumably has a different origin.

Insight into the mechanism underlying network weak-
ening can be gained by measuring mechanical and mor-
phological quantities simultaneously. We evaluated the
shear modulus normalized to the affine prediction Gaff

(computed from Eq. 1 for identical networks with affine
displacements ~u aff

ν ) as in previous works [23, 25], and
monitored the mean network connectivity z given by
the average value of the coordination numbers, zν , from
all internal crosslinks. As depicted in Fig. 4(a), we
found that G/Gaff for different anisotropies ξ can be
collapsed onto a series of master curves, with one such
curve for each coverage θ. The decreasing region of
G/Gaff coincides with the onset of a decrease in z as
indicated in the diagram, and indeed snapshots reveal
a reduction in network connectivity over these times
(see Fig. S5 in SM). Thus, the mechanical weakening of
the network is due to its increased sparsity. As with
the fibril length 〈mξ〉 it was also necessary to scale the

magnitude of G/Gaff by ξ-dependent factors f(ξ) and
g(ξ) as shown in Figs. 4(c) and 4(d), but this does not
alter the times tξ corresponding to the local minimum
and maximum in G/Gaff . These factors mean that, at
fixed rescaled times tξ, higher ξ yields higher G/Gaff,
and correspondingly higher values of z. For all values
of θ and ξ, the values of z are located below the central
force threshold (zCF = 4 for 2D systems). Moreover,
we find G/Gaff ≪ 1 for our networks, as evident in
Fig. 4(a). Thus all of our networks correspond to a
non-affine deformation regime, and consistent with prior
observations [25] most of the elastic energy takes the form
of fibril bending, with ∆Ebending/∆Eelastic fluctuating
around 0.9 (see Fig. S6 in SM).
Identifying universal behaviors, such as in time-cure

superposition curves [52, 55], can accelerate the de-
velopment of novel materials by reducing the number
of independent parameters that need to be assayed.
Our simulations have revealed a simple time scaling
function that depends on the anisotropy ξ of interac-
tion between peptides, which collapses data for both
morphological and mechanical quantities. The proposed
scaling function should benefit experimentalists in the
design of amyloid-based materials, since it permits the
extrapolation of the time-dependent mechanical response
of the amyloid fibril networks from the behavior of
peptide systems with known interactions. Our findings
indicate that features like the non-zero shear modulus
for connectivities lower than zCF and the non-affine
response, which are commonly overlooked in the mod-
eling of hydrogels [21, 22], should be included in further
descriptions of amyloid fibril networks. Finally, we note
that our hybrid approach to measure the elastic moduli
of a fiber network as it forms and grows represents a
new direction for fiber network modeling that can be
extended to other fibrous and porous materials in general,
including inorganic materials such as colloidal gels [46].
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