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Abstract
This paper introduces a novel approach to the identification of Coupled Map Lattice models
of linear and nonlinear infinite-dimensional systems from discrete observations. The method
exploits the regularity of the Coupled Map Lattice model so that only a finite number of spatial
measurements are required. The measurement system associated with a CML is discussed
and some necessary conditions for the input /output equations to form a CML are presented.
Numerical simulations are used to illustrate the applicability of the proposed method.

1 Introduction :

Modelling and characterisation of spatially extended systems, also known as Distributed Param-
eter Systems (DPS), is of great importance for understanding the dynamics of many physical,
chemical and biological systems.

Unlike lumped parmeter dynamical systems, which can be described in terms of a finite
set of Ordinary Differential Equations (ODEs), DPS are infinite dimensional in most common
realisations. For example, the evolution of spatially extended systems is very often described
in terms of linear or nonlinear Partial Differential Equations (PDE’s).

The analysis, simulation and control of infinite dimensional systems described by par-
tial differential equations presents many computational and theoretical difficulties. Stability
analysis and optimal control of PDEs [2] is still a very difficult problem in mathematics. In
addition, the computation and implementation of the control laws is complicated by the infinite
dimensionality of the state space.

For these reasons, in most practical situations the original infinite dimensional system
modelled in terms of PDEs is approximated by a finite dimensional dynamical system, described
by ODEs or difference equations. The accuracy of the original model is sacrificed in this case
for the sake of simplicity of the finite dimensional model.

A finite-dimensional model of the distributed parameter system can be obtained by ap-
proximating the infinite dimensional state-space using finite-dimensional eigensubspaces [13].
Often however the eigensubspaces are not known a priori and are difficult if not impossible to
compute. "

An alternative approach that does not require spectral decomposition is the finite-element
method (FEM) [7] based on the Galerkin method for solving PDEs. This method involves
approximating the space where the solution of the PDE is sought in terms of elementary basis




functions.

The partial differential operator can also be approximated using finite differences. Usin
the finite difference method a PDE can be mapped onto a Coupled Lattice Map (CML) model,
which is discrete in time and space and, unlike Cellular Automata models, has a continuous
state [24].

Due to their computational efficiency and richness of dynamical behaviour, the CML mod-
els have in recent years become a very active research area. Research into CML models was
nitiated in the 80’s by K Kaneko [21], [22]. Using computer simulations, Kaneko revealed
that coupled map lattices can exhibit surprinsigly rich dynamical behaviour, including spatio-
temporal chaos and intermittency, traveling waves and pattern formation [23]. Because of their
computational efficiency and ability to reproduce complex spatio-temporal behaviour, CML
models have emerged as an effective and powerful tool to study nonlinear distributed parame-
ter systems. In particular, CML have been used to model convected temperature fluctuations
in the atmosphere [31], boiling processes [35] and spatio-temporal chaos in fluid flows [17].

The applicability of CML in modelling distributed parameter systems is actually much
broader, as such models are particularly suited to model spatially discrete phenomena mvolving
the interaction and propagation of large ensembles of elementary oscillations which normally
cannot be modelled using PDEs [12]. Examples of such phenomena include pulse propagation
in excitable arrays of cells composing myelinated nerve fibers or myocardial tissue [1] [26],
chemical reactors coupled by mass exchange [6], neuronal activity in the visual cortex [16],
coupled Josephson junction [10] and laser arrays [301.

Despite the considerable attention devoted to Coupled Map Lattices, a crucial problem
that has not been addressed so far is the identification of CML models of spatially extended
systems directly from data. Given the importance and wide applicability of such models both
for theoretical studies and practical applications, obtaining the finite-dimensional Coupled Map
Lattice model of an unknown distributed parameter system can be an essential part in any
attempt to understand, analyse or control the distributed system.

The aim of this paper is to introduce a methodology to identify the CML equations that
approximate the dynamics of a linear or nonlinear infinite dynamical system using only a
finite set of observations recorded from sensors distributed in the spatial domain. The novel
approach presented here is related to nonlinear system identification methods for deterministic
and stochastic nonlinear dynamical systems, based on NARX and NARMAX models (28], [27].

The proposed method exploits the particular characteristics of the Couple Map Lattice ar-
chitecture to reduce the complexity of the identification task, which otherwise, given the infinite-
dimensionality of the dynamical systems involved, would be computationally prohibitive.

The paper is organised as follows. Section 2.1 introduces some general concepts regarding
Lattice Dynamical Systems (LDS). Restrictions to the general LDS model are discussed in
Section 2.2 and Section 2.3 where a rigorous definition of the CML is given.

Section 3.1 contains a brief review of the NARMAX method. In Section 3.2 some condi-
tions for the measurement system associated with a CML, which guarantee that the resulting
mput/output equations define a CML, are discussed. The new identification methodology for
deterministic CML models is introduced in Section 3.3. Simulation results which illustrate the
applicability of the proposed approach are presented in Section 4.




2 Theory and Definitions

Coupled Map Lattices are a special class of spatially distributed, interacting dynamical systems
known as Lattice Dynamical Systems (LDS).

2.1 Lattice Dynamical Systems

A Lattice Dynamical System is a spatially extended dynamical system composed of a finite
or infinite number of interacting dynamical systems, each assigned to a node of a one- or
multi-dimensional lattice of integers representing a discretisation of the physical space.

The dynamics of a LDS can be viewed as a combination of local dynamics, involving the
local state-space variables assigned to every lattice node, and spatial interactions, which usually
involve dynamical state-space variables associated to neighbouring lattice nodes although non-
local or even global coupling is also permitted.

A fundamental characteristic of LDSs is the fact that the local state-space variables as-
sociated to each lattice node or spatial location are the same over the given lattice, that is,
represent the same set of physical quantities such as pressure, temperature, velocity etc. This
feature distinguishes a Lattice Dynamical System from a more general n-dimensional dynamical
system. '

Depending on whether the time variable ¢ is continuous or discrete, Lattice Dynamical
Systems can be classified into two categories, continuous-time Lattice Dynamical Systems rep-
resented as finite or infinite dimensional systems of ordinary differential equations

dz; :
d%zﬂ(:c,u), teRy,icZ%d>1 (1)
and discrete-time Lattice Dynamical Systems described in terms of difference equations

zit) = fi(q™a(t), q™u(t)), te€Zy,ieZ%d>1 (2)

In the above equations f; : &' x {/— X is a differentiable map, z:(t) € X; € R and w(t) € U; C
IR’ are [-dimensional vectors representing the local state-space and input variables respectively
at the 7th node of the lattice 7 C Z% z € X and u € I are the global, finite or infinite
dimensional, state-space variable and input vectors. In general, the lattice 7 is the set of all
integer coordinate vectors ¢ = {11,...,1,} € Z°.

In equation (2) qF is a multi-valued backward shift operator

q" = (¢(-1)g(-2) ... ¢(-n)) .(3)

where
q(—7)z(t) = z(t — ) “(4)

and n. and n, are the maximum time-lags corresponding to z and u.




2.2 Simplifications of the general LDS model

The general LDS model can be simplified considerably by introducing a certain degree of
regularity and symmetry into the equations describing the LDS.

In the general model (1) each site can be coupled with all the other sites in the lattice, this
represents a globally coupled LDS. Very often however the spatial interactions are restricted to
only a finite set of lattice nodes such that equations (1) and (2) can be rewritten as

da;

— = filzowasTe, sTw), teRy, i€Z% d>1 (5)

for the continuous-time LDS model and
zi(t) = fi(@™2:(t), ™ u(t), 7" g™ wi(t), sTPq™ui(t)), t€ Zy,i€ 24 d > 1 (6)

the discrete-time LDS model respectively,
In the above equations

q™zi(t) = (zi(t — 1)... z;(t — ng)) (7)
q””ui(t) = (ui(t = 1) ’Uq'(?f — nu)) (8)
and sT* is a multi-valued spatial shift (translation) operator
ST = (s(p) 5(83) - s(p},)) (9)
such that
Szn.']:z‘ = (mi_;’i EE ‘:B'i—p;,n) (10)

where p* = {r:}, P € Z?, is a spatial translation multi-index.

The extent of the spatial interactions in the LDS model can be quantified in terms of
the size or radius 7; of the coupling neighbourhood, which indicates the most distant spatial
interaction for each lattice site

#p = (Bl ...,ri(d)):(jgaxmp;(_l), s {zr?axmp}(d)) ' (11)

As a simplification of the general LDS model, the lattice equations can be assumed spa-
tially invariant over the entire lattice. This means that the differential or difference equations
corresponding to each lattice node are the same for all lattice nodes such that fe=Ff, 5" ="
ry =7 for i € 1.

Often, the the map f can be decomposed into a local map f. involving only the local state-
space variable z; and a coupling map f. which describes the interactions with neighbouring

lattice sites
BBl Bicproas s i s By ooy g ) = Sl 1) + Fo(s™mg, 8™ ;) (12)
When f is polynomial, for example, it is always possible to decompose f as follows
FCT o . T s Uimpyy vors Yinpn ) = fi(@iows) + folzy, s, 8™z, 8™uy) (13)
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where the polynomial f; involves only the variables z; and u; while the polynomial £, involves
the coupling variables s™z; and s™u; and also, in a cross-product combination with the coupling

variables only, the variables z; and u;.

Depending on the spatio-temporal system that is modelled, additional symmetry can be
imposed on the coupling topology and the coupling function.

For a symmetric coupling topology m = 2m' and

p_’,’ = ‘—p‘m—j+la j = 1: “'1mf (14)

In addition, the coupling function £, in (13) can be symmetric with respect to the coupling
variables such that

fa:(wn Uty Timpyy vy Timpry Yiepy "‘?ui"‘}’-’m) == fc($i1 Uiy Tivpny ooy Timpyy Yimpoy ey ui—m) (15)
or anti-symmetric when
Tl s, Ly givss Do Wiy ven Biipen) = — Falmy, iz, B 57598 B s Wiy vl [16)

Diffusion processes for example, are generally modelled using symmetric coupling functions
while anti-symmetric coupling is associated with the modelling of open flows. 2

In many practical situations the dynamics develops on a bounded spatial domain Q C IR?
which leads to a finite-dimensional LDS, that is, 7 C Z? is a finite dimensional lattice. )

For spatially bounded LDS dynamics, equations (5) and (6) are complemented with bound-
ary conditions

Br(z;)=0, . i€Ir (17)

where 7p contain all lattice points on the boundary of the spatial domain. Examples of boundary
conditions are Dirichlet, Neumann or periodic boundary conditions.

2:3 The CML mode]

The following definition of a CML is assumed throughout the rest of this paper.

A Coupled Map Lattice is a discrete-time, spatially invariant LDS, with f; = f for all
v € I, symmetric coupling topology of finite radius and symmetric or anti-symmetric coupling
functions.

The CML model can be written as

z:i(t) = fi(q™z(t), Q™ u(t)) + (18)
fe (@™ zi(t), g™ ui(t), s™ q™=za(t), s™ g™ ui(t))

where the coupling topology s™ is symmetric (14) and the coupling function f, is symmetric
(15) or anti-symmetric (16). ’

One of the best known CML model consists of a chain of, diffusively coupled, chaotic
logistic maps

z(t) = (1= €)f(z(t — 1)) + €/2[f(za(t — 1)) + flzaa(t = 1))] (19)
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where f is the logistic map
flz) =1~ Aa? (20)

This model was shown to generate a large variety of spatio-temporal phenomena [22]. The
observed dynamical behaviour found in this system, most of which was originally unknown, is
surprisingly complex, ranging from frozen random patterns and pattern competition to inter-
mittency and fully developed spatio-temporal chaos (23].

CML can be used to model dynamical behaviour that normally 1s described by partial
differential equations or by chains of coupled differential equations. CML models however,
can exhibit a richer spectrum of dynamical behaviour than can be found in PDEs. The study
of Coupled Lattice Maps led to the introduction of qualitatively new classes of dynamical
behaviour for spatially extended systems. Some of the predicted dynamics were later identified
in experimental systems.

Typical phenomena that does not occur in a spatially continuous model include wave
propagation failure, [25] a phenomenon that can be associated for example with the failure of a
traveling pulse to propagate along a nerve fiber or in cardiac tissue. Such systems can naturally
be modelled as spatially discrete arrays of interacting cells [26].

From this point of view, CML’s models are equally efficient in modelling systems that
traditionally have been described in terms of Partial Differential Equations (PDE’s), systems
that are inherently discrete in space such as chains of coupled oscillators or arrays of Josephson
junctions and systems that are discrete both in space and time such as ecosystem dynamics
(32].

Obviously the CML model has limitations to modelling certain classes of spatio-temporal
behaviours. The restrictions are mainly due to the regularity of the CML model. In practice
the invariance across the lattice of the coupling function and coupling topology does not ac-
count for the nonuniformities occuring in some real-life systems. In the context of the nerve
impulse transmission process for example, such nonuniformities could correspond to changes
in the diameter of a nerve axon or in the conduction properties of the propagating medium.
The physical phenomena induced by such nonuniformities include propagation delay and wave
reflection [20], [36]. These systems can be modelled using the more general LDS (1).

3 System Identification of CML Models

Given the effectiveness of Coupled Map Lattices in modelling complex spatio-temporal dynam-
ics it 1s clearly impogrtant to develop procedures which can recover the mathematical equations
of CML models from patterns of data.

In the past decade the NARMAX method has been established as a powerful approach to
the identification of nonlinear, lumped parameter, dynamical systems. _ '

Recently {11}, an extension of this method was developed to accomodate the identification of
distributed parameter systems. The new approach was based on a finite-element approximation
of the spatial domain in order to reduce the infinite dimensional identification problem to
the identification of an approximate finite-dimensional dynamical system that can accurately
reproduce the extended dynamical behaviour.

=~I




The method was designed to deal with infinite dynamical systems evolving over 4 con-
tinuous spatial domain, normally described in terms of PDEs. As noted above, many spatio-
temporal systems are spatially-discrete, such as chains of coupled oscillators. These systems
can easily be described using the CML formahsm but not by PDEs so, from this point of view,
the identification of CML models applies to a wider class of spatio-temporal dynamics.

The new identification approach is an adaptation of the NARXMAX (NARX for determin-
istic systems) method for the CML identification task. The principles of the original method
remain but the identification methodology has to be modified to accomodate the particularities
of the CML architecture.

3.1 The NARMAX Method Revised

Consider a discrete-time dynamical system described by the difference equations

z(t+ 1) = g(2(t), u(t)) 1)
y(t) = h(=2(t), u(t)) 2)

in which the state z belongs to a n-dimensional vector space X', the input u belongs to an
m-dimensional vector space {{ and the output y belongs to an [-dimensional vector space ).
The vector field g : & x U — X and the output map ~ : X x U — ) are assumed to be real
valued smooth functions.

Frequently, dynamical systems are characterised in terms of the input/output behdviour
which illustrates the effects the inputs u € I/ have on the system’s outputs y € ). Useful repre-
sentations for the input/output behaviour of a dynamical system include the Fliess functional
ezpansion and the Volterra series ezpansion in which the output y of the nonlinear system (21)
1s expressed as a functional of the input u in the form of a infinite series expansion.

Very often the only information available from an unknown dynamical system are input
and output measurements, u” = [u(1),u(2),...,u(N)] and ¥V = ly(1),¥(2),...,y(N)] respec-
tively. The identification problem involves finding a parsimonius model of the system, which
can reproduce accurately the observed input/output behaviour. This is closely related to the
realisation problem in the theory of dynamical systems [19], [34].

The search for a discrete-time dynamical system which realises a given input/output be-
haviour involves determining the input/output equation, known as the NARX model [28],

y(t) = fly(t = 1), y(t — ny), ult — 1), . ult — ny)) (23)

l\D L\J

(
(

which, under some mild conditions, can be associated to the state-space representation (21).
The stochastic equivalent of (23) defines the NARMAX model [27°, which includes measurement
noise e(t) as part of the model

y(t) = fly(t = 1), ., y(t —ny)yu(t — 1), ., u(t —ny,), e(t — 1), ...,e(t —n,)) + e(t) (24)

As before, ' and {{ are I- and m-dimensional vector spaces respectively. The main difference
is that the output y in (24) is now a vector of random variables.




In the above equations f : ™ x{™ is an unknown nonlinear mapping, n, and n, represent
the maximum output and input lags, e(t) is an unknown stochastic variable, assumed to be
bounded [e(t)| < 6 and uncorrelated with the input, and n, the maximum lag of e(t). The
random variable e(t) is the prediction error or innovation at time ¢ for the stochastic system
(24).

The most difficult problem in nonlinear system identification is determining the structure
or architecture of the model. Assuming that no a priori knowledge of the form of the nonlinear
functional f is available, a practical solution is to approximate f from the available data using
a known set of basis functions or regressors

M={ghl, CcF (25)

belonging to a given function class F. Typical regressor classes used in nonlinear system iden-
tification include polynomial and rational functions, radial basis functions (RBF) and wavelets.

Typically, equation (23) is approximated as a linear expansion in terms of the basis func-
tions (25)

y(8) = Y Buge(y(t — 1), y(t =y, ult = 1), oy ult — ) (26)
kEK

selected from the considerably larger regressors set .M. In equations (25) and (26) K is the
index of selected regressors.

The structure determination for NARX and NARMAX models (23) (24) is based on the
Orthogonal Forward Regression (OFR) algorithm. This least-squares type algorithm is used to
select the relevant regressors in equation (26), according to their importance as measured by
the Error Reduction Ratio (ERR) criterion [4]. The algorithm also produces the least-squares
estimate of the corresponding parameter vector © = {6} in (26).

3.2 CML input/output models

It is natural to consider a measurement system for the spatio-temporal system described by the
CML model (18). Practically, this concerns the number, spatial distribution of the measurement
sensors and the form of measurement equation associated to the state-space CML model (18)

vit) = hi(z, u) (27)

with h; : X' x U — Y. and 1€ 7.

The input/output equation corresponding to the state-space CML model (18) with the
output equation (27), if this exists, is not necessarily a CML model as defined in Section 2.3.
Assuming that the dimension of the output vector equals the size of the CML lattice, the
resulting input /output equations will form a general LDS. In this case, identifying the resulting
LDS model requires the full input and output vectors.

In practice however, a number of mild additional assumptions regarding the measurement
process can be made to ensure that the input/output equations corresponding to (18) and (27)
form a CML. A consequence of this is that the resulting CML model can be identified using a
very small number of inputs and outputs.




A reasonable assumption is that the same measurement devices are used at each .spa,tial
location so that h; = A are identical at each lattice node. It 1s also natural to expect that
the measurement function will depend only on a finite number state and input variables in the
neighbourhood of the measurement location that is

vi(t) = b (2:(t), wi(t), s*2i(t), s*ui(2)) (28)

But this still does not guarantee that the resulting input/output equation is a CML. A number
of sufficient conditions are proposed below.

Proposition 1: Given the CML equations (18) with symmetric coupling function and the
measurement equation (28) the corresponding input/output equations define a CML if

h(z,u) = h(z) (29)
with h one-to-one on ;.
Proof
Subject to (29), the equivalent input/output equation of (18) given (28), at the sth node, is
wlt) = h{Ala™=h7 (), g™ ui(t)) + + (30)

Fla™ R (), ™ ui(8), ™A (i), s q (1))

In equation (30) A™1 : J; — : is the inverse of the measurement function (29).
It is obvious that in (30) the symmetry of the coupling topology is preserved. Moreover, if
fe is symmetric (15)

R(fl a7 (gs(8)) ™ ui(t)) + (31)
Flla™ A7 (1), @™ w(2), @A™ (i (1)) o2 R (i (1), (32)
A iy (1), s g (2)) = (33)

B fila™=h ™ (ws(2)) ™ u(2)) + (34)
Flla™ ™ (wi(2)), @™ wa(t), @™ A7 (impn (1)), oo s A (i (1), (35)
G s (), q““uf_pl(t)) (36)

which means that A is symmetric and therefore the discrete-time Lattjce Dynamical System

defined by (30) is a CML.

Proposition 2: Given the CML equations (18), with f; = 0 and anti-symmetric coupling
function, and the measurement equation (28) the corresponding input/output equations define

a CML «f

Bl u) = h(z:) (37)

with h one-to-one on .Y and
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¢ b is an odd or even function that is

h(—z) = h(z) or h(—z)= —h(z) (38)
Proof
In this case, subject to (37), the resulting input/output equation at the ith node
yi(t) = h(fc((qnzhkl(yi(f)),Q”“Ui(’u‘),qunzh-l(yi—m(f)),qun“w(f))) (39)

clearly preserves the symmetry of the coupling topology s™. In addition, given f. anti-
symmetric and from (38) it follows that A is either a symmetric or anti-symmetric coupling
function. Hence equation (39) defines a CML.

The input/output equations (30) or (39), for © € T define a special type of multi-variable
NARX model that has a regular lattice structure. A new class of nonlinear system identification
techniques, that exploit the special properties of these type of models, is developed and tested
in the following sections. ’

3.3 System Identification of Deterministic CML’s

CML models have been used successfully to simulate distributed parameter systems described
in terms partial differential equations. The common approach has been to convert the known
PDE into a CML model using finite-difference approximation methods.

A different approach to obtain the CMIL model from data using system identification
techniques is proposed here. The noise-free data required for identification can be generated by
numerically integrating the PDE using an accurate numerical method such as the finite-element
method for example. System identification, can then be used to determine the CML realisation
of the simulated input/output behaviour. The resulting model is usually more accurate and
stable than the similar model obtained using a straightforward finite-difference approximation.

This is one reason why it is important to investigate the identification of the CML models
in the deterministic (noise-free) as well as in the stochastic context. It can also be argued that
there are other practical situations when the data can be measured with very high accuracy or
when data pre-processing has successfully eliminated measurement noise.

Consider the CML model (18) augmented with the measurement equations (28) such that
the resulting input/output equations form a CML.

Identifying the input/output equations from data following the system identification method-
ology of MIMO-NARX models {4] requires the global input and output vectors u = {u;} and
y = {vi} to be available for measurement. In practice the lattice size can.be very large,
possibly involving hundreds of equations. This makes the standard identification procedure
computationally prohibitive. Moreover, often it is very expensive or impossible to measure the
input/output vectors at every lattice site.

To overcome these difficulties, an alternative approach to the identification of CML models,
which involves only a small number of measurement locations, is investigated here.

Consider the following nodal CML input /output equation

yilt) = F(q™y:(t), q (L), ™ g yilt), s™q ™ wlt) (40)

11




where F' is an unknown nonlinear mapping.

Because of the regularity of the lattice model, the identification of the CML input /output
equation can be reduced to the identification of equation (40) given the input and output
measurements at the ith lattice site w' = (u;(1)...us(N)) and y~ = (%:(1)...4:(N)) and from
neighbouring lattice nodes s™ul = (s™uy(1)...s™u;(N)) and s™y¥ = (8™ g1) ... 8% (N T,
For the identification purpose the output measurements sy can also be viewed as inputs in
equation (40).

The number of measurement locations and therefore the number of sensors required is
much smaller in this case, depending only upon the size of the coupling neighbourhood.

Usually no a priori information is available regarding the size of the coupling neighbourhood
or the coupling topology. The task of selecting the coupling variables is performed here by the
Orthogonal Forward Regression algorithm [4].

The symmetry of the coupling topology and of the coupling functions can be enforced
explicitly during the selection stage. When polynomial models are used, F can be split into
two parts

F(a™y:(t), Q™ ua(t), s q™y(t), s™q™wi(t)) = . (A1)
Fila™y:(t), a™wi(t) + Foa™w:(t), ™ wi(t), s™q™wi(t), s q™wi(t))  (42)

where F} involves only the input and outputs at sth lattice node and F. is a function of neigh-
bouring outputs but can also include cross-product terms of y;. In this case, the candidate
regressor set can be modified accordingly in order to ensure the symmetry of the coupling func-
tion F; in the identified model. The idea is to replace the standard polynomial regressors that
make up F. with symmetric combinations of the respective polynomial terms.

If data is available from more sensors than minimum required to extract the CML equations
(when data represent pixels in an image for example), the additional measurements will be
used in model validation. The CML model identified using a set of data from a given spatial
location can be validated on data recorded at different spatial locations by computing the model
predicted output

9:(t) = F(a™g(t), q™u(t)) + (43)
Fe(a™g:(2), ™ ui(t),s™ q™3:(t), s™q™ ui(t))
for the entire CML, : € 7.
The additional data can also be merged and used in identification. Because of the spa-

tial invariance of the input/output equations at each lattice node, structure selection can be
performed by collecting all available data into an extended regression matrix.

4 Simulation Results

The identification procedure described in the previous section will be tested using simulated
data from linear and nonlinear PDEs.




4.1 Example 1; A Linear Diffusion Equation

Consider the following diffusion equation

0%u(t, ) 0*v(t, z)
ETE C Tt u(t,z), z€]0,1] (44)
with initial conditions
#l0,2) = 0
dv(jﬁ,m) = 4exp(—z)+ exp(—0.5z) (45)
where
u(t,z) = —13exp(—z) cos(1.5¢) — 9.32 exp(—0.5z) cos(2.1¢) (46)

For C' = 1.0 the exact solution v(t,z) of the initial value problem (44), (45) is

v(t,z) = 4dexp(—z)cos(1.5t) + 2exp(—0.5) cos(2.1t) — (47)
4exp(—z)exp(—t) — 2exp(—z) exp(—0.5¢)

The measurement function is taken as

y(t,2) = v(t,z) (48)

The main advantage of using this PDE is that the identification method can be tested on the
exact solution.

The reference solution was sampled at 21 equally spaced points over the spatial domain
Q=100,1}, z = (z1,...,z21) = (0,0.05, ..., 0.95, 1). From each location, 1000 input/output data
points sampled at At = 7/100 were generated. The data are plotted in Fig.(1) and Fig.(2)
respectively.

The 1dentification data consisted of 1000 data points of input/output output data u;(t)
and y;(t) at node 7 = 3 corresponding to £ = z; = 0.1. In addition, 1000 input and output data
ui-1(t), wiz1(t), yi—1(t) and Yi+1(t) from neighbouring locations z = z, = .05 and z = z4 = .15
acted as inputs during the identification.

The following linear input/output equation was identified from the data

13




Terms Estimates [ERR); Std. Dev.

) 0.11888E +1 0.99748E +0  0.27092E — 9

) —097784E +0 0.25154E —2  0.26466E — 9
; ) 0.97170E —3 0.14195E —5  0.17908E — 13
y(t—1)*  0.40552E +0 0.75450E —7  0.13500E — 10
t 0.75114E — 15 0.43172E — 16 0.76589E — 15
) 0.14685F —4 0.33728E — 17 0.17490E — 12

)? —0.11040E — 1 0.41043E — 15 0.13188E — 9

Table 4.1

(= 1) = g1t — 1)+ giga(t — 1)
by’(t'2)“yt (t— )"ryH.l(t—Z)

The model set was defined such that the estimated lattice equations have a symmetric
coupling topology. In addition, model terms of the form y*(t — k) = yica(t — k) + yira(t — k)
were included in the model set, to replace the original linear terms, in order to ensure that the
estimated coefficients of y;_1(¢ — 1) and y;41(¢ — 1) as well as of y;_ 1(t—2) and (¢ — 2) are
1dentical.

Equations (4.1) were used to implement a one-dimensional CML model with 21 lattice
nodes. Since in principle the CML model corresponding to (44) is infinite dimensional, the
reference solutions computed at z = —0.05 and = = 1.05, yo(¢) and yas(t) respectively, were
used as boundary conditions in the simulation.

The model predicted output defined in (43) is plotted in Fig.(3) for comparison. The model
predicted errors (not the fitting error) in Fig. (4) show excellent agreement between the exact
solution and the CML model output.

4.2 Example 2: A Nonlinear Reaction-Diffusion Equation

In this example, a nonlinear reaction-diffusion equation, namely the FitzHugh-Nagumo equation

a 9* ‘
gt_l- — dl aUl —rg(ul) = o (49)
a’h'n azbh

~ = e — R L 50
T g T {30)

with z € = 0,1} and Dirichlet boundary conditions (i.e. ui(¢,0) = wui(t,1) = uy(¢,0) =
uy(t,1) = 0), was used to test the identification approach. This equation was originally intro-
duced to describe the conduction of nerve impulses along the axon [14], [29].

In equation (49) g(u1) = —ui(u; — @)(u; — 1) with u; representing the electrical potential
in the axon. The other variable u; has a more complicated interpretation.
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The PDE was simulated with high accuracy for the following

6.188e — 4, 6 = 40 and v = —0.2. and with initial conditions

u1(0, z) = sin(nz/2)
u3(0,z) = sin(rz/2)

The measurement function was taken as

y(t,z) = u(t, z)

parameter values, d; = d, =

(51)

(52)

where y = (31(t,2),2(¢,2)) and u(t,z) = (ui(t,z),ua(t,z)). The identification was carried

out using 1000 data samples of Yi-1,Yi, Yi41 Tecorded at the spatial locations
1.04,.06,.08},1 = 2,3, 4, with y:(¢) =
example the outputs y;_; and y,,; were considered as inputs during ident
equation corresponding to ¢ = 3.

The model identified from data, based on a cubic polynomial model set of 2

terms, is listed in table (4.2)

(y1.4(t), 92.4(2)) =

Output Terms Estimates [ERR); Std. Dev.
Y (t = 1)° 0.18460E —1 0.99680E +0 0.75148E — 3
yai(t — 1) —0.10072E — 1 0.29226E — 2 0.17522F — 5
yi (t—1) 0.31508E —2 0.22672E —3 0.18541E — 5
§ 2 —1) —0.12084E —2 0.34372E —4 (0.23414E — 5
vt —1) 0.95797E +0 0.12619F —4 0.14885F — 2

y14(t)  vialt = D)ya®(t —1) —0.75019E — 5 0.30001E — 6 0.51894F — §
Yo (t —1) 0.18601FE — 5 0.12262F — 7 0.12683E — 6
vt = 1yaa(t— 1)  0.34816E — 2 0.16093E — 7 0.15411E — 3
Y1t — 1) s it = 1) —0.84444F — 4 0.47418E — 7 0.25826F — 5
Y2t — 1)y12 (t—1) —0.85966F —3 0.11930E —7 0.39460E — 4
ys(t = 1) 0.23714E — 1 0.99722E +0 0.16171E — 2
y1.(t — 1) 0.39946E + 0 0.27625E —2 0.12987F — 3

voi(t) ot —1) 0.97093FE +0 0.11998E —4 0.321262F — 2
const. 0.23277E —2 0.12459E — 6 0.75939F — 4

Table 4.2
‘Wit =) =yiioa(t = 1) + o (t — 1)

byg,i“ = 1)

=Y2a-1(t = 1)+ yoina(t = 1)

(551 1y T4, 35‘1+1) =
(u1(t, 2:), ua(t, 2:)). Asin the previous
ification of the lattice

<35 polynomial




The symmetry of the coupling topology and of the coupling functions was ensured by modifying
the original regressor set to include only symmetrical polynomial terms relative to y;_, and y;,1.

The identified equations (4.2) were used to implement a CML model with 49 nodes which
was simulated using the Dirichlet boundary conditions. The reference solution and the model
predicted output plotted in Figs.(5a,b) and Figs.(6a,b) are in excellent agreement. The error
surfaces are shown in Figs.(7).

5 Conclusions

New algorithms have been introduced, which for the first time allow the identification of Cou-
pled Map Lattice models of spatially extended systems directly from data. The proposed
identification method can be successfuly applied to identify linear or nonlinear evolution equa-
tions.

The new algorithm was formulated by adapting the NARMAX method, originally devel-
oped for the identification of lumped parameter nonlinear dynamical systems, to accomodate
spatially distributed data.

The new approach exploits the spatial invariance property of the CML equations to identify
finite or infinite dimensional CML models from data recoreded at only a few spatial locations.
Additional constraints such as coupling symmetry are also handled by the new structure selec-
tion algorithm. p

The identified input/output equations at one node can then be used to reconstruct the
global dynamics subject to some mild assumptions regarding the measurement function.

The applicability of the new approach has been illustrated using noise-free simulated data
for two partial differential equations. The identification of the CML 1n a stochastic context will
be addressed in a separate study.

6 Acknowledgment

The authors gratefully acknowledge that this research was supported by the UK Engineering
and Physical Sciences Research Council.

16




25 T T T T T
j
A
a % :
of F H 5 |
5} " _
V(t,xl)0|~ -
-5+ ¢ T
% A/
_19 : \ % é 4
]
—15 E .
v vj
_20 _
W/
0 5 10 15 20 25 30
t
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Figure 3: Example 1, Model predicted PDE solution y(¢,z;) for 1 = 1, ..., 21

Figure 4. Example 1, Model predicted error e(¢, z.) = y(t, z.) — y(t, z:)
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Figure 5: Example 2, Simulated data for the FitzHugh-Nagumo Equations: a) y;(¢,z) b)
ya2(t, z)
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Figure 6: Example 2, Model predicted PDE solutions:
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Figure 7: Example 2, Model prediction errors: a) e;(t,z) = y1(t,z) — 41(t,z) b) ey(t, z) =
ya(t,z) — 3a2(t, 2)
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