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A GENETIC PROGRAMMING METHODOLOGY
FOR THE SOLUTION OF THE CELL-FORMATION PROBLEM

C Dimopoulos and N Mort
Department of Automatic Control & Systems Engineering
The University of Sheffield
Email: cop97cd @sheffield.ac.uk & n.mort@sheffield.ac.uk

Abstract: The problem of identifying machine cells and corresponding part families in
cellular manufacturing has been extensively researched over the last thirty years.
However, the complexity of the problem and the considerable number of issues
involved in its solution create the need for increasingly efficient algorithms. In this
report we investigate the use of Genetic Programming for the solution of a simple
version of the problem. Genetic Programming is initially employed to attack individual
cell formation problems. In a second stage, Genetic Programming evolves a similarity
coefficient for the solution of any cell-formation problem.

1 Introduction

The nature of the globalised market has shifted the attention of companies from the
mass production of single parts in dedicated transfer lines to the manufacturing of a
variety of parts in medium-sized batches. Flow-line production is not flexible enough to
cope with this new situation, thus the need for efficient manufacturing systems has
emerged. Flexible Manufacturing Systems (FMS) have been employed extensively to
provide the flexibility required in various aspects of the manufacturing procedure. The
stepping stone for the implementation of an FMS is considered to be cellular
manufacturing.

Cellular manufacturing is the implementation of Group Technology (GT) to the
manufacturing process. GT was originally introduced by Mitrovanov (1966) and was
popularised in the west by Burbidge (1963). It states that significant advantages can be
achieved by grouping company elements that are bound by some form of similarity.
These elements range from entire departmental units to simple machines or parts. On
the plant level the aim of GT is to decompose the manufacturing process into a number
of machine cells which are dedicated to the production of corresponding part families.
This configuration is traditionally known as cellular manufacturing. The intuition
behind cellular manufacturing is an attempt to achieve the mass-production effect of
flow-line production in batch manufacturing. The implementation of cellular
manufacturing has been reported to result in significant benefits for the manufacturing
procedure. Some of these benefits are:

e reduced set-up times

e reduced work-in-progress inventory
e reduced throughput times

e reduced material handling costs

e simplified scheduling




o simplified flow of products
e improved quality

The problem of creating machine cells and associated part families is known as the cell-
formation problem. Numerous methodologies have been proposed for its solution over
the last thirty years. Many of these approaches have been successful in handling
particular versions of the problem. However, the trade-off between modelling an
accurate version of the manufacturing process and the resulting computational
complexity of the algorithm, means that there is always a research interest in finding
more efficient solution methodologies.

Genetic Programming (GP) (Koza, 1992) belongs to the family of evolutionary
algorithms, a research field that has expanded rapidly over the last ten years.
Evolutionary computation employs the concept of Darwinian strife for survival to guide
the search for a potential solution. The probabilistic nature of evolutionary algorithms
and their ability to search in parallel through the solution space, means that that they are
less likely to be trapped in local optima. The difference in GP from other evolutionary
algorithms is that it evolves computer programs of variable length rather than fixed-
sized strings of suitably coded solutions.

While evolutionary algorithms have been extensively used for the solution of a wide
range of manufacturing optimisation problems (Dimopoulos & Zalzala, 1999a), Genetic
Programming has rarely been used in this context. Some notable GP applications have
been reported by (Polheim & Marenback, 1996), (McKay et al., 1996), (Dimopoulos &
Zalzala, 1999b), and (Dimopoulos & Zalzala, 1999c). In this report we will introduce a
novel Genetic Programming approach for the solution of a simple version of the cell-
formation problem.

The remainder of this report is organised as follows: In section 2 we take a closer look
at the cell formation problem and we discuss some of the issues involved in its solution.
A literature survey of the problem is given in section 3. In section 4 we briefly describe
the operation of Genetic Programming. The Genetic Programming approach for the
solution of the cell-formation problem is illustrated in section 5. Results on a wide
range of test problems taken from the literature and comparisons with alternative
methodologies are presented in section 6. In section 7 we use groups of test problems as
fitness cases for the evolution of a general-purpose similarity coefficient. The
conclusions of our research are summarised in section 8.

2 Formulation of the cell-formation problem

The most important step in the development of a cellular manufacturing system is the
creation of machine cells and associated part families. There are three basic approaches
in designing manufacturing cells:

L Create machine cells and assign parts to the created cells
II. Form part families and assign machines to the formulated families
I Create machine cells and part families simultaneously

All cell-formation methods that have been reported in the literature employ one of these
approaches. However, not all of them consider the same version of the cell formation
problem. In fact, there are numerous alternative problem formulations depending on the




objective of optimisation and the level of manufacturing data that is incorporated in the
solution procedure.

2.1 Simple binary matrix formulation

In this report we consider the simplest version of the cell formation problem which is
usually illustrated with the help of the machine-component (m/c) matrix A[n X m]where

n: total number of machines in the plant
m: total number of parts in the plant

Each position in the matrix can assume two values, ‘0’ and ‘1’. A positive entry
indicates that the part of the corresponding column has an operation on the machine of
the corresponding row. A ‘0’ entry indicates the opposite. We will illustrate the
information provided by the m/c matrix using the following example:

Assume that we have the simple case of a plant that produces 5 parts using 3 machines.
By analysing information from the route cards of parts, we obtain the following m/c
matrix:

pl p2 p3 pd4 pS

ml | 1 1
m?2 1 1
m3 1 1 1

Table 1: An example of an m/c matrix

The value of A,, is equal to ‘1°, thus part 4 needs an operation on machine 2. In
contrast, part 4 does not need an operation machine 1 since A4, , is equal to “0’.

Once the m/c matrix has been obtained, the cell-formation problem is transformed to
the problem of finding a configuration with all the positive entries arranged inside
blocks along the main diagonal of the m/c matrix. A diagonalised matrix allows the
easy identification of machine cells and corresponding part families. Table 2 shows the
diagonalised version of our example matrix which resulted by rearranging its rows and
columns:

p4 pl p5 p3 p2

m2 1 1
ml 1 1 1
m3 1 1 1

Table 2: The diagonalised m/c matrix

By observing the matrix it is easy to identify two independent cells, the first one
comprising of machine 2 and parts 1 and 4, and the second one comprising of machines
1 and 3 and parts 2, 3 and 5. The main objective of a cell-formation algorithm in this
simple version of the problem is the construction of completely independent cells, 1.e.
cells where the parts included in a part family are solely processed within the
corresponding machine cell. However, this is a case rarely encountered in practice.




Table 3 illustrates a situation where the cells that have been formed are not
independent:

p4 pl pS p3 p2
m2| 1 1 1
ml 1 1
m3 1 1 1

Table 3: m/c matrix with intercell moves

The reason for this inefficiency is part 3 which requires an operation on a machine that
belongs to a different cell (machine 2). It is customary in cellular manufacturing
terminology to describe part 5 as an ‘exceptional part’ and machine 2 as a ‘bottleneck
machine’. The handling of bottleneck machines and exceptional parts is a significant
consideration in cellular manufacturing research. Some of the approaches that have
been proposed over the years will be described in the following section.

When completely independent cells cannot be formed, the objective usually becomes
the minimisation of intercell moves or the minimisation of material handling costs in
general. However, in the case of binary m/c matrices it is common to employ a
grouping measure to assess the quality of block diagonalisation. Several grouping
measures have been introduced over the years, with grouping efficiency and grouping
efficacy being the ones that have been used by the majority of researchers. A detailed
explanation of these measures will be given in section 6.

2.2 Advanced formulations

The binary m/c matrix representation of the problem has been extensively used in cell-
formation research, mainly because it was introduced and utilised by Burbidge in the
first scientific method for creating manufacturing cells, namely Production Flow
Analysis. While this representation is easy to comprehend and to work with, it suffers
from serious deficiencies that limit its ability to represent realistic manufacturing
environments. More specifically, only a limited amount of manufacturing data can be
captured by a binary m/c matrix, and some of the missing data are critical in creating
the appropriate cell configuration. This fact has lead to the development of advanced
formulations of the problem (mainly mathematical programming and graph-based
models) which are capable of incorporating a wide range of production data like:

e processing times

¢ product demands

e machine capacities

¢ alternative process plans for parts

e Dbatch sizes

e limits on cell sizes and total number of cells
e operation sequences

e multiple machines of the same type




e tooling considerations

However, the larger the amount of data included in a formulation of the cell-formation
problem, the more: computationally intractable the model becomes, as we will see in the
following sectiom. The objective of an advanced formulation can be as simple as the
minimisation of imitercell moves and as complex as the minimisation of the total costs
associated withi the: production process over a specified period of time.

3 Literature review
3.1 Introduction:

The research effort for the solution of the cell-formation problem spans a period of
thirty years. Several hundred papers have been published during that time making the
task of surveying tthe field and taxinomizing the approaches extremely difficult.

In this section we 'will examine a number of papers that are considered to be important
in cellular manufiacturing literature, as well as some recent publications that are not
covered in cellulzar manufacturing review papers. The list of publications is by no
means complete. The aim to outline the state-of-the-art in cell-formation research so
that the significamce of the comparisons that will be made in later sections can be
assessed.

There is no stamdard way of classifying cell-formation methods. A coarse-grained
classification wouild result in the following three categories:

e Visual inspectiion methods
e Coding & classsification methods
e Production-based methods

Visual inspectiora methods or simply ‘eye-balling’ methods rely on the visual
identification of maachine cells and part families. Considerable experience is required in
the process of idewntification even in small problem cases. However, as the size of the
problem increases: the task becomes almost impossible.

In coding & classification methods the design characteristics of the parts are used for
the formation of ppart families. Each part is assigned a multi-digit code according to its
shape, size, or prioduction requirements, and a classification system is used to group
parts according te» their code. While coding systems are widely used by companies,
very few cell-forrmation methods are based on them. Notably, it was Mitrovanov (1966)
that suggested the: use of design characteristics for grouping similar parts. The reader
interested in a thowough examination of coding & classification systems should refer to
(Hyer & Wemmeriov, 1985).

The core of the cell formation algorithms fall under the category of production-based
methods. In general, production based methods analyse the information found on the
route cards of parts and bring together parts with similar processing requirements and
and/or machines that process similar parts. The Genetic Programming methodology that
is presented in thi:s report belongs to the family of production-based methods. A fine-
grained classification of these methods result in the following categories:

e Array-based mmethods

e Hierarchical clustering methods




e Non-hierarchical clustering methods
e Graph-based methods

e Mathematical programming methods
e Artificial Intelligence methods

e Heuristic methods

In the following paragraphs we will focus on these methodologies by discussing a
number of important papers in each category. Additional information on cell-formation
approaches can be found in the review papers of (Kusiak & Heragu, 1987), (Chu,
1989), (Singh, 1993), (Offodile ef al., 1994), and (Selim ef al., 1998). The classification
system used in this report is illustrated in fig.1.

Vizual Coding & Production-
inspection clazsification based
Array- Hierarchical Non-hierarchical Graph  Mathematical Meta-heuristics, Heuristics
hased clugiering clustering -hagsed programming fuzzy logic &
neural networks

Figure I: Classification of cell-formation approaches

3.2 Array-based methods

Array-based methods manipulate the rows and the columns of the m/c matrix aiming to
obtain visible groupings of machines and components. This is usually achieved by
constructing group diagonals which include as many positive entries as possible.

Cellular manufacturing bibliography indicates that the first array-based method for
obtaining machine-component groups was part of the Production Flow Analysis (PFA)
procedure for the implementation of a cellular manufacturing system (Burbidge, 1963),
(Burbidge, 1971), (Burbidge, 1975), (Burbidge, 1977). PFA in its final form was
comprised of four main steps:

e Factory flow analysis

This step was necessary in large industries and aimed to decompose the factory in a
number of independent ‘major’ departmental groups, making the implementation of
the group analysis step easier.

¢ Group analysis

This step started with the construction of the m/c matrix using information obtained
from the route cards. A manual manipulation of rows and columns created machine-
component groups. Burbidge believed that these groups existed naturally and it was
up to the designer to unveil them. He also claimed that groups could be obtained
manually even in large m/c matrices. Several researchers have criticised this claim
as unrealistic. Burbidge later presented a seven-step method for obtaining cells
which was based on the concept of ‘nucleus’ machines. The algorithm started by
eliminating ‘immaterial’ machines from consideration, i.e. machines that performed
secondary operations, such as washing etc. Then, the machines processing the
smallest number of parts were identified as ‘nucleus’ machines and primitive




‘modules’ were built around them. In the latter stages of the algorithm final groups
were identified by combining or dividing primitive ‘modules. Burbidge proposed a
number of alternative methods for the elimination of exceptional elements and the
balancing of workload between the cells.

e Line analysis

After the grouping of machines and components, the layout of machines within the
cells was chosen based on the flow of parts between machines.

e Tool analysis

During this step families of tools that processed similar parts were identified and the
optimal loading sequence of tools in the machines was decided.

PFA was much more than a matrix-manipulation technique. However, it’s mainly group
analysis that has received considerable research interest. The obvious improvement on
Burbidge’s method was the creation of algorithms which were able to manipulate the
rows and columns of the m/c matrix without human interaction.

El Essawy and Torrance (1972) introduced a similar procedure for implementing group
technology in a manufacturing plant called Component Flow Analysis (CFA). CFA was
comprised of three main stages: At the first stage the aim was to categorise components
according to their production requirements. A computer program was used for the
implementation of this stage. The second stage identified ‘approximate’ or ‘rough’
groupings of machines and parts. The third stage produced the final configuration of the
plant by analysing the flow patterns of materials and the loads in each cell. While there
are some difference between CFA and PFA, it has been indicated (King & Nakornchai,
1982) that both approaches focus on the importance of plant-specific information and
the analysis of manufacturing data in every stage of the procedure.

McCormic et al. (1972) proposed a general clustering technique called Bond Energy
algorithm aiming to achieve the desired configuration of a binary m/c matrix. A ‘bond’
indicated the presence of consecutive positive entries in rows or columns. The objective
of the algorithm was the maximisation of the total bond energy of the matrix defined as
the measure of effectiveness (ME). The authors showed that the problem was
equivalent to the quadratic assignment problem, thus computationally difficult. They
proposed a heuristic procedure for the maximisation of bond energy and illustrated their
methodology on decomposition and analysis problems.

King (1980) devised an efficient method for diagonalisation of m/c matrices called
Rank Order Clustering (ROC). ROC was based on the ranking of rows and columns
according to the binary word represented by the ‘0’ and ‘1" entries for each of them.
Rows and columns were rearranged in decreasing order of their ranking. The process
was iterative and continued until no further change could be achieved. King claimed
that the algorithm always created a block-diagonal structure if one existed in only two
iterations. However, Chandrasekharan & Rajagopalan (1986) depicted that the
algorithm had the tendency of gathering as many positive entries as possible in the top-
left hand corner of the m/c matrix, while the rest of the matrix was left highly
disorganised. This tendency resulted in erroneous identification of bottleneck machines.
Another drawback of ROC was its dependence on the initial configuration of the m/c
matrix. In some cases the application of ROC could even disrupt an initially good
solution. In addition, the algorithm was becoming computationally inefficient for large




matrix instances, since a 2" (where n=total number of machines or parts) integer
equivalent of a binary number had to be stored for each row and column.

King identified the drawbacks of ROC and proposed a series of improvements (King &
Nakornchai, 1982). He noted that the problem of storing very large integer numbers
could be avoided by simply ranking rows and columns using pairwise comparisons of
bit values. Since the time complexity of ROC was cubic and the storage requirements
were significant for that time, King & Nakornchai introduced a modified version of
ROC, called ROC2. ROC?2 utilised linked lists to store the data of the matrix. Linked
lists enabled the use of fast and efficient sorting procedures which resulted in an overall
algorithm with linear time complexity. King & Nakornchai also presented an
interactive algorithm which combined ROC2 with specialised procedures for dealing
with exceptional elements and bottleneck machines. Despite all these improvements,
the outcome of ROC2 was still dependent on the configuration of the initial m/c matrix.

As we already discussed Chandrasekharan & Rajagopalan (1986) criticised ROC and
illustrated its deficiencies. However, they noted that the application of ROC always
resulted in one clear-cut machine-component group which was located on the top left-
hand corner of the m/c matrix. They proposed an extension of ROC called MODROC,
which took advantage of this feature. MODROC started with the execution of two
iterations of ROC. Then, the group of machines and components that had been formed
on the top left-hand corner of the matrix was recorded and the components were sliced
off the matrix. The procedure was repeated until no more components were left. This
algorithm created mutually independent part families, but the identified machine cells
were most of the times intersecting. Chandrasekharan & Rajagopalan employed a
hierarchical clustering procedure (see paragraph 3.3) which created the final plant
configuration. While MODROC was less sensitive to the configuration of the initial
m/c matrix, it was still not completely independent of it.

Chan & Milner (1982) introduced a fast and efficient method for diagonalising m/c
matrices called Direct Clustering Algorithm (DCA). DCA employed a systematic
procedure for the manipulation of rows and columns of the matrix. The aim of the
procedure was to move the rows with the ‘left-most’ positive entries to the top of the
matrix and the columns with the ‘top-most’ positive entries to the left of the matrix.
The procedure was iterative and continued until no further improvement could be
achieved. The converged matrix would ideally have all the positive entries placed along
the main diagonal. The main advantage of this method over ROC was that the outcome
was independent of the initial disposition of the matrix. This was achieved by a pre-
processing stage where the columns and rows were ranked according to the number of
their positive entries. In this way, the input to the main phase of the algorithm was
always the same.

Garcia & Proth (1986) proposed a cross-decomposition algorithm for the
diagonalisation of the m/c matrix. An initial partition of the problem was obtained
using the ‘nuées dynamiques’ method of Diday et al. (1982). Then, the rows and the
columns of the matrix were permuted, aiming to maximise the sum of parts produced
within a given partition and minimise the number of exceptional elements. The
algorithm always converged to a solution equal or better to the initial partition.

Khator & Irani (1987) criticised previous cell-formation methods and introduced the
Occupancy Value (OV) algorithm which claimed that eliminated most of their
deficiencies. A diagonalised matrix was created by progressively ordering components
with the lowest machine usage together with their corresponding machines. Ties




between components were broken by calculating their Occupancy Value, a measure of
the resulting matrix density if these components were to be selected. The procedure
allowed the easy identification of bottleneck machines and exceptional parts.

A cell-formation approach that has attracted considerable attention over the years is the
Cluster Identification Algorithm (CIA) of Kusiak & Chow (1987). CIA was basically a
cutting algorithm, originally introduced by Iri (1968), able to identify machine cells and
part families by drawing vertical and horizontal lines on the m/c matrix. The authors
also introduced The Cost Analysis Algorithm (CAA), an extension of CIA which
explicitly considered the cost of subcontracting parts that caused intercellular moves.

Balakrishnan(1996) employed CRAFT, an algorithm for calculating material handling
costs, in an efficient procedure which transformed the problem of rearranging the rows
and the columns of the m/c matrix into a facility layout problem. First, Jaccard’s
similarity coefficients were calculated for each pair of machines and parts in the plant.
Then, two facility layout problems were solved by CRAFT, one for the flow-line of
parts and the other for the flow-line of machines. The similarity coefficients of parts
and machines were used as inputs to the algorithm. CRAFT rearranged the position of
parts and machines in their layout having as objective the minimisation of
transportation costs. In this way CRAFT was indirectly rearranging the columns and the
rows of the m/c matrix. The main drawback of the algorithm was its sensitivity to the
initial layout of parts and machines.

Finally, Mukhopadhyay has proposed a number of alternative methodologies for the
solution of binary cell-formation problems. These methods include multidimensional
scaling (Mukhopadhyay er al, 1994), vector analysis (Mukhopadhyay &
Gopalakrishnan, 1995a), moments-based clustering techniques (Mukhopadhyay et al.,
1995b) and conjoint measurement analysis (Mukhopadhyay & Bhandari, 1997). The
common feature of all these methods is that they had been originally used for the
solution of scientific problems not related to cellular manufacturing.

3.3 Hierarchical clustering methods

Hierarchical clustering methods usually employ a form of similarity or dissimilarity
measure for machines or parts. A number of potential solutions is then created by either
progressively breaking down a single cell or part family to individual machines or parts
(divisive methods) or by progressively merging individual machines or parts to a single
cell or family (agglomerative methods).

McAuley (1972) published a pioneering paper in the field of cellular manufacturing. He
was the first researcher to employ similarity coefficients for the solution of the cell
formation problem. His methodology was comprised of two main stages. First, a
similarity coefficient was calculated for each pair of machines that were available in the
plant. The value of the coefficient represented the similarity of the machines in terms of
the common operations performed. McAuley employed Jaccard’s similarity coefficient
(Jaccard, 1908) which was calculated by dividing the number of common operations
between the machines to the number of operations that were performed on either
machine. The matrix of similarity coefficients was used as an input to the second stage
of the algorithm, the Single Linkage Cluster Analysis (SLCA) procedure (Sneath,
1957). SLCA generated a dendrogram which linked individual machines or group of
machines according to the values of their similarity coefficients. The dendrogram
represented a tree of potential solutions. The user could specify a solution by selecting a
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similarity threshold which corresponded to a particular grouping of machines. The
objective of McAuley’s algorithm was the minimisation of the sum of intercell and
intracell costs. The calculation of intracell costs was based on a prespecified layout of
machines within cells (straight line, rectangle or square). In SLCA the similarity
between a machine and a group of machines is calculated by taking the highest
similarity coefficient between this machine and the machines included in the group. For
this reason, SLCA suffered from the problem of ‘chaining’, i.e. its application
sometimes lead to the grouping of machines that were quite dissimilar in terms of the
parts that they were processing. McAuley suggested the use of Average Linkage
Cluster Analysis (AVCA) as a cure for this problem. The same similarity coefficient
was employed by Carrie (1973) for the calculation of similarities between parts. SLCA
was again used as the clustering procedure for the creation of part families. An
illustartion of the SLCA procedure is given in section 5.

Seifoddini &Wolfe (1987) extended the use of McAuley’s algorithm by introducing
some enhancing modifications. First, as suggested by McAuley, they employed AVCA
as the clustering method, thus avoiding the effect of ‘chaining’. In AVCA the linkage
of a machine to a group of machines is calculated by taking the average value of the
similarity coefficients between the machine and the machines included in the group.
Next, a procedure for eliminating exceptional elements was introduced, based on the
duplication of bottleneck machines. For each bottleneck machine in the plant the
number of intercellular moves was calculated. The machine that caused the more severe
bottleneck was duplicated. It is obvious that this procedure implied the existence of
unlimited capital available for duplicating machines, a condition not always true in real
manufacturing environments. Finally, the authors introduced a bit-level data storage
and analysis technique which simplified the procedure of creating machine cells from
the m/c matrix.

The same authors (Seifoddini & Wolfe, 1987) addressed the problem of selecting an
optimal value for the threshold level when using a hierarchical clustering procedure.
They proposed the evaluation of solutions for several threshold values, aiming to
minimise the sum of intercellular and intracellular moves, in other words the overall
material handling costs.

Gupta & Seifoddini (1990) extended the applicability of the coefficient-based
hierarchical clustering methods by introducing an enhanced version of McAuley’s
similarity coefficient. The authors argued that the main disadvantage of the simple
similarity coefficient was the limited amount of manufacturing information included in
it. They introduced the production-based similarity coefficient which explicitly
considered the production volume of parts, the part routing sequences and the
processing times. Complete Linkage Clustering Analysis (CLCA) was employed for the
clustering of machines. In CLCA the similarity between a machine and a group of
machines is calculated by taking the lowest similarity coefficient between this machine
and the machines included in the group. Machine cells were created iteratively for all
possible values of the threshold level. Parts were assigned to machine cells based on the
number of operations performed within each cell. During the assignment phase the
sequence of operations was explicitly considered. The evaluation of the solutions was
based on the minimisation of intercell moves and the minimisation of the total within-
cell workload for all parts. The latter criterion was also employed for the identification
of bottleneck machines which were candidates for duplication. The superiority of the
production-based similarity coefficient over Jaccard’s similarity coefficient was
illustrated on test problems taken from the literature. Gupta (1993) later introduced an
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improved version of the coefficient which explicitly considered the existence of
alternative process plans for the parts produced. Seifoddini & Djassemi (1995) also
compared the performance of these two coefficients and concluded that the production-
based similarity coefficient was able to reduce total material handling costs more
efficiently than Jaccard’s similarity coefficient.

Another well-reported hierarchical clustering procedure is that of Waghodekar & Sahu
(1984). They employed three alternative coefficients for the calculation of similarities
between machines. The first coefficient was an alternative version of Jaccard’s
coefficient, the second one utilised the same parameters but in a product-type rather
than an additive-type form and the third one considered the total flow of common
components for each machine. A simple hierarchical clustering procedure was used for
the identification of manufacturing cells. The authors reported that all coefficients
produced similar results on some test problems taken from the literature.

Mosier & Taube (1985) illustrated the deficiencies of ROC and McAuley’s SLCA and
proposed an extension of the simple Jaccard’s coefficient which explicitly considered
the relative importance of each part (weight). The weight was equal to the volume of
part that was to be produced. The authors presented an additive and a multiplicative
form of the coefficient and compared its performance with ROC and McAuley’s SLCA
on randomly generated test problems. Results indicated that the use of weighted
similarity coefficient yielded substantial benefits in many cell-formation problems.

Vakharia & Wemmerlov (1987), (1990) presented a methodology for the creation of
manufacturing cells which was based on the identification of part families rather than
machine cells. A similarity measure for parts was introduced which considered not only
the machines visited by each part, but the operation sequences as well. The merging
procedure was interactive, with the designer having the power to approve or disapprove
merging based on the information about the resulted skip moves, backtracking moves,
etc. After the part families had been created, the designer dealt with backtracking and
single-operation parts which had been initially removed from consideration, and
decided where to allocate ‘key’ equipment (equipment required by many parts in the
plant). On a final stage more general objectives were considered, like the minimisation
of investment and the respect of cell-size constraints. The procedure was highly
interactive since it required decisions and experience from a human operator.

Wei & Kern (1989) adopted a modified version of the matching similarity coefficient
introduced by Kusiak (1987) which considered not only the number of common
machines used by a pair of parts, but also the number of common machines that are not
used by the pair of parts. Since the total number of machines in the plant is usually
lower than the toatl number of parts and for reasons of computational efficiency the
authors employed the modified metric for the calculation of similarities between pairs
of machines rather than parts. A simple hierarchical procedure was consequently used
for the creation of machine cells.

Tam (1990) introduced a similarity measure for parts which considered not only the
commonality of processing requirements but the proximity of operation sequences as
well. He employed the K-Nearest-Neighbour clustering procedure (Wong, 1983) for the
formation of part families and discussed in detail the advantages of the proposed
methodology over the existing clustering procedures.

Luong (1993) presented an innovative cell-formation scheme based on the concept of
the cellular similarity coefficient. He introduced a new coding procedure for all parts




which considered their processing requirements rather than their design parameters.
The cellular similarity coefficient measured the similarity between two alternative
machine cells. Initial cells were created around individual parts, thus they were not
disjoint. If the similarity coefficient of two cells was equal to ‘1’, the two cells were
merged. The same procedure was continued until a prespecified similarity level. The
duplication of bottleneck machines was an internal part of the procedure, thus
completely independent cells could be formed by just a single-pass of the algorithm.

Akturk & Balkose (1996) presented a comprehensive multi-objective non-linear integer
programming formulation of the problem which simultaneously considered the
problems of machine-cell formation and part-family grouping. The model aimed to
minimise machine investment and number of skippings while balancing the intercell
and intracell workload. The computational intractability of the model was dealt with the
introduction of a multiobjective hierarchical clustering procedure which explicitly
considered both the design characteristics of the parts and their processing
requirements.

Ho & Moodie (1996) considered the case of a flexible manufacturing system where
alternative process plans are available for each part. An acyclic network representation
was employed as a model for the problem. Each node corresponded to a part operation
and carried information about the machines on which the operation could be performed,
the processing times and the operation costs. Alternative operations were denoted using
OR-branches. Based on this information an operation-based similarity coefficient was
calculated for each pair of parts. The formation of part families was accomplished by a
hierarchical clustering algorithm suitably modified to allow for human interaction.
Finally, machines were assigned to part families according to three alternative scenaria
in the plant:

e only existing machines where allowed to form cells
e purchase of new machines was allowed
e all machines were bought from scratch

Mathematical programming was used for the modelling of each of these cases with the
objective of minimising total costs including operation costs, annual fixed costs and
costs of intercell operations. The models were computationally intractable, thus the
authors proposed relaxed versions which resulted in mixed-integer programming
problems. Still, the suitability of the method for large-sized problems is questionable.

The hierarchical clustering methods described so far employed agglomerative
procedures for the creation of machine cells or part families: individual machines or
parts were merged into progressively larger cells or families until a single cell or family
was obtained or until a size constraint had been reached. Stanfel (1985) proposed a
simple hierarchical divisive procedure for the creation of machine cells which was not
based on the calculation of similarity coeficients. The algorithm started with an initial
cell comprised of all available machines. An iterative procedure followed with each
machine leaving the cell to either form a new cell or to join one that had already been
formed. All the solutions were evaluated in terms the resulting intercell moves and the
number of extraneous transitions caused by the presence of machines within a cell that
were not processing all the family parts.
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3.4 Non-hierarchical clustering methods

Non-hierarchical clustering methods also employ a measure of similarity or
dissimilarity for the grouping of machines or parts. An initial partition, or a number of
seed points are then selected and used for the classification of machines or parts. The
main drawback of these methods is that they usually require the specification of the
total number of manufacturing cells in advance.

Chandrasekharan & Rajagopalan (1986b) introduced a three-step non-hierarchical
clustering algorithm for the solution of the cell-formation problem. A modified version
of MacQueen’s k-means method (MacQueen, 1967) was employed for the initial
clustering of machines and components. Since the k-means method required the
prespecification of the total number of clusters, a formula was derived for the
calculation of the maximum number of independent cells that could be formed for a
certain problem. During the second stage part families were allocated to machine
groups according to their efficiency factor, an indicator of the within-cell utilisation for
each part-family. The output of this stage was used for the determination of ideal-seed
clustering points in a perfectly diagonalised matrix. These points initialised a new run
of the k-means clustering algorithm which resulted in the elimination of singleton
clusters. In the same paper Chandrasekharan & Rajagopalan introduced grouping
efficiency, a qualitative measure of matrix diagonalisation. While grouping efficiency
has been criticised of being inadequate to assess the performance of an algorithm, it has
been used by a considerable number of researchers over the years.

The same authors (Chandrasekharan & Rajagopalan, 1987) introduced an extension to
the ideal-seed clustering algorithm called ZODIAC (Zero-One Data: Ideal-seed
Algorithm for Clustering). The algorithms were quite similar with the exception of the
initialisation phase where ZODIAC considered a choice of different seeding
procedures. The problem of seeding was discussed in depth and it was concluded that
the use of ‘natural’ seeds resulted in better clustering of data. The concept of limiting
efficiency was also introduced, an indication of the best grouping efficiency that could
be achieved for a given matrix. The ratio of grouping efficiency to limiting efficiency
was defined as relative efficiency. Relative efficiency provided a realistic indication of
the performance of the cell-formation algorithm.

Chandrasekharan & Rajagopalan (1989) employed ZODIAC for their investigation of
the characteristics of binary data matrices. A set of progressively more difficult
problems were solved by ZODIAC and the values of grouping efficiency were recorded
and associated to the parameters of the matrices. The mean value and the standard
deviation of the pairwise similarities of rows and columns as measured by Jaccard’s
similarity coefficient were used as the discriminating characteristics of the matrices.
The authors concluded that the value of standard deviation was a good indication of the
groupability of the matrix. However, since other discriminating parameters, like the
number of rows and columns, were not included in the study, it was suggested that this
conclusion should not be regarded as nothing more than an indication of the actual
relationship between the structure of the matrix and its groupability.

Srinivasan & Narendran (1991) illustrated some of the deficiencies of ZODIAC in
terms of the choice of initial seeds and the use of the city block distance as the
clustering criterion. They introduced a new non-hierarchical clustering procedure called
GRAFICS (GRouping using Assignment method For Initial Cluster Seeds). GRAFICS
identified initial machines for seeding by solving the assignment problem as introduced
by Srinivasan et al. (1990). The maximum density rule was employed as the clustering
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criterion. The main algorithm progressed by alternatively clustering machines and parts
until no improvement could be made in terms of the number of exceptional elements
and voids (zero’s inside the block diagonal matrices). GRAFICS did not allow the
existence of singleton clusters. GRAFICS was tested against ZODIAC on a
considerable number of problems taken from the literature and was found to be superior
in most cases. Srinivasan (1994) later extended GRAFICS by using a minimum-
spanning tree algorithm for the creation of initial seeds. The modified GRAFICS
algorithm performed better than simple GRAFICS and ZODIAC on a wide range of
problems.

Gu (1991) indicated the difficulty of representing the operations of flexible NC
machines in binary m/m matrices. He introduced a novel representation which was
based on two binary matrices. The first matrix associated parts with operations, while
the second one associated operations with machines. This type of representation
allowed the consideration of machines that performed multiple operations, machines
with multiple units and parts with alternative process plans. A non-hierarchical
clustering procedure was employed for the formation of part families.

Nair & Narendran (1998) presented a non-hierarchical clustering method for the
creation of manufacturing cells called CASE (Clustering Algorithm for SEquence
Data). They introduced a new similarity metric which explicitly considered the
sequence of operations for each part, multiple visits to machines, and part demands.
The metric was used for the identification of initial seeds in a non-hierarchical
clustering algorithm. Nair & Narendran (1999) later presented an enhanced version of
CASE called ACCORD (A bicriterion Clustering algorithm for Cell formation using
Ordinal and Ratio-level Data). The difference of ACCORD was that it combined the
similarity coefficient used in CASE with a new similarity coefficient that captured the
workload similarity between a pair of machines.

3.5 Graph-based approaches

Graph-based methods employ a graph or network representation of the cell-formation
problem and use relevant techniques to create manufacturing cells.

One of the first graph-based approaches for the solution of the cell-formation problem
was introduced by Rajagopalan & Batra (1975). Their method combined graph theory
and similarity coefficients. The problem was modelled with the help of a vertex-edge
map. Machines in the plant were represented by vertices. Jaccard’s similarity
coefficients were calculated for each pair of machines. Vertices were connected by
edges if the value of the similarity coefficient for the corresponding pair of machines
was larger than a prespecified threshold level. All the cliques (complete maximal
subgraphs) were identified and they were used to form hybrid machine cells. At this
point machines could be present in more than one cell, thus a procedure was needed for
the creation of mutually independent cells. A new graph was constructed with each
vertex representing a cell and each connecting edge representing intercellular moves
between the hybrid cells. The graph was partitioned with the help of a standard graph-
partitioning procedure introduced by Kernighan & Lin (1970). The objective of the
algorithm was the minimisation of the total intercell moves. The resulted partitions
corresponded to the final configuration of cells in the plant.

Sun et al. (1995) utilised a similar graph representation but in a different context. They
argued that important information for the design of manufacturing cells was not
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included in the m/c matrix. Instead, they constructed a flow-matrix which contained
information about the amount of parts that were processed in sequence by any pair of
machines. Construction of the flow-matrix required knowledge of the processing
sequences of parts and their required quantity. Based on the information found in the
flow-matrix a graph was constructed with the nodes representing the machines and the
weighted arcs representing the flow of products between them. The authors indicated
that the partitioning of that graph was a problem equivalent to the quadratic assignment
problem. The authors proposed a tabu search methodology for the solution of the
problem, enhanced with a look-ahead evaluation method for the selection of moves.
The framework was tested on a series of randomly generated test problems.

Rath et al. (1995) also employed Rajagopalan & Batra’s representation to model the
cell formation problem. The difference of their representation was that the weight of the
connecting arc was determined by the number of common processing operations and
not by Jaccard’s similarity coefficient. The graph colouring approach was used as the
method of obtaining disconnected subgraphs.

(De Witte, 1980) combined the hierarchical clustering procedure of McAuley with the
graph-partitioning approach of Rajagopalan & Batra (1975) (see graph-based
methodologies). The machines in the plant were initially divided in three main types:
primary machines (machine types of which only one unit was available), secondary
machines (machine types of which multiple units were available) and tertiary machines
(machine types of which enough units were available to cover every cell in the plant).
A machine-to-machine combination matrix was then created based on the routings of
parts and their required quantity. This matrix was utilised for the calculation of three
different similarity coefficients which were fed as input to Rajagopalan & Batra’s graph
partitioning procedure for the creation of manufacturing cells. Primary, secondary and
tertiary cells were created in a sequential manner. Finally, secondary and tertiary cells
were added to primary cells to obtain the final design.

Kumar et al. (1986) discussed the group technology problem within the context of
flexible manufacturing systems. Their aim was the creation of cells which incorporated
not only machines and parts but important FMS components as well such as fixtures
and pallets. They presented a grouping procedure which was based on a bipartite graph
representation of the problem. Machines and parts were represented by vertices, while
their potential relationship was depicted by the existence of a connecting edge. The aim
was to find an optimal k-decomposition of the graph which minimised the weighted
interconnection between the k subgraphs. A 0-1 quadratic programming mathematical
model of the problem was developed, together with a two-phased methodology for its
solution. The first phase created a starting k-decomposition by solving a linear
transportation approximation of the problem. A linear transportation grouping
procedure was then employed for the creation of solutions.

Vannelli & Kumar (1986) focused on the development of a method for finding the
minimal number of bottleneck machines or parts when creating manufacturing cells.
They showed that the problem was equivalent to finding the minimal cut-nodes of a
bipartite graph while disconnecting it to a number of subgraphs. Since the problem was
NP-complete, a heuristic procedure (Lee er al., 1979) was employed for its solution.
The same authors later extended their methodology by introducing the concept of
weighted graphs (Kumar & Vannelli, 1987). The improved model was able to tackle
cost-based problems by simply assigning costs as weights for each part in the graph.
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Askin & Chiu (1990) presented an elegant mathematical programming formulation of
the problem which considered several elements of the production process, like fixed
period machine and group costs, part demand, machine capacity, tooling costs and
multiple machine of the same type. They described the associated problem as the
economic Group Technology Configuration Problem (GTCP). The four-part objective
function aimed to minimise machine overhead, group overhead, tooling costs and
intercell material handling costs. The large number of variables in the model lead to the
creation of two submodels, one for the part-to-machine assignment problem and one for
the machine grouping problem. A heuristic solution procedure was introduced,
comprising of four stages: batch sizing, assignment of parts to machines when multiple
machines of the same type existed, assignment of machines to cells and intergroup
handling reduction. The second and third steps of the procedure were solved using the
graph-partitioning procedure of Kernighan & Lin (1970) suitably accommodated and
enhanced for each case. The most interesting feature of the methodology was the
complete automation of all stages. Even in the case of bottleneck machines no human
interaction was required to decide on potential duplications.

Askin et al. (1997) also addressed the concept of flexibility in the design of a cellular
manufacturing system. Flexibility was considered explicitly as an objective of the
design in terms of machine types, routings, parts volume and parts mix. A four-step
algorithm was proposed for the solution of the model. The first stage considered the
problem of assigning operations to machine types. A mathematical model was
introduced with the objective of minimising the total annual operating cost of the
assignments and the annual procurement cost of machines. Since the problem could be
reduced to a generalised assignment problem, a suitable heuristic was employed for its
solution. The second stage of the algorithm was identical to the one already described
in (Askin & Chiu, 1990). However, a different graph partitioning procedure was used to
assign part operations to specific machines. The third stage identified candidate
machine cells using the same algorithm. The objective was the minimisation of intercell
material flow and the maximisation of flexibility in terms of adapting to changes in
processing requirements. The final stage was concerned with potential modifications to
the preliminary design which could increase the volume and routing flexibility of
solutions.

Al-Qattan (1990) described an interesting methodology for the solution of the cell-
formation problem which was based on network analysis. Cells were created by
branching on machines and bounding on their corresponding parts. The selection of
initial machines was based on their utilisation, i.e. how likely it was that they would
end up as bottleneck machines. The resulted network diagrams provided the designer
with a wide range of alternative solutions.

Askin et al. (1991) proposed a diagonalisation method based on the hamiltonian path
representation of the problem. Initially, the distance matrix for all machine and parts in
the plant was calculated. A suitably modified version of Jaccard’s similarity coefficient
was employed as the distance metric. The problem of rearranging the rows and columns
of the m/c matrix was modelled as a graph-based Travelling Salesman Problem (TSP)
with the objective of finding the shortest tour of all vertices. TSP required a cyclic
solution, thus the associated Hamiltonian Path Problem (HPP) had to be considered
since it did not require a return tour to the starting vertice. Graph heuristic procedures
where used for the solution of both problems.
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Wu & Salvendy (1993) presented an acyclic graph representation of the problem and
proposed the use of a standard network optimisation technique for its partitioning into a
number of disconnected subgraphs. They also introduced a novel heuristic partitioning
procedure which utilised information about intercell material flow in a similar way to a
hierarchical clustering procedure. The authors indicated that their model could be
extended to consider the processing times of parts.

Vohra et al. (1993) also proposed an acyclic graph representation of the problem and
employed the graph-partitioning procedure of Gomory & Hu (1971) for the creation of
disconnected subgraphs. The objective of their model was the minimisation of the total
amount of processing time that resulted from intercell moves.

Ng (1993) introduced an minimum spanning tree methodology for the solution of the
problem. The nodes of the tree represented the rows of the matrix and the connecting
arcs denoted the distance between them, in other words the level of their dissimilarity.
K machine cells were obtained by deleting the (k-1) largest arcs from the tree. A
procedure was also presented for the re-assignment of parts to machine cells aiming to
improve the derived partitions. A worst-case analysis of the algorithm was performed in
terms of the grouping efficiency and grouping efficacy (Kumar & Chandrasekharan,
1990) measures. Ng illustrated the deficiencies of these grouping measures and
proposed the weighted grouping efficacy measure for the evaluation of solutions.

The concept of minimum spanning trees was also employed by Lin et al. (1996) in an

attempt to solve a more detailed version of the cell-formation problem. The objective of

their cost-based mathematical model was the minimisation of the sum of intercell

processing costs, intracell processing costs and total cell-balance delay costs. Since the .
formulation was computationally intractable, a minimum spanning tree heuristic was

employed for its solution. Disconnected subgraphs were created by iteratively deleting

arcs until no configuration could be found that resulted in lower overall costs. The

method was compared with some classic array-based methods on test problems taken

from the literature and produced excellent results. In addition a case-study application

of the method was presented for a company that manufactured irrigation products.

Lee & Garcia-Diaz (1993) modelled the problem using a capacitated circulation :
network which illustrated the machines available in the plant and the level of |
dissimilarity between them. Dissimilarity was quantified with the help of Hamming *
distances. Based on this model, a linear programming formulation of the model was
presented. The solution methodology was based on the identification of closed loops in
the network using a relaxation method suggested by Bertsekas & Cheng (1988). The
algorithm proved to be computationally efficient even for large-sized instances of the
problem.

Wu (1998) examined the case of multiple machines of the same type being available in
the plant. Cell-formation methods usually dealt with this issue after the initial cell
configuration had been obtained. Wu illustrated how this sequential procedure could
lead to the erroneous identification of bottleneck machines. He introduced a model
which accommodated the concurrent formation of cells and assignment of identical
machines to individual cells. His model was based on a graph-representation of the
problem where an identical machine was denoted by a complex node that contained a
number of multiple units. Machine types for which only a single machine was available
were denoted by simple nodes that contained no units. Complex nodes could be broken
down to simpler structures containing fewer units. Arcs were allowed to pass through
complex nodes, enabling in that way the partitioning of the graph. An arc indicated a
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successive operation of a part on the machines represented by the connected nodes.
Two graph-partitioning procedures that had been originally introduced by Wu, were
employed for the creation of cells. The objective of the algorithm was the minimisation
of total transportation costs.

Kandiller (1998) developed an interesting graph-theoretic approach for the solution of
the cell formation problem which was based on a hypergraph representation of the
manufacturing environment. A hypergraph is an extension of a normal graph where an
edge (defined as hyperdge in this case) can be incident to more than two vertices. The
hypergraph of the cell formation problem was constructed by vertices which
represented machines and by hyperedges which represented parts. A hyperedge
connected all machines (vertices) that were needed for a part to be produced.
Partitioning of hypergraphs is not an easy task, thus Kandiller proposed a methodology
which was based on the approximation of a hypergraph using either cliques or star
graphs. A maximum flow — minimum cut tree was then created based on a
methodology proposed by Gomory & Hu (1971). Information taken from the cut tree
allowed the iterative bi-partitioning of cells until the desirable value of the objective
defined by the designer had been reached. The performance of the framework on
various objectives and size constraints was investigated using a series of randomly
generated test problems. In addition, it was tested against six well-known cell-
formation methodologies, producing one of the leading performances.

3.6 Mathematical Programming

As it has already been discussed mathematical programming formulations of the cell
formation problem are capable of considering a wide range of manufacturing data.
Several types of integer programming formulations have been proposed over the years
and especially the last decade. Most of these models suffer from computational
intractability and require the a priori specification of the total number of manufacturing
cells.

Kusiak (1987) was one of the first researchers to propose the use of mathematical
programming for the solution of the cell formation problem. He introduced a p-median
zero-one integer programming model for the formation of part families. The objective
of the model was the maximisation of similarity of parts within the part families in
terms of the common machines used. A standard integer programming package
(LINDO) was employed for the solution of the problem. Kusiak additionally presented
a generalised zero-one integer programming formulation which considered the
existence of alternative process plans for each part. A Generalised Assignment Problem
(GAP) formulation which was equivalent to Kusiak’s p-median formulation was
proposed by Shtub (1989).

Choobineh (1988) presented a two-stage procedure for the design of a cellular
manufacturing system. First, a hierarchical clustering algorithm was employed for the
creation of part families. The similarity measure between parts was an enhanced
version of Jaccard’s similarity coefficient. The existence of alternative process plans
was also addressed during that stage of the procedure. After the creation of part
families, a linear integer programming formulation of the problem was presented with
the objective of minimising the sum of production costs and the costs of acquiring and
maintaining machine tools.
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Another early attempt to employ mathematical programming for the solution of the cell
formation problem was due to Co & Araar (1988). They considered the case where
multiple units of machines of the same type were available in the plant. A mathematical
model was introduced with the objective of balancing the workload between identical
machines. On a second stage the resulted m/c matrix was used as input to a modified
version of ROC. Finally, the output of ROC was partitioned using a direct search
heuristic procedure.

Wei & Kern (1990) introduced a zero-one integer programming formulation which
explicitly considered the available capacity of machines. The objective of the model
was the minimisation of opportunity costs which resulted either in the form of material
handling costs for intercellular moves, or in the form of subcontracting costs for
exceptional moves. The authors indicated a number of alternative objectives that could
be used in conjunction with the proposed mathematical formulation.

Nagi et al. (1990) presented a linear integer programming formulation which explicitly
considered the existence of alternative process plans for each part and the available
capacity of machines. The objective of the model was the minimisation of the total
intercell traffic within the system. The authors proposed a decomposition of the
problem since it was too complex to be solved directly. The first subproblem
determined the process plan for each part out of the set of available process plans. The
second subproblem identified machine cells. Any standard linear programming solver
could be used for the solution of the first problem but the complexity of the second one
enforced the use of the intercell traffic minimisation heuristic (Harhalakis et al., 1990).
The main disadvantage of the procedure was its sensitivity to the initial partition that
was required as input for the solution of the first subproblem. Since the algorithm was
relatively fast, the authors suggested its initialisation from various random partitions.

Rajamani et al. (1990) also studied the cell formation problem under the existence of
alternative process plans for the parts manufactured. They presented integer
programming models for the solution of three separate instances of the problem. The
first model assigned machines to parts considering the alternative routings available.
The resulted m/c matrix could be used as an input to any of the block diagonalisation
algorithms already discussed. The second model assumed that part families had already
been formed and machines had been assigned to the associated cells. The third model
aimed to simultaneously form part families and machine cells. The objective of all
models was the minimisation of capital cost. The LINDO package was used for their
solution. However, the authors indicated that as the size of the problem increased, the
models were becoming computationally intractable.

Boctor (1991) presented a simple zero-one integer programming formulation of the
problem which considered only the data available from the binary m/c matrix. The
objective was the minimisation of the total number of exceptional elements. An
efficient procedure for the linearisation of the objective function was proposed. In
addition, Boctor showed that a large number of integrality constraints could be relaxed
without affecting the binary outcome of the solution. Even with these modifications the
model was computationally intractable for large problem instances. Boctor proposed
the use of simulated annealing for these cases.

Gunasingh & Lashkari (1991) presented a detailed mathematical formulation of the
problem which incorporated a considerable number of production data such as the
number of identical machines available, fixed costs of machines, production volumes,
processing times etc. The model aimed to group machine and parts simultaneously by




computing a compatibility measure between them. The value of the measure was based
on the tooling requirements of parts and the tooling capabilities of machines. The
model was comprised of two zero-one integer programming formulations. The first one
grouped machines and parts having as objective the minimisation of the sum of
compatibility measures. The second one formed the final groups while seeking a trade-
off between the cost of duplicating machines and the cost of accepting intercellular
moves. After the objectives of both problems had been linearised, a standard integer
programming solver was employed for their solution. For large-sized problems the
authors proposed the use of an approximate solution for these cases, based on the
decomposition of the non-linear models into separate submodels, one for the machine
allocation and one for the part allocation problem.

Shafer & Rogers (1991) discussed in detail the mathematical programming approaches
that had been employed up to that time for the solution of the cell formation problem
and highlighted their deficiencies. They introduced a goal programming formulation
comprising of a p-median model for the identification of part families and a Travelling
Salesman Problem formulation for the identification of within-cell sequences that
minimised set-up times. Additional objectives of the formulation were the minimisation
of intercell moves, the minimisation of investment on new equipment and the respect of
machine utilisation constraints. The authors presented three versions of the model,
depending on the design of the system being made from scratch, with existing
equipment, or with a mixture of new and old equipment. The model was
computationally intractable, thus a heuristic procedure was proposed for its solution.
The design of part families was dealt by a modified p-median formulation of the
associated problem, while the optimal within-cell processing sequence of parts was
found by solving a zero-one integer programming formulation of the TSP.

Jain et al. (1991) presented a zero-one integer programming model which jointly
considered the cell formation problem and the tool provisioning problem in a flexible
manufacturing system. The tool provisioning problem determines the number of tools
that need to be purchased for each type used in the manufacturing procedure. The
authors claimed that the algorithm was ideal for the case of small-sized flexible
manufacturing cells since the computational requirements are not extensive.

Logendran (1992) focused on the problem of duplicating bottleneck machines in a
cellular manufacturing environment. He criticised previous approaches for assuming
unlimited capital availability and for not considering the sequence of operations during
the calculation of intercell moves. He proposed a two-phased algorithm for duplicating
bottleneck machines within a given budget. The algorithm required that that an initial
assignment of machines and parts had already been implemented. The first phase
defined the binary variables and the constraints of a zero-one integer programming
formulation that was solved during the second phase. The variables were identified by
calculating savings in material handling costs and amortised costs from duplicating
machines. A standard integer programming solver was employed for the solution of the
model.

Shafer er al. (1992) discussed the handling of exceptional elements after the initial cell
configuration had been created and given that no further process plan modification
could reduce their number. Exceptional parts can be either subcontracted, or their
respective machines can be duplicated. A third alternative is to allow the existence of
intercell moves and take no further action. Each of these alternatives incurs a different
cost on the production process. The authors constructed an integer programming model
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which aimed to achieve the right balance between all the alternative actions by
minimising the sum of incurred costs on a yearly basis. Some of the integrality
constraints of the variables were relaxed and the model was solved using the LINDO
package.

Dahel & Smith (1993) noted that the creation of pure manufacturing cells decreased the
process flexibility of the plant. Two zero-one integer programming models were
proposed for the solution of the problem. The first one created machine cells and part
families simultaneously with the objective of minimising the total number of intercell
moves. The second model explicitly considered the issue of process flexibility by
introducing a multiobjective function for the minimisation of intercell moves and the
maximisation of machine routing flexibility. The constrained method was employed for
the generation of non-dominated solutions. The authors suggested that GT research
should focus on the development of analytic methods that provided optimal solutions.
However, they did not address the issue of computational intractability as the size of the
problem increases.

Suresh et al. (1995) argued that previous cell formation approaches had failed to
address sufficiently the issues of large problem instances, alternative process plans and
multiple objectives. He proposed a comprehensive hierarchical procedure which
combined efficiently different optimisation methods for the creation of manufacturing
cells. Initially, a fuzzy ART neural network was employed for quick identification of
part families. Then, a mixed integer goal programming model was constructed for the
grouping of machines to cells. The weighted objective function of the model included
the maximisation of cell inter-dependence, the minimisation of purchasing of new
machines, the maximisation of release of extra machines and the maximisation of
routing flexibility. Finally, another goal programming model was created for the
minimisation of intercell moves. The framework contained a number of additional
features such as the identification of alternative part families during the first phase and
the reallocation of parts to these families during the second phase. Human interaction
was also required in various stages. However, even for such an impressive framework,
the prespecification of the total number of cells remained an unresolved issue. Suresh
proposed as a remedy the iterative execution of the second phase of the algorithm for
several values of the required number of cells.

Atmani et al. (1995) presented yet another mathematical programming procedure for
the solution of the cell formation problem with alternative process plans. They
proposed a model which simultaneously considered the allocation of operations to
machines and the allocation of machines to cells. A standard integer programming
solver was employed for the solution of the resulted zero-one integer programming
formulation. The objective of the model was the minimisation of the sum of operation
costs, refixturing costs and transportation costs.

Zhu et al. (1995) introduced a zero-one integer programming formulation of the
problem with the objective of maximising the opportunity costs associated with all the
parts manufactured within the system, i.e. the parts that were not needed to be
subcontracted. The authors showed that their formulation resulted in less number of
variables and constraints and in faster computational times than the corresponding
formulation of Wei & Gaither.

Cheng et al. (1996) proposed a simple zero-one quadratic assignment formulation of
the problem based on the information available from the binary m/c matrix. The
objective of the model was the minimisation of the sum of Hamming distances between
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machines within the cells. A truncated-tree heuristic algorithm was employed for the
solution of the problem. The authors extended their formulation to allow for the
existence of multiple machines of the same type.

Hwang & Ree (1996) also focused on the development of a methodology for solving
the cell formation problem when alternative process plans existed for some parts. They
proposed an algorithm which addressed the problems of selecting a process plan and
forming the part families in a sequential manner. First, a quadratic integer programming
formulation of the process plan selection problem was introduced, with the objective of
maximising the sum of compatibility coefficients between process plans. These
coefficients were customly designed to award route pairs with high similarity and to
punish route pairs with mediocre similarity. The intuition behind this procedure was
that route pairs requiring a limited number of similar machines should not be promoted.
After the optimal process plans had been selected, Kusiak’s p-median integer
programming formulation was employed for the creation of part families. The
methodology was compared with the Kusiak’s generalised GT formulation of the same
problem and results showed that its performance was highly competitive. The LINDO
package was employed for the solution of both integer programmin g models.

Amirahmadi & Choobineh (1996) presented a framework for identifying and handling
exceptional elements and bottleneck machines in binary m/c matrices. In contrast with
conventional approaches their methodology had the ability to identify exceptional parts
and bottleneck machines either independently or simultaneously during the
diagonalisation of the matrix. The authors proposed three alternative cost-based integer
programming models for dealing with the identified exceptional parts and/or bottleneck
machines.

Adil et al. (1997) presented a non-linear zero-one integer programming formulation of
the problem which aimed to minimise the weighted sum of the total number of voids
and the total number of exceptional elements. Given the non-linearity of the model, two
heuristic methods were proposed for its solution, the Assignment Allocation Algorithm
(AAA) and a simulated annealing algorithm. AAA decomposed the problem into two
subproblems, one for the assignment of machines to cells and the other for the
allocation of parts to cells. The solution of each problem determined the values of the
respective parameters in the mathematical model. The sensitivity of the procedure to
the initial partition lead to the utilisation of a simulated annealing algorithm. Both
algorithms were tested on a wide variety of large and ill-structured matrices producing
very good results.

Taboun er al. (1998) noted that the concept of flexibility of product demand during a
planning horizon had never been addressed in the models of the cell formation problem
that had been proposed over the years. Product demand and product mix was always
assumed to be unchanged, a condition which is unrealistic in modern manufacturing
systems. An elaborate mixed integer programming mathematical model was introduced
which attempted to create manufacturing cells over multiple planning periods where
product demand changed according to forecasts or according to prespecified life-cycles.
The multi-part cost-based objective function of the model aimed to minimise the sum of
cell configuration costs, machine capital investment costs, machine procurement and
salvage costs, idle time costs, intercell movement costs and part subcontracting costs.
The model itself was computationally intractable, thus the authors produced a two-stage
methodology for its solution which they claimed that reduced the computational
requirements substantially. The first stage of the procedure was a heuristic algorithm
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for the creation of part families based on a similar algorithm originally introduced by
Taboon. The total number of cells in the plant had to be prespecified at this stage. Once
the part families had been formed, the constraints associated with them could be
dropped from the original model resulting in a much more tractable mathematical
formulation.

Finally, Deutch et al. (1998) proposed a modified p-median formulation of the problem
with the objective of minimising the sum of dissimilarities of machines that belonged to
the same group. This modification lead to a fully linearised version of the problem
solved by a vertex substitution heuristic approach introduced by Teitz & Bart (1968). A
worst-case analysis on the running time of the heuristic resulted in an overall time

complexity of O(nz) where n is equal to the total number of parts.

3.7 Meta-heuristics, fuzzy logic & neural networks
3.7.1 Evolutionary algorithms

The application of evolutionary algorithms (EA’s) to the cell formation problem has
been described in detail in (Dimopoulos & Zalzala, 1999a). For the interested reader we
note that the most significant approaches have been presented by Venugopal &
Narendran (1992), Gupta et al. (1996), Billo et al. (1996), Joines et al. (1996), Hwang
& Sun (1996) and Hsu & Su (1998).

There are also some methodologies that have been proposed quite recently which are
not included in (Dimopoulos & Zalzala, 1999a), for example:

Cheng et al. (1998) noted that the reorganisation of rows and columns in a binary m/c
matrix can be described as a permutation problem equivalent to the TSP, where the
objective is the minimisation of some kind of distance measure between columns or
rows. They employed a real-coded EA with path-representation for the solution of the
problem. The Minkowski metric was used as an indication of the distance between a
pair of machines or parts. The performance of the algorithm was compared with that of
ZODIAC on a wide range of problems taken from the literature and was found to be
superior in most cases.

Gravel et al. (1998) considered the version of the cell formation problem which allows
the existence of alternative process plans for the parts. A double-loop EA was
employed for the solution of the problem with the objective of minimising the volume
of intercell moves and balancing the load within cells. The external loop of the EA used
Venugopal & Narendran’s coding for the assignment of machine to cells. A second
internal loop which determined the allocation of process plans to parts was used for the
evaluation of solutions created in the external loop. Different multiobjective
optimisation approaches were tested, including the epsilon-constraint approach and the
weighted-sum approach.

Lee et al. (1996) combined similarity coefficients and genetic algorithms in a multi-
stage cell-formation procedure. Their methodology explicitly considered the production
volume of parts, the processing sequence of parts and the alternative routings available.
EA’s were used as the optimisation method in all stages of the procedure. The basis of
the algorithm was the calculation of the machine-chain similarity coefficient (MCSC)
between all pairs of machines. MCSC represented the level of direct or indirect
movement between two machines. A series of EA’s were then employed for the
creation of manufacturing cells. The methodology was impressive in terms of the
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amount of manufacturing data considered. The use of multiple EA’s was
computationally intensive, however, the author indicated that if parallel computers were
to be used, even large-sized problems could be solved.

3.7.2 Simulated annealing

Sofianopoulou (1997) introduced an efficient mathematical programming formulation
of the problem which did not require the prespecification of the total number of cells in
the plant. The objective of the model was the minimisation of the total intercell traffic.
A simulated annealing algorithm was employed for its solution. Sofianopoulou (1999)
later extended the use of simulated annealing to cell-formation problems with
alternative process plans and duplicate machines. She presented non-linear
mathematical programming formulations for the machine allocation and part allocation
problems respectively. Since the models were computationally intractable, a novel
simulated annealing procedure was proposed for their solution. The procedure had the
ability to move simultaneously in two different search dimensions. The algorithm
started with a random allocation of parts to process plans. Then, the algorithm searched
for the machine-cell configuration that minimised the number of intercell moves, given
the part-process allocation. Once the termination criterion had been reached, a new
part-process allocation was randomly created and the same procedure was repeated
until a global termination criterion was reached. The efficiency of the proposed
methodology was illustrated on several test problems taken from the literature.

3.7.3 Tabu search

Aljaber er al. (1997) modelled the cell formation problem using a pair of shortest
spanning path problems, one for the machines (rows) and one for the parts (columns) of
the m/c matrix. A modified version of Jaccard’s similarity coefficient was employed for
the calculation of distances between pairs of machines or parts. The authors introduced
a tabu search methodology for the solution of both problems. The algorithm was able to
accommodate the consideration of additional manufacturing data with a suitable
modification of the distance measure used.

Vakharia & Chang (1997) presented both a simulated annealing and a tabu search
methodology for the solution of a detailed version of the cell formation problem. A
large problem of manufacturing data were included in the formulation of the problem,
like transportation costs, product demands and processing times. The objective was the
minimisation of machines investment and material handling costs. A comparison of the
algorithms on a number of test problems showed that simulated annealing outperformed
tabu search both in terms of solution quality and computational complexity.

3.7.4 Fuzzy logic

Chu & Hayya (1991) indicated there was a degree of uncertainty in the allocation of a
part to a specific part family. This uncertainty could be expressed with the help of fuzzy
sets. For each part processed a degree of membership was defined in relation to each
part family. The authors employed the generalised fuzzy c-means algorithm for the
clustering of parts. The advantage of this methodology was that it provided the designer
with a number of alternative solutions.

3.7.5 Neural networks

Kao & Moon (1998) employed the concept of memory association for the solution of
the cell-formation problem. The intuition behind their approach was to simulate the
association procedure that takes part in the memory of a production engineer who is
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faced with the task of creating manufacturing cells. The methodology was comprised of
two main stages: First, an autoassociative neural network formed part families by
considering the characteristics (features) of the parts. Then, a heteroassociative neural
network created machine cells by considering the relation between machines and part
features. In addition, an extension of the latter network was introduced which was able
to create groups for other important GT domains, like tool sets, canned cycles etc.

3.8 Heuristics

Askin & Subramanian (1987) were among the first researchers to introduce a cost-
based model for the evaluation of cell-formation solutions. Their model explicitly
considered a number of cell-related costs like set-up costs, variable production costs,
material handling costs and fixed machine costs. The authors suggested a procedure for
the calculation of these costs and proposed a three-step heuristic algorithm for the
design of cells based on the cost model. The first step was a simple run of the ROC
algorithm. During the second step potential merging of cells was considered with the
help of the cost model. Further merging was attempted at the third step, based on
machine capacity constraints and possible cost savings. While the proposed cost model
proposed by the authors was not in their own words ‘ultimate’, it provided a realistic
approximation of costs involved in a modern manufacturing environment.

Steudel & Ballakur (1987) introduced a similarity measure called Cell Bond Strength
which utilised information about the processing times and production requirements of
parts in order to determine a level of similarity between a pair of machines. Dynamic
Programming (Held & Karp, 1962) was employed for the identification of sequences of
machines that possessed the highest sum of cell bond strengths between them. The
sequences were divided into a number of cells by using two alternative heuristic
procedures.

Harhalakis er al. (1990) proposed a two-step heuristic solution procedure which
explicitly considered the operation sequences of parts. The first stage of the procedure
clustered the machines aggregately based on the calculation of the ‘Normalised
Intercell Traffic’ measure. The second step further refined the solutions aiming to
maximise the intercell traffic of the proposed configuration. The authors additionally
introduced three new measures for the evaluation of cell-formation solutions, global
efficiency, group efficiency and group technology efficiency.

Boe & Cheng (1991) presented a simple but efficient heuristic procedure for the
clustering of machines and parts in a binary m/c matrix. A measure of similarity for
each pair of machines in the plant was calculated based on the ‘closeness’ of their part
routings. The rows of the m/c matrix were then reorganised by bringing ‘similar’
machines closer together. The intermediate matrix was diagonalised by rearranging the
columns using a simple heuristic procedure. The authors compared the performance of
the algorithm with some well-known clustering procedures on a number of test
problems taken from the literature and concluded that its performance was always equal
or better in terms of the grouping efficiency measure.

Kusiak (1991) introduced three branch & bound algorithms for the solution of binary
cell formation problems. The procedure was based on the use of the CIA algorithm for
the creation of primitive cells. If CIA was not able to create mutually independent cells,
child nodes where created by removing columns of the m/c matrix. A child node was
selected through a purpose-based procedure and CIA was re-applied to that node. The




algorithm continued in the same fashion until a child node with clearly visible cells was
identified. Kusiak suggested extensions to this branching scheme which accommodated
the existence of cell-size constraints and the identification and screening of bottleneck
machines on a pre-processing stage.

Kusiak & Cho (1992) introduced two similarity coefficients for the identification of
manufacturing cells when alternative process plans are available. The first coefficient
assigned a zero-one similarity to process plans according to their processing
requirements. The similarity matrix was employed by a graph-based branching
procedure for the determination of cells. This coefficient was suitable for cases where
complete disjoint cells could be formed. For alternative cases the authors proposed
another zero-one similarity coefficient which considered the level of similarity between
two process plans. The similarity matrix was then fed to CIA which produced the final
configuration.

Okogbaa et al. (1992) presented a cell-formation heuristic based on the calculation of
the flow of parts between machines. Initially, a number of seed machines were
identified, and machine cells were formed around them. Inter-machine flow was used
for the calculation of a safety combination rate which determined the admission of a
machine to a certain cell. Parts were then allocated to cells and the design was refined
by considering the objective of the optimisation procedure. The authors illustrated the
performance of the algorithm on some test problems taken from the literature, but most
interestingly they compared the benefits of applying different layout designs on a
manufacturing case study. A GT layout, a classic process layout and a modified GT
layout which explicitly considered the balancing of load between machines of the same
type were used in the comparison. The results showed that while the GT layout
decreased set-up times and average distance travelled per move, the process layout
produced shorter throughput times. However, the modified GT layout outperformed
both alternative layouts showing that the non-consideration of load balancing during
the cell-formation procedure could result in suboptimal designs.

Heragu & Gupta (1994) developed a heuristic procedure for the solution of a
constrained version of the cell-formation problem. A number of design constraints that
reflected practical considerations had to be respected by a potential solution. These
constraints included the available capacity of machines, safety requirements and cell-
size bounds. The algorithm started by calculating the number of machines required for
each type in order to satisfy the technological requirements. Then, a four-step heuristic
procedure was employed for the design of manufacturing cells. The authors illustrated
the performance of the algorithm on some problems taken from the literature and
introduced the flow efficiency measure for the evaluation of solutions.

Beaulieu et al. (1997) also presented a two-stage algorithm for the solution of a cell
formation problem with alternative process plans for parts. The first stage of the
procedure was a cell aggregation algorithm which employed information about
machine flexibility and alternative part routings for the creation of independent cells.
The second stage introduced intercell moves by reassigning machines to different cells
In an attempt to minimise the annual operating costs. The authors illustrated the
computational efficiency of the algorithm but no comparisons were presented with
alternative solution procedures.

Another multi-stage heuristic algorithm for the creation of manufacturing cells was
introduced by Lee & Chen (1997). The authors considered a multiobjective version of
the problem which aimed to simultaneously minimise the number of intercell moves
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and balance the ivad on duplicated machines. A weighted-sum approach was employed
for the optimisation of both objectives.

In a recent paper Da Silveira (1999) presented a methodology for the practical
implementation of a cellular manufacturing system. The procedure was based on an
application that took part in a toy manufacturing plant in Brasil. The benefits of the
implementation in terms of reduction in scrap, rework, work-in-progress, stock, and
delivery times were quite significant. Boe & Cheng’s Close Neighbour Algorithm was
used for the creation of machine cells and part families.

4 Brief Introduction to Genetic Programming

Genetic Programming (Koza, 1991), is an evolutionary computation method that
evolves solutions in the form of computer programs, i.e. structures that can be compiled
directly or with slight modifications by a computer. In that sense GP is a form of
automatic programming.

The intuition behind Genetic Programming (GP) is that every solution to a problem can
be represented by a computer program which takes certain inputs and produces the
required outputs. In GP terminology, inputs are usually described as ‘terminals’. The
user specifies a number of ‘functions’ that manipulate terminals. The outputs can either
be a direct result of this manipulation or a side effect, depending on the nature of the

problem.

=x*z+(x-y)
Figure 2: An example of a GP parse tree and its interpretation

Once the appropriate coding of the solution has been defined, GP operates in a similar
way to other evolutionary algorithms. A population of programs is randomly created
and a fitness value is assigned to each of them according to their performance on the
problem considered. Genetic operators are applied to programs which have been
probabilistically selected based on their fitness, and a new generation of programs is
created. The same procedure is repeated until a termination criterion has been reached.

The length of computer programs is not fixed and can change considerably during the
evolutionary procedure. This feature provides GP with a considerable amount of
flexibility in comparison with other EA’s where the solution is usually coded as a
fixed-length string of binary or real numbers.

The genetic operators employed by the majority of GP researchers are subtree
crossover and subtree mutation. Since computer programs in GP are usually
represented as parse-trees (fig.2), subtree crossover works by exchanging randomly
selected branches of the program tree. In subtree mutation, a randomly selected branch
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of the tree is deleted and replaced by a randomly created new branch. The application
of genetic operators increases the length of computer programs considerably. A size
constraint is usually imposed on the maximum depth of evolved trees.

For a thorough description of GP and a more detailed discussion on the recent
developments in the field, the interested reader should refer to Banzhaf er al. (1998).

5 A Genetic Programming-based methodology for the solution of the
cell-formation problem

5.1 Introduction

Genetic Programming applications for the solution of manufacturing optimisation
problems have rarely been reported. In this section we present a novel GP methodology
for the solution of the cell-formation problem. Since the proposed methodology is
based on McAuley’s Single Linkage Cluster Analysis (SLCA) algorithm, we will start
by illustrating the application of SLCA on a small example problem.

5.2 McAuley’s SLCA Algorithm

As we discussed earlier McAuley (1972) introduced the first hierarchical clustering
algorithm for the solution of the cell-formation problem. The algorithm was based on
the calculation of a similarity measure for each pair of machines in the plant, which was
used for the creation of a pictorial representation of the solutions in the form of a
‘dendrogram’. We will describe the operation of the algorithm using the m/c matrix
shown in Table 4:

pl_p2 p3 p4 pS
ml 1 1
m2 1 1 1
m3 1 1
m4 1 1 1

Table 4: Example m/c matrix for the illustration of SLCA

The algorithm starts with the calculation of similarity coefficients for each pair of
machines. McAuley employed Jaccard’s similarity coefficient which, for this particular
problem, was defined as follows:

]

= ——
a;+b, +¢,

where: S, : similarity between machines i and j

a. : number of parts processed by both machines i and j

b, : number of parts processed by machine i but not by machine j

¢, : number of parts processed by machine j but not by machine i
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The valu¢ of the similarity coefficient ranges from 0 to 1. For the above example the

similarities are calculated as follows:

1 0
S]":- 2 =1 |4= =O.33 SIEZ——-—-—:
v 24040 ' 1+1+1 ‘ 0+2+3
= 2 =0.5 S..= 1 =0.25 S”=_O_;
: 2+1+1 B 1+1+2 T 0+3+42

Thus, there is total similarity between machines 1 and 3, and no similarity between
machines 1 and 2. The above values are used for the construction of the similarity
matrix:

ml m2 m3
m2 O b *
m3 1 0 *
md | 033 05 0.25

Table 5: Similarity matrix for the example problem

The calculated similarity matrix is used for the creation of a pictorial representation of
solutions which is known as a ‘dendrogram’. Single Linkage Cluster Analysis is
employed for the construction of the dendrogram. SLCA assumes that all machines are
initially ungrouped. Then, the pair of machines having the highest value in the
similarity matrix is recorded and is grouped at this level of similarity. In our example,
machines 1 and 3 are grouped at the similarity level of 1. The next highest similarity
level is found and the associated machines are merged at this level. In our case,
machines 2 and 4 are merged at the similarity level of 0.5. At this point the highest
similarity level is 0.33 between machines 1 and 4. Since both machines have already
been grouped, their associated groups are merged as well. Thus, at the similarity level
of 0.33 all machines have formed a single cell and consequently there is no reason for
examining the remaining similarity coefficient values. The constructed dendrogram is
illustrated in figure 3:

ml m3 m2 m4

0.75 4

054

0.25 -

0 -

Figure 3: Dendrogram of solutions for the example problem

The above dendrogram contains a number of alternative solutions, depending on the
value of the threshold level (T) that we wish to choose and the objective of the
algorithm. More specifically, there are four alternative solutions:
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Solution 1 (initial) cell 1: m;

cell 2: ms
cell 3: m;
cell 4: my

Solution 2 (T=1) cell I: m;, m3

cell 2: my

cell 3: my
Solution 3 (T=0.5) cell I: my, m;

cell 2: my, my

Solution 4 (T=0.33) cell 1: m;, my, m3, My

McAuley used as an objective the minimisation of the sum of material handling costs
which is calculated by adding the intercellular and intracellular handling costs under a
prespecified layout. However, since the output of SLCA is a partition of machines into
a number of cells, it can be used in conjunction with any desired objective.

The main disadvantage of SLCA is the occurrence of the ‘chaining’ phenomenon
during the grouping procedure. Since the existence of a single linkage between
machines or groups of machines is enough for the approval of merging, the algorithm
may bring together machines with low similarity. In our example problem, machines 1
and 2 are grouped together at the similarity level of 0.33, while their similarity
coefficient is 0. McAuley, as well as other researchers (Gupta & Seifoddini, 1990) have
proposed the use of alternative clustering methods like Average Linkage Cluster
Analysis (ALCA) and Complete Linkage Cluster Analysis (CLCA) as a cure for this
problem. ALCA calculates the average of similarity coefficients between groups of
machines. CLCA works in the opposite way of SLCA by assigning the lowest and not
the highest similarity coefficient between groups of machines. However, both ALCA
and CLCA require the recalculation of the similarity matrix after each individual
merging step, resulting in greater computational complexity.

5.3 Genetic Programming methodology

Finding an optimal solution to the cell-formation problem is not an easy task. Garcia-
Diaz & Lee (1993) indicate that the number of p non-empty partitions of n objects is
equal to :

n

Stp)=L£
p!

where S(n,p) is the Stirling number. For n=20 the number of non-empty subsets of

size 5 is approximately 7.94x10"". If the number of clusters is not prespecified, the
total number of partitions becomes equal to:

i:lS(n,j)

This formula rules out a complete enumeration of solutions. The advantage of methods
that employ similarity coefficients is that they narrow down the search by focusing on
regions of the solution space that are most likely to contain an optimal solution.
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However, it has been indicated (Sarker, 1986) that the performance of similarity
coefficients depends heavily on the characteristics of the problem and the grouping
measure that is used for the evaluation of solutions. Jaccard’s similarity coefficient is
less likely to find an optimal solution in the case of ill-structured matrices, since the
grouping of machines becomes less straightforward. In addition, SLCA is a ‘blind’
method, i.e. it produces the same dendrogram irrespective of the optimisation objective.
Our methodology employs Genetic Programming for the evolution of similarity
coefficients that are used by SLCA for the construction of the dendrogram of solutions.
The operation of GP-SLCA in algorithmic form is the following:

Procedure Main

initialise population of randomly created similarity coefficients
run procedure SLCA for each coefficient
loop
loop
select individuals for crossover or mutation
apply genetic operators and form new coefficients
until a new generation has been formed
run procedure SLCA for each coefficient
until termination criterion is true

Procedure SLCA

compute similarity matrix

construct dendrogram

loop
create machine cells for the highest level of similarity coefficient
assign parts to machine cells
calculate the fitness value of the cell configuration
if solution is the best recorded so far, best=current solution
delete the value of similarity coefficient from the matrix

until a single cell has been formed

assign the best solution as the fitness of the individual

It is interesting to note that GP indirectly evolves a dendrogram of solutions since given

the SLCA algorithm, each evolved coefficient corresponds to a particular dendrogram.

It is also obvious that as the size of the problem increases the evaluation function

becomes computationally expensive. SLCA was employed in order to reduce the
computational requirements, since the use of ALCA or CLCA would result in .
additional overhead.

The methodology described in this section belongs to the category of cell-formation #
methods that group machines into cells and not parts into families (see section 2). Thus,
for each machine-cell configuration created from the dendrogram, the corresponding
part families must be formed in order to calculate the value of the objective function.
Since no information is available about the sequencing of operations (backtracking,
skips, etc.), parts are usually assigned to the cell where the majority of their processing
takes part. In case of a tie, the part is assigned to the smallest of the candidate cells. In
that way we ensure that the number of voids created by the assignment procedure is
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minimal. If there is still a tie, the part is assigned randomly to one of the candidate
cells. If the allocation of parts to machine cells results in the creation of an empty cell
(a cell that processes no parts), then the fitness of this solution is set to 0. However,
there is no limit on the size of machine cells, and consequently no limit on the total
number of cells in the plant. If required, the algorithm has the ability to explicitly
consider size constraints, by just assigning a zero fitness to each solution that violates
the constraints.

The characteristics of the GP algorithm used in the above formulation are the
following:

Functions: The four standard arithmetic operations {+, -, X, %} were used for the
manipulation of terminals. Note that the division operator ‘%’ corresponds to the
protected division function. This function returns the value of ‘1° if the denominator of
the division is equal to ‘0’, so that the closure property of the set is not violated.

Terminals: The following four terminals are used for the construction of the similarity
coefficient:

a,; : number of parts processed by both machines i and j
b. : number of parts processed by machine i but not by machine j
¢, : number of parts processed by machine j but not by machine i

d,, : number of parts processed by neither machine i nor machine j

Note that with the exception of d, the same variables were used for the calculation of

Jaccard’s similarity coefficient. McAuley did not include this variable since its value is
usually quite high, thus it would create very small values of the coefficient. In our case,
the structure of the evolved similarity coefficient is not known in advance and neither is
the significance of d in the construction of a fit coefficient. In theory, the evolutionary

procedure is robust enough to leave out of the final solution any terminal (variable) that
is irrelevant to the solution of the problem. The range of values for the evolved
similarity coefficient is not known in advance. However, this does not change the
operation of the hierarchical clustering procedure, since it does nor require a specific
range of similarity values. For ease of illustration we have included a function that
normalises the values of the similarity matrix within the region O to 1, using the
minimum and maximum values of coefficients. The operation of SLCA on both
matrices yields the same result

Operators: Subtree crossover and subtree mutation were employed for the creation of
genetic diversity in the population of coefficients. These operators were applied with a
probability of 90% and 10% respectively in each generation.

Fitness measure: Two different fitness measures were used for the evaluation of the
similarity coefficients. Both measures assess the quality of block diagonalisation and
have been extensively used by researchers to illustrate the performance of cell-
formation algorithms. The following notation is essential for understanding the
calculation of the fitness measure (notation taken from Ng (1993)):
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n: total number of columns (parts)

m: total number of rows (machines)

e: total number of non-zero entries in the m/c matrix

e;: total number of non-zero entries inside the diagonal blocks

ep: total number of non-zero entries outside the diagonal blocks
(exceptional elements)

ey: total number of zero entries inside the diagonal blocks (voids)
d;: total number of elements inside the diagonal blocks
dp: total number of elements outside the diagonal blocks

The grouping efficiency, #, of a diagonalised matrix is calculated using the following
formula (Chandrasekharan & Rajagopalan, 1986b):

7;=Q‘(€1/dl)+(l_q).|:1_[§;_]:l

where: 0<g <1

In the case of a single cell configuration d; is equal to O, thus the following formula
should be used:

— g%
(m- n) +{1-— q)
Grouping efficiency has two main drawbacks:

n

e If the value of the weight g used is equal to 0.5, it can be shown that the elimination
of voids becomes much more important than the elimination of exceptional
elements. However, in practical situations, exceptional elements are more costly to
handle. A remedy that has been suggested is to set the value of the weight to 0.2,
however, the majority of reported results have been taken with g=0.5. In order to be
able to perform meaningful comparisons, we employed the same value of 0.5 in our
experimental set-up.

e The value of grouping efficiency is always greater than 75%, independent of the
structure of the diagonalised matrix. It is thus not a good reflection of the real
quality of diagonalisation.

The results reported in the following section indicate that the maximisation of grouping

efficiency does not necessarily result in an efficient solution from the cellular
manufacturing point of view.

The grouping efficacy measure, I', is calculated using the following formula (Kumar
& Chandrasekharan, 1990):

F=1_6V+eo _e—¢

€+€v €+€V

Grouping efficacy has been used by a considerable number of researchers. It is a much
better grouping measure than grouping efficiency. However, as Ng (1993) showed, it
assigns excessive importance to the elimination of exceptional elements. He suggested
a weighted version of the measure (weighted grouping efficiency,y ), which is

calculated using the following formula:
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where: 0< g <1

If the weight is set to 0.5, theny = I'. Ng showed that if the weight is set to 0.2,
y assigns realistic importance to the existence of exceptional elements and voids in the
m/c matrix.

While these two grouping measures were employed for the evaluation of solutions, any
other grouping measure could have been used in conjunction with the algorithm (for a
review of the grouping measures in cellular manufacturing, see (Sarker & Mondal,
1999). One of the advantages of this methodology is that it is flexible enough to work
with any objective function chosen by the user. The only consideration should be that
available information is enough for the calculation of the objective value.

Parameters of the run: Apart from the values of crossover & mutation probability, a
number of additional parameters should be defined when using Genetic Programming.
The values of these parameters are illustrated in fig.4, which is commonly referred to as
the Koza-tableau.

Parameters Values
Objective: maximisation of the grouping efficiency or grouping efficacy of a
diagonalised matrix
Terminal set: a, b, ¢, d (defined earlier)
Function set: +, -, X, %
Population size: 500
Subtree crossover probability: 9
Subtree mutation probability: .1
Selection: Tournament selection, size 7
Number of generations: 50
Maximum depth for crossover: 17
Initialisation method.: Ramped half and half

Figure 4. Koza tableau for the GP-SLCA methodology

6 Application of the GP-SLCA algorithm for the solution of individual
cell-formation problems

6.1 Experimental set-up

Finding a set of problems for the evaluation of an optimisation method is always a
difficult task. The main requirements that a representative set of test problems should
fulfil are the following:

e Different instances of the problem should be included in terms of size, difficulty or
any other parameter that can be varied

* Results from alternative solution methods should be available, so that meaningful
comparisons can be made.

In the case of cell-formation problems, there is no formal definition of the difficulty of
a particular instance of the problem. As we discussed in section 3.4, Chandrasekharan
& Rajagopalan (1989) investigated the characteristics of binary m/c matrices but their
conclusions were based on matrices of fixed size. The lack of a parameter-based
estimation of the difficulty of the problem means that the creation of randomly
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generated problems: is. mot as straightforward as in the case of other optimisation
problems. In practice;. ressearchers of the cell-formation problem evaluate their methods
on test-problems takem ifrom the literature, so, there are many comparative results
available. While the sexcond requirement for an appropriate set of test problems is
fulfiled, there should: e ‘a careful qualitative consideration of the cases that will be
chosen in order to be as close as possible to the fulfilment of the first requirement as
well.

In this report we: hawe employed 27 problems for the testing of the GP-SLCA
methodology. All thie problems have been taken from the cellular manufacturing
literature and results: fraxn alternative cell-formation methods have been reported. The
size of the problemss ramgzes from 10x15 to 40x100. The problems have been chosen so
that they represent diffiesrent levels of difficulty as this is indicated from the reported
results. All these probliems along with their characteristics and their corresponding
references are described: in table 7. The number in the first column of the table will be
used from this point emswards for the identification of these problems. For the reader
interested in using the: @est problems for their own comparisons we should note that
problems 1-8 correspeméd to problems 1-6, 8, 9 in the order presented by Boctor, and
problems 16-21 comesipond to problems 1-3, 5-7 in the order prresented by
Chandrasekharan & Rajmgopalan. All test problems are available in text file format and
can be provided by the amthors of this report.

The GP-SLCA framewawk was initially applied on all test problems using each of them
as an individual fitness «ase. Two different optimisation objectives were employed,
grouping efficiency amdl grouping efficacy. Twenty runs of GP-SLCA were conducted
for each problem and! each individual objective. The number and type of experiments
that were conducted are wummarised in table 6:

Objective No. of test problems  No. of runs per problem
maximisation of groupmug efficiency 27 20
maximisation of groupimg efficacy 27 20

T:ble 6. Number and type of experiments
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No. Reference Size e
1 Boctor (1991) 16x30 121
. 16x30 106
3 7 16x30 92
4 7 16x30 111
5 ? 16x30 107
6 7 16x30 101
7 16x30 114
8 B 16x30 118
9 Boe & Cheng (1991) 20x35 153
10 Burbidge (1975) 16x43 126
11 Carrie (1973) 20x35 136
12 Chan & Milner (1982) 10x15 46
13 Chandrasekharan & Rajagopalan (1987) 40x100 420
14  Chandrasekharan & Rajagopalan (1986) 8x20 91
15  Chandrasekharan & Rajagopalan (1986) 8x%20 61
16  Chandrasekharan & Rajagopalan (1989)  24x40 131
17 ? 2440 130
18 ” 24x40 131
19 " 24x40 131
20 24x40 131
21 24x40 130
22 Kumar et al. (1986) 23x20 113
23 Kumar & Vannelli (1987) 30x41 128
24 Seifoddini (1989) 11x22 78
25 Stanfel (1985) 14x24 61
26 Stanfel (1985) 30x50 154
27 Stanfel (1985) 30x50 167

Table 7: Test problems
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6.2 Results

Before we present the cumulative results of all test problems, it will be interesting to
take a closer look at a particular example, so that the operation of the methodology will
become clear. The well-known 16x43 m/c component matrix, originally introduced by
Burbidge (1975), 1s presented in fig. 5. Almost every algorithm for the solution of the
binary cell-formation problem has been illustrated on this test problem.

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

Figure 5: 16x43 test problem introduced by Burbidge

20 runs of the GP-SLCA methodology were performed for this test problem for each of
the objectives. The results of the experiments are summarised in the following tables:

Best value of efficiency recorded 0.935761
Number of times this value was found 2
Mean best value of efficiency per run 0.932657

Standard deviation 0.003324

Table 8: Grouping efficiency results

Best value of efficacy recorded 0.567901
Number of times this value was found A

Mean best value of efficacy per run 0.566063

Standard deviation 0.003658

Table 9: Grouping efficacy results

The similarity coefficient that produced the best value of grouping efficacy is the
following (in LISP symbolic language):

((-(+(/(d)DN(-(+(d) (@)@ OdMN((-C*(+(@)(@))(-
(bY@ (@) (D) ()N *(+@) (@) (-(b) (@) (-(+(*(-
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(+(a) (@) C*()(/(+/(* (@) () (@) ()N (@) (@NN@N U (+(/(-(+d)(@)(/(/(a)(b))(-
(d) (MU (+H@)(D)(AN) @) @)V (+(+(d)()(d))(*(a)(@))))))

The evolved program corresponds to the following formula for the coefficient:

a+d+i—-£—2a(b—a)+ a1, 2a(b-a)
b b b+c alb
a+d
B d-b
oJ 22 (a+b)/d
d/b
PO A I o
a” a” a

It is not expected that Genetic Programming will evolve a similarity coefficient that
will be easy to understand how and why it works. However, in this particular case we
can see that the values of a and d, which indicate a similarity of processing operations
between a pair of machines dominate the outcome of the formula. High values of a and
d will result in high values for the similarity coefficient. That does not mean that the
evolved coefficient is ideal for every cell-formation case. Keep in mind that the fitness
of an individual is measured based on the best solution found from the dendrogram. It
is always possible that an evolved coefficient which does not utilise the variables in a
meaningful way from the cellular manufacturing point of view, will produce a fit
partition of machines for the objective considered. The above formula is used for the
calculation of similarities for each pair of machines in the plant, resulting in the
similarity matrix in fig.6. The normalised similarity matrix is presented in fig.7.

m1 m2 m3 m4 ms mé m7 mé m9 mi0 mil mi2 mi3 mi4 mis
m2 56.6724
m3 54.0000 33.7500
m4 51.0000  31.5000 37.2000
m§ 42,0000 247500 30,0000 169.7049
mé 36,8271 57.9114 44,1750 24.2409  11.1468
m7 57.0000 36.0000 42.0000 37.7143  29.0769  -31.5418
ma 451000  30.5500 21.6000  41.5745 842238 -26.7635 30.9998
mg 51.2545 300.7515 33.6000 29.7143 215385  -61.2140 40.0000 -71.3682
mio 51.0000 31.5000 37.2000 33.1429 247692 -58.3231 84.0851 -58.5406 28.6000 ,
mii 52.5000 32.6250 38.4000 29.8161 74648 18.9474 453333 -64.3697 29.7000 34,2857
mi2 54.0000 33.7500  39.6000 35.4286  26.9231 20.0000 46.6667 -56.1498 30.8000 354286 69.6667
mi3 58.5000  37.1250 43.2000  38.8571 30.1538  23.1579 50.6667 -34.6101 341000 388571 5B.2819 48.3946
mi4 55.5000 28.6247 59.7232 36.5714 2B.0000 4B3.5966 48.0000 -13.1068 20.7166 36.5714 38.5000 40.8000 55.5000
mis 51.0000 31.5000 37.2000  76.5803 B9.8009 -58.3231 44.0000 -67.7242 28.6000 33.1429 35.0000 37.2000 51.0000 40.0000
mié 56.6724  149.8667 36.3173 320000 236923 -54.6544 4206667 -59.8156 159.2070 32.0000 33.8333 J36.0000 49.5000 42.5328 32.0000

Figure 6 Similarity coefficient matrix
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m 1 m2 m3 m4 m5 mé m7 ma m9 m10 mii mi2 m13 mi4 mis
m2 0.2307
m3 0.2259 0.1894
m4 0.2205 0.1854 0.1956
m5 0.2043 0.1732 0.1827 0.4344
mé 0.1950 0.2330 0.2082 0.1723 0.1487
m7 0.2313 0.1935 0.2043 0.1966 0.1810 0.0718
mé 0.2095 0.1836 0.1675 0.2035 0.2804 0.0804 0.1845 5
m3 0.2210 0.6705 0.1891 0.1821 0.1674 0.0183 0.2007 0.0000
mi0 0.2205 0.1854 0.1956 0.1883 0.1732 0.0235 0.2801 0.0231 0.1801
mi{ 0.2232 0.1874 0.1978 0.1823 0.1421 0.1627 0.2103 0.0126 0.1821  0.1904
m12 0.2259 0.1894 0.2000 0.1924 0.1771 0.1646 0.2127 0.0274 0.1841 0.1824 0.2549
mi3 0.2340 0.1955 0.2064 0.1986 0.1829 0.1703 0.2199 0.0662 01900 0.1985 02336 0.2158
mi4 02286 0.1802 0.2362 0.1945 0.1791 1.0000 0.2151 0.1050 0.1659  0.1945 01980 0.2021 0.2286
mi5 0.2205 0.1854 0.1956 0.2666 0.2904 0.0235 0.2079 0.0066 0.1801  0.1883 01917 0.1956 0.2205 0.2007
mié 0.2307 0.3986 0.1940 0.1863 0.1713 0.0301 0.2055 0.0208 0.4155 0.1863 p.1896 0.1935 0.2178  0.2052 0.1863

Figure 7 Normalised similarity coefficient matrix

If either of these matrices is fed as an input to the SLCA algorithm a dendrogram of
potential solutions will be produced. In fig.8 you can see the dendrogram for this
particular case which has been cut at the similarity level of 0.2340. The cell
configuration for this instance of the dendrogram corresponds to the diagonalised
matrix of fig.9, which has a grouping efficacy value of 0.5679.

M

m3 m6 mld4d m2 mY ml6 mll mi2 m7 ml0 ml mi3 m4 mS ml5 m§
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0. 0000
Figure 8: Dendrogram cut at the similarity level 0.2340
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Figure 9: Diagonalised matrix (grouping efficacy)
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This value of grouping efficacy is one of the best of those that have been reported in the
literature for this particular problem. The performance of the algorithm is equally good
in all other problems of the experimental set-up. The cumulative results are presented in
two parts. First, in table 10, the detailed results of the GP-SLCA procedure are
illustrated. Then, in tables 11 & 12, the best solution evolved by GP-SLCA is compared
with a number of solutions that have been produced by alternative cell-formation
methods. All diagonalised matrices for both objectives are available on request.

Pr. max m o e e, No.of | max T G e e, No.of
No. M cells r cells
1 0917 0.909 0.0051 71 O 10 0.509 0.503 0.0631 40 38 5
2 0.935 0903 0.0146 56 0 10 0.618 0.618 0 22 30 6
3 0.952 0949 0.0024 44 0O 10 0.7 0.7 0 8 28 4
4 0926 0924 00007 64 0O 10 0.496 0.493 0.0029 31 40 6
5 0.930 0926 00032 52 1 9 0.727 0.727 0 11 25 4
6 0.938 0.933 00023 54 0 11 0.782 0.782 0 18 18 5
7 0.930 0926 0.0020 60 O 10 0.595 0.590 0.0063 23 39 4
8 0.927 0.913 00058 54 1 9 0.774 0.774 0 12 19 4
9 0.930 0.915 0.0107 % 0 13 0.568 0.568 0 40 46 5
10 0940 0933 00033 77 0O 13 0.568 0.566 0.0037 34 36 6
11 0944 0916 00133 62 1 11 0.767 0.766 0.0016 11 27 6
12 0.96 0.96 0 0 4 3 0.92 0.92 0 0 4 5
13 0.964 0956 0.0029 88 17 13 0.840 0.840 0 36 37 10
14 0.788 0.788 0 51 O 4 0.587 0.587 0 27 18 2
15 0.958  0.958 0 9 0 3 0.852  0.852 0 9 0 3
16 1 1 0 0 0 7 1 1 0 0 0 7
17 0.967 0.964 0.0040 31 3 10 0.851 0.851 0 10 11 7
18 0953 0940 0.0067 51 3 12 0.735 0.735 0 20 20 7
19 0.961 0960 00011 70 0 16 0.533 0.531 0.0029 50 21 11
20 0.961 0.957 00042 70 0 16 0.479 0476 0.0020 63 11 13
21 0.930 0919 00045 78 3 18 0.437 0435 0.0016 61 28 .11
22 0.846 0.784 0.0291 66 8 9 0.490 0.453 0.0179 43 30 5
23 0975 0968 00079 59 0 19 0.607 0.607 0.0011 46 7 16
24 0.917 0.917 0 28 1 6 0.731 0.731 0 10 15 3
25 0.957 0.954 0.0008 26 O 10 0.718 0.718 0.0010 10 10 7
26 0963 0960 0.0063 70 2 20 0.594 0.583 0.0063 53 16 14
27 0.966 0944 0.0205 96 0 22 0.5 0.488 0.0044 75 17 15

Table 10. Performance of GP-SLCA on individual test problems
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Pr.No. GP-SLCA ZODIAC GRAFICS Assignment MST GA-TSP
(Chandr. & Raj., (Sriniv.& Naren., (Srinivasan et al., (Ng, 1993) (Cheng et al.,

1987) 1991) 1994) 1998)

1 0.917 0.643 0.772 0.846 - -

2 0.935 0.795 0.816 0.810 T

3 0.952 0.858 0.869 0.858 - -

4 0.926 0.586 0764 0730 - -

5 0.930 0.881 0.901 0.881 - -

6 0.938 0.896 0.908 0.891 - -

7 0.930 0.636 0.791 0.799 - -

8 0.927 0907 0907 0.907 - -

9 0.930 0.776 - - - 0.796

10 0.940 0.802 0.794 0.776 - 0.794

11 0.944 0.878 0.878 - 0.945 0.878

12 096 0.96 0.96 - 096 0.96

13 0.964 0.951 0.951 - 0.974 0951

14 0.788 0.719 0763 | - - 0.719

15 0.958 0.958 0.958 - 0.958 0.958

16 1 1 1 - 1 1

17 0.967 0.952 0.952 - 0.975 0.952

18 0.953 0.908 0.912 - - 0.908

19 0.961 0.773 0.789 0.856 - 0.836

20 0961024 0791 " 0.833 : 0.853

21 0.930 0.693 0.791 0.761 - 0.8

22 0.846 0.670 0.762 0.721 - 0.814

23 0975 0.681 0.823 0.865 - 0.824

24 0.917 0.878 . 0.878 - - - -

25 0.957 0.839 0.839 - - 0.841

26 0.963 0.754 0.852 - - _0.860

27 0.966 0.629 0.856 - - 0.822

Table 11. Comparison with alternative cell-formation methods (grouping efficiency)

Pr.No. GP-SLCA ZODIAC GRAFICS Assignment MST GA-TSP
(Chandr. & Raj., (Sriniv.& Naren., (Srinivasan et al., (Ng, 1993) (Cheng et al.,
1987) 1991) 1994) 1998)
1 - 0.509 0349 0.481 0447 | - -
2 0.618 0.586 0.534 0.508 - -
3 0.7 0.686 0.675 0.644 -
4 0.496 0.267 0.449 0.407
3 0727 0.727 0.691 0.727
6 ~0.782 0764 | 0.771 0.760
7 0.595 0.320 0.579 0.530
8 0.774 0.774 0.774 0.774 T
9 0568 Tos11 . - - 0.551
10 0.568 538 0.544 0.471 - 0.539
11 0.767 0.751 0.751 - 0.767 0753
12 0.92 0.92 0.92 - 0.92 092
13 0.840 0.839 0.839 - 0.831 . 0.840
14 0.587 0.583 0.581 - - 0.583
15 0.852 0.852 0.852 - 0852 0.852
16 T 1 1 : 1 - -
17 | 0.851 0851 0.851 - o 0851 10.851
18 0.735 0.730 0.735 - - 0730
19 0.533 0.204 0.433 0.446 0494 |
20 0479 0.182 0.445 0.439 0447
21 0.437 0.176 0.417 B 0335 0.425
22 0.490 0.387 0.494 0436 | 0.466
23 0.607 0.337 0.554 0.559 0.538
24 0.731 0.731 0.731 L -
25 0718 0.656 0.656 - 0.674
26 0.594 0.461 0.563 - ~ 0.566
0.5 0.211 0.480 - 0.459
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6.3 Discussion

Results from tables 10, 11 and 12 indicate that GP-SLCA is a powerful algorithm for
the solution of binary cell-formation problems. More specifically, for the grouping
efficiency measure GP-SLCA dominates the performance of ZODIAC, GRAFICS,
Assignment Algorithm and the GA-TSP heuristic. While the value of grouping
efficiency is always higher than 0.9, it is far from obvious that the resulting
diagonalised matrices are not ideal for the implementation of a cellular manufacturing
system. Table 13 illustrates the diagonalised matrix for problem 9, which has a
grouping efficiency value of 0.944.

34 10 18 27 31 3 29 2 12 13 24 23 26 22 1 5 15 17 20 25 8 14 18 16 35 33 4 9 11 21 28 30 6 32 7

IT

1 1 1 L A A | 1 1 1

11 1 1 1111 1
11 1 1 11 1 1

1

1

a e afla o
wii ol i RE S
i
=
A
=

1 11 1 1 1
Table 13: Diagonalised matrix for problem 9 (Boe & Cheng, 1991)

The proposed grouping of machines and parts is not a realistic solution and its
implementation would rather disrupt the manufacturing process. However, this is not
due to the inefficiency of the GP-SLCA algorithm, which always produces solutions
that maximise the desired objective. However, the maximisation of grouping efficiency
does not correspond to suitable solutions for the implementation of a cellular
manufacturing system. In section 5 we indicated the deficiencies of this grouping
measure. Table 12 illustrates the result of assigning excessive importance to the
minimisation of voids in comparison to the minimisation of exceptional elements. The
algorithm minimises the number of voids by creating small compact matrices of
positive elements along the main diagonal of the m/c matrix. Table 10 illustrates that all
evolved GP-SLCA solutions for the maximisation of grouping efficiency focus on the
elimination of voids.

This unusual configuration of the diagonalised matrices is the reason for the slightly
worse performance of GP-SLCA over the MST algorithm. When a large number of
small-sized cells has been formed, the optimal assignment of parts to machines
becomes almost a random search procedure since there are many candidate cells that
satisfy both allocation criteria. As we described earlier GP-SLCA breaks double ties
randomly. In contrast MST uses a special procedure for maximising the grouping
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measure by reassigning parts and machines after the initial machine cell — part family
configuration has been created. This procedure is particularly useful in this situation
where the assignment of parts to cells is not straightforward. However, the resulted
partitions are even more impractical than the ones already described. Ng reports a final
solution containing 15 cells in a 20-machine problem (pr.9). An increase in the
population size of GP-SLCA will almost certainly produce similar solutions, simply
because more random assignments of parts to machines will be generated. In any case,
it is obvious that the grouping efficiency measure is inadequate for judging the quality
of cell-formation solutions.

GP-SLCA performs equally well when the maximisation of the grouping efficacy
measure is used as the objective of optimisation. Evolved solutions are always equal or
better than those reported for all the comparing cell-formation methodologies. The
quality of results indicate the suitability of the grouping efficacy measure for the
practical implementation of cellular manufacturing. Solutions are balanced in terms of
the number of voids and the number of exceptional elements. In addition, the value of
grouping efficacy always gives a good indication of the quality of diagonalisation. In
that way, an assessment of the difficulty of the problem can be made.

It is obvious from tables 11 and 12 that the only competitive algorithm to GP-SLCA is
MST. In order to further compare the performance of these two procedures, the
maximisation of the weighted grouping efficacy was employed as the optimisation
objective. This measure has been introduced by Ng himself. The weight value of 0.2
was used for the calculation of the objective function. Results are presented in table 14.

Problem GP-SLCA MST

number
11 0.732 0.732
12 0.92 0.92
13 0.680 0.680
15 0.591 0.591
16 1 1
17 0.702 0.702

Table 14: Comparison with the MST method (weighted grouping efficacy, g=0.2)

As it can be seen, both algorithms produce identical results. It is interesting that two
methodologies from quite diverse backgrounds are similar in their performance.
However, a more thorough investigation is needed since only a limited number of
results were available for comparison. In any case, GP-SLCA has two significant
advantages over MST:

e GP-SLCA can be further enhanced by increasing the population size and the
number of generations per run. Fine tuning of the parameters could also result in
better solutions. MST cannot be further improved in that way since there are not
any variable parameters that determine the outcome of the run.

e GP-SLCA is quite flexible since it can be used for the solution of a variety of cell-
formation problems by modifying the terminals and the objective function of the
evolutionary procedure.
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7 Evolution of general-purpose similarity coefficients
7.1 Experimental set-up

In the previous section GP-SLCA was employed for the evolution of similarity
coefficients that were specific for the problem considered, i.e. the test problem was
used as the only fitness case of the evolutionary procedure. The method was not
focused in finding meaningful similarity coefficients but rather in diagonalising the m/c
matrix using information that is considered to be relevant to the solution of the
problem.

In this section we examine the possibility of evolving a similarity coefficient that has
general applicability on binary cell formation problems. Evolved coefficients are
evaluated on a prespecified number of test problems that are used as fitness cases. The
fitness of a solution is calculated by adding the value of the objective function from
each individual test problem. In that way similarity coefficients that produce good
overall performance will prevail during the evolutionary procedure. Apart from that
change, the basic operation of the GP-SLCA algorithm remains the same. The
maximisation of grouping efficacy was used as the objective of the evolutionary
procedure.

The selection of problems that will form the set of fitness cases is not straightforward
since the difficulty of cell-formation problems cannot be described in terms of
parameters. At the same time the evaluation function of the algorithm is
computationally quite expensive, especially for large-sized problems, thus the number
of test cases must be kept within certain limits depending on the available
computational power.

Our experimental set-up is comprised of ten different combinations of test problems, all
taken from the batch of 27 test problems described in table 7. All sets are comprised of
indifferent problems in terms of their characteristics (size, grouping difficulty as it has
been reported in published results, etc.) in an attempt to fulfil the requirements
described in the previous paragraph. Table 15 illustrates the configuration of all sets.

Name No. of fitness cases Problems
SET1 8 1-8
SET2 6 16 - 21
SET3 6 22 -27
SET4 6 9-12,14,15
SETS5 6 1-4,16-18
SET6 7 5-8,19-21
SET7 8 11,12, 14, 15,2225
SETS8 8 9-12,24-27
SET9 14 1-12, 14,15
SET10 14 14 - 27

Table 15: Experimental sets for the evolution of similarity coefficients
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The reasons for using a small number of fitness cases are the following:

e Since only 27 test problems are available, the set of validation problems should be
large enough for the assessment of generalisation of the evolved coefficient

e Computational constraints restrict the number of fitness cases that can be evaluated
in reasonable time

Both these problems are of technical nature, i.e. they can be accommodated by simply
having more test cases available and by buying more computational power. Thus, the
results presented in the following sub-section are just an indication of the performance
of the proposed methodology rather than the best possible solutions that can be found.

7.2 Results

Twenty runs of the GP-SLCA algorithm were conducted for each experimental set-up.
The cumulative results of the best coefficients evolved for each set-up are presented in
table 16. For comparison reasons, the performance of Jaccard’s similarity coefficient on
the same set of problems is also given. Note that the outlined problems in each column
denote the fitness cases that were used for the evolution of the corresponding similarity
coefficient. The rest of the problems form the validation set.

=
e E & B & & & B g &g =t
[ = = = = = = = = = [25) =}
= w w wn 4 5] ¥ 5] 73] wn 175] wn ) 'g
1 0.5 0471 0451 0471 0.5 0.467 0438 0.438 | 0.490 | 0.467 0471
2 0.615 0583 0.586 0.586 | 0.618 | 0.571 0.588 0.586 | 0.611 0.601 0.571
3 0.7 0.698 0.698 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7
4 0474 | 0459 0.240 0455 | 0489 | 0470 0.409 0.231 | 0.467 0475 0474
5 0.727 | 0.727 0.727 0727 0727 | 0727 | 0.727 0727 | 0.727 0.727 0.727
6 0.752 | 0.752 0752 0.752 0752 | 0.752 | 0.752 0.752 | 0.752 0.742 0.752
7 0.579 | 0.579 0579 0579 0570 | 0.579 | 0.579 0.238 | 0.579 0.568 0.579
8 0773 1 0773 0773 0773 0773 | 0773 | 0.748 0.748 | 0.774 0774 0.774

9 0.568 0.412 0554 | 0.568 | 0.520 0.562 0.568 | 0.568 | 0.568 | 0.568 0.568

10 0.544 0.556 0.367 | 0568 | 0.545 0.383 0.543 | 0.552 | 0.568 | 0.545 0.544

11 0.760 0.757 0.760 | 0.760 | 0.757 0.757 | 0.760 | 0.760 | 0.767 | 0.757 0.757

12 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 092 092

13 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.84 0.840

14 0.569 0569 0.569 | 0.587 [ 0.569 0.587 | 0.587 | 0.569 | 0.587 | 0.587 | 0.569

15 0.852 0.852 0.852 | 0.852 | 0.639 0.852 | 0.852 | 0.852 | 0.852 | 0.852 | 0.852

16 1 1 ] 1 1 1 1 1 1 |

17 0.851 | 0.851 | 0.851 0.851 | 0.851 | 0.851 0.851 0.581 0.851 | 0.851 | 0.85]

18 0.735 | 0.735 | 0.735 0.735 | 0.735 | 0.735 0.735 0.735 0.735 | 0.735 | 0.735

19 0.443 | 0.532 | 0.149 0465 0.503 | 0.523 | 0.522 0.136 0.513 | 0.507 | 0.517 ”
20 0.454 | 0472 | 0.194 0466 0458 | 0.477 | 0.309 0.136  0.295 | 0453 | 0.199

21 0.410 | 0429 | 0.330 0429 041 | 0431 | 0.203 041 0203 | 0429 | 0.232

22 0.283 0.246 | 0.430 | 0.246 0.246 0.246 | 0.479 | 0.246 0.385 | 0.337 | 0.246 %
23 0.520 0.525 0.6 0.528 0.558 0.530 0.6 0.543  0.516 | 0.585 | 0.552

24 0.709 0.677 | 0.731 | 0.682 0.682 0.650 | 0.731 | 0.731 | 0.720 | 0.682 | 0.682

25 0.671 0.7 0.718 | 0.671 0.699 0.710 [ 0.710 | 0.706 | 0.666 | 0.696 | 0.671

26 0.558 0.570 | 0.571 | 0.567 0.558 0482 0468 | 0.573 | 0.521 | 0.561 | 0.565

27 0.176  0.298 | 0484 | 0244 0.161 0224 0.165 | 0479 | 0.147 | 0.479 | 0.389

Table 16: Cumulative results on test problems
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7.3 Discussion

Results from table 16 indicate that the GP-SLCA framework was able to evolve
coefficients that generalised over the entire set of problems. As a measure of the quality
of the generalisation, the mean value of grouping efficacy was calculated and compared
with the same value achieved by Jaccard’s coefficient (table 17).

SET1
SET2
SET3
SET4
SET5
SET6
SET7
SETS8
SET9
SET10
Jaccard

r 10.629 0.629 0.610 0.630 0.621 0.622 0.622 0.584 0.621 0.646 0.620

Table 17: Mean value of grouping efficacy

The mean value of grouping efficacy produced by all evolved coefficients is similar to
the one produced by Jaccard’s coefficient. Coefficients SET4 and SET10 performed
particularly well on the entire set of problems, producing an increase of 1% and 2.6%
respectively on average grouping efficiency in comparison to Jaccard’s coefficient.
Since the difference in performance is relatively small, further research is needed in
order to see if SET4 and SET10 can be distinguished from Jaccard’s coefficient. A
winner-takes-all comparison of their relative performance on the test problems is
presented in table 18.

Jaccard’s coefficient Jaccard’s coefficient Jaccard’s coefficient
better WOrse equal
SET4 5 7 15
SETI10 5 10 12
Table 18. Jaccard’s coefficient vs. SET4 and SET10 in terms of non-dominated
solutions

It is obvious that there is a large number of problems where the same level of grouping
efficacy has been achieved by all coefficients, thus we cannot safely reject the null
hypothesis. The Analysis Of Variance (ANOVA) between the three sets of values
confirms this statement (table 19).

SUMMARY
Groups Count Sum Average Variance
SET4 27 17.022 0.630444 0.035404
SET10 o 17.438 0.645852 0.027259
JACCARD 27 16.737 0.619889 0.041745
ANOVA
F P-value F crit

0.132259 0.87631 3.113797

Table 19: ANOVA for SET4, SET10 and Jaccard’s coefficient (¢=0.05)
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From the F-value it is obvious that we cannot reject the null hypothesis. If coefficien:
SET4 is taken out of consideration, the resulting ANOVA is presented in table 20:

SUMMARY
Groups Count Sum Average Variance
SET10 27 17.438 0.645852 0.027259
JACCARD 27 16.737 0.619889 0.041745
ANOVA
F P-value___F crit

0.263753 0.609729 4.026631
Table 20: ANOVA for SET10 and Jaccard’s coefficient (0=0.05)

While the value of F has increased, it is still much smaller than the critical value, thus
the null hypothesis cannot be rejected.

In any case from the above results we can safely conclude that the GP-SLCA algorithm
was able to evolve similarity coefficients that perform at least as good as the similarity
coefficient that has been devised by human intuition. It will be interesting to take a
closer look at the structure of the evolved similarity coefficients. Coefficient SET4 is
calculated using the following formula:

d[d +c +£+a2)—- ¥
¢ b

——a
c

Notice that GP evolves structures that do not follow the elegant form of Jaccard’s
coefficient, but are just as effective. From the above formula it is clear that the value of
the coefficient is proportional to the values of a and d. This is expected since these
values are indicative of the similarity of parts processed between a pair of machines.
The structure of coefficient SET10 is much more complicated, as the following formula
depicts:

4d +3b—b’ —ab +ad +

{FACTOR—d—b—(d +b)eb +be +ab ]:|_[c—c ]_( ad +d +b )

d(@+b) d+b ¢’ —a-b*
where FACTOR =
a
(Za—3b)(a—b)+ab+db—dc—a+c+{w] J )
~a+(bc—db—cd —2a+b)d - 3§ C¥ s

’ e

It is not easy to explain why this particular coefficient seems to perform slightly better

than Jaccard’s coefficient, because of its size and complexity. This is a common
~ situation in GP, since the application of genetic operators leads to quick growth of
programs up to the prespecified maximum depth constraint. It is still evident that the
value of the coefficient is proportional to the values of a and d, however, a number of
control terms are also present which seem to fine tune its value in particular fitness
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cases. Note that there are two terms that according to common algebra should have
been simplified:

€7C¢  and ﬁ

d+b a

However, due to the operation of the protected division function, these expressions will
evaluate to ‘1’ if the denominator is equal to ‘0’, which is not an unlikely case. Thus,
they should be considered in this form during the calculation of the coefficient value.

The generalisation of this coefficient is quite good. While other coefficients fail to
generalise in specific test problems, SET10 seem to have captured information that is
relevant to the solution of the problem. In problems 19-21, where the m/c matrices have
been customly designed to be difficult for grouping, Jaccard’s coefficient fails to find
fit partitions. On the same problems SET10 creates cell configurations with much
higher levels of grouping efficacy. On the notorious problem 27, where evolved
coefficients either completely fail to generalise, or their good performance is not
mirrored in the set of validation problems, SET10 produces an excellent level of
grouping efficacy. While the difference in performance between SET10 and Jaccard’s
coefficient could not be mathematically confirmed, results on specific test problems
indicate that SET10 is able to handle ill-structured matrices in a more efficient way.

8 Conclusions

In this report we investigated the use of Genetic Programming for the solution of binary
cell-formation problems. McAuley’ Single Linkage Cluster Analysis (SLCA) algorithm
was used as basis for the development of our methodology. SLCA employs Jaccard’s
similarity coefficient for the creation of a pictorial representation of solutions in the
form of a ‘dendrogram’. A variety of cell configurations can be created by choosing a
particular similarity level in the dendrogram.

Genetic Programming was utilised in two different ways. First, a similarity coefficient
was evolved for independent cell formation problems. The coefficient was fed into an
SLCA procedure which returned the best solution found in the dendrogram for the
desired objective. The methodology was tested on a number of published test problems,
performing at least as good as other leading cell-formation algorithms.

GP was also employed for the evolution of general-purpose similarity coefficients. In
this case, a number of indifferent test problems were used as fitness cases during the
evolutionary procedure. GP-SLCA was able to evolve coefficients which performed at
least as good as Jaccard’s coefficient on the experimental set-up. One coefficient in
particular outperformed Jaccard’s coefficient on a number of cases and especially on
ill-structured problems.

The GP-SLCA methodology is quite flexible since it can be used with a variety of
grouping objectives without altering its main operation. On the other hand, as the size
of the problem increases the evaluation function becomes computationally expensive
since the value of the coefficient is calculated for each pair of machines in the plant and
every possible solution from the dendrogram is evaluated.

GP-SLCA was developed for the solution of binary cell-formation problems, thus it can
be criticised as all other similar methods that it does not consider manufacturing data
that are important for the design of production cells, like product demands, processing
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times, operation sequences etc. However GP-SLCA can be modified to include some of
these data as terminals for the evolution of a similarity coefficient. It is in the intention
of the authors to continue their research towards this direction.
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