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The Response Spectrum Map. Volterra Series

Representations and the Duffing Equation

5.A. Billings and O.M. Boaghe

Department of Automatic Control and Systems Engineering, University of
Sheflield, PO.Box-600, Mappin Street, S1 3JD. UK

Abstract

The validity of Volterra series representations is assessed in the time and
frequency domain for the particular example of the Duffing oscillator. The-
oretical results derived in the literature associated with the existence of the
Volterra series are reviewed and tested for the Duffing equation. Response
Spectrum Vaps are introduced for the first time as a frequency domain equiv-
alent to the Bifurcation Diagram. and these are used to qualitatively analyse

and detect various dynamical states exhibited by the Duffing oscillator.

1 Introduction

The application of Volterra series and the analysis of power series convergence
and truncation for the Duffing equation are the main interest of the current paper.
The Volterra representation is useful in practice when a nonlinear system can be
adequately described by just a few terms. In other words the Volterra series must
converge quickly so that truncating the series does not involve a significant loss of

precision.

It is well known that Volterra series exist only for dynamical systems with
fading memory. This has been noted by many authors including Volterra [1930].
Rugh [1981] and Boyd and Chua [1985]. The requirement of fading memory has
heen found to be related to the notion of a unique steady state [Bovd and Chua,
1983]. In practice however nonlinear svstems can exhibit more complicated dvnam-
ics, such as chaotic behaviour. Chaos is common in many nonlinear mechanical and
electrical oscillators [Duffing,1918]. [Ceda.1980]. [Chua,1992]. and has been observed

in geomagnetic activity, human physiology, economics and fluid turbulence.
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The Duffing equation is chosen as an example in the present study because it
arises in the analysis of many physical systems including the pendulum. radio fre-
quency driven Josephson junctions. the bending deflections of an electromagnetically
driven steel beam. phase-locked loops. gvroscopes. ferrites. synchronous machines
and many other systems. The Duffing oscillator also provides an equation which

has been used by many authors as a bench test in the study of nonlinear dvnamics.

Closed-form analytical solutions are not available for the Duffing driven non-
linear oscillator. This was discussed for example in Thompson and Stewart [1991]
and provided the motivation for extensive investigations, including analogue and
numerical simulations together with experimentél observations. It has been shown
that the Duffing equation exhibits a rich variety of nonlinear bifurcation phenomena

and equilibrium points, periodic and chaotic attractors have all been studied.

The existence of a Volterra series for the Duffing equation has been widely
discussed in the literature. The main results concluded in Barrett [1963]. Schetzen
[1980], Rugh [1981], Tomlinson et al [1996], Billings and Lang [1997] are reviewed
here and the limitations of the Volterra series are outlined. The analysis is per-
formed mainly in the frequency domain, where the frequency domain Volterra series
representation has proven to be an excellent descriptor of nonlinear svstem charac-
teristics. In this context the Response Spectrum Map is introduced for the first time
as a frequency domain equivalent to the Bifurcation Diagram. The Response Spec-
trum Map is shown to be a powerful new tool for the analysis of nonlinear systems

behaviour and the application to the Duffing oscillator is described in detail.

The paper is organised as follows: in Section 2 the theoretical background
to the Volterra series in both time and frequency domain is briefly reviewed. The
Response Spectrum Map is introduced in Section 3 and compared with the Bifur-
cation Diagram. In Section 4 the analysis of the Duffing oscillator is presented.
The Response Spectrum Maps are used to detect mildly nonlinear behaviour where

Volterra series can be considered suitable representations.

2  Volterra series in the time and

frequency domain

In this section the basic terms and definitions related to Volterra series in both

the time and frequency domain are reviewed using the most recent formulations.




The main issues relating to practical applications are summarised. in particular
the truncation and approximating properties of Volterra series. and the limits of

application are discussed.

Volterra’'s studies of functionals. representing functions of functions. provided
the initial steps in an important field known as functional analysis [Volterra. 1930].
The particular importance of the Volterra series became apparent with Wiener’s
contribution to nonlinear system analysis. Wiener [1942] applied the Volterra series
in an investigation of a nonlinear circuit response by relating the system input u(t)

to the output y(¢) by a functional series given by
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The quantities hp(7, 7, ..., 7;) in equation (1) are known as kernels of order

n, or nth-order impulse response functions of the system.

The initial studies on Volterra series addressed fundamental issues such as -
existence, convergence and uniqueness. The convergence property formulated in
Sandberg [1982] is given as follows. For causal time-invariant nonlinear systems
with the Volterra expansion given by (1), where u and y denote the input and

output respectively. and each kernel h,, satisfies the integrability condition
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the right side of (1) converges uniformly with respect to t when u satisfies the 4-
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boundedness condition |u(t)] < §. for ¢ > 0. where 4 is some positive constant that

depends on the svstem considered.

In practical problems only a finite Volterra series can be used. also called a
truncated Volterra series or polynomial Volterra series. Series truncation is made
within the limits imposed by the truncation error. A system which is well described
by the first few Volterra kernels and for which the higher order kernels fall off rapidly
is generally called a weakly nonlinear system. It is straightforward to notice that
the input-output Volterra representation of a nonlinear system is useful provided
the nonlinearities are only mildly excited so that the number of terms required does

not become very large.

Experimental and theoretical methods have been derived in order to find

bounds on the time-domain or frequency-domain Volterra kernels for example Chua




and Liao [1991]. Zhang [1996] and Lang [1997]. Recently Sandberg [1999] formulated
a Volterra series representation theorem for discrete-time input-output maps that
are causal and analytic. which provides a bound on the error in approximating the

series with a finite number of terms.

Volterra series have also been considered in the context of causal, time-
invariant. nonlinear input-output maps. and not only for svstems with an explicit
model. For these type of maps approximating Volterra series were sought. This prob-
lem has been investigated by many authors, starting with Fréchet [1910], Volterra
[1930], Wiener [1958]. Brilliant [1959]. George [1959], and more recently Rugh [1981],
Boyd and Chua [1985], Sandberg [1985]. In part:icular Boyd and Chua [1985] con-
cluded that systems with fading memory may be approximated arbitrarily well by
truncated Volterra series. The condition of fading memory is a stronger version of
continuity [Boyd and Chua, 1985]. Generally speaking a system with fading memory

is one for which the dependence on the input decreases rapidly enough with time.

The fading memory requirement however means that the class of systems
with multiple equilibria [Boyd and Chua, 1985] cannot be represented by a Volterra
model. For these systems a valid unique global Volterra series representation will not
exist. Such a system is for example the Duffing oscillator for which three equilibrium
points are present in general and in consequence a global unique Volterra series to

represent the dynamics around these points does not exist.

However. systems with multiple equilibria may accept local Volterra series
representations. Local Volterra series should be valid in a ball of convergence around
a certain equilibrium point. In this case a system with multiple equilibria will no
longer be described by a unique global Volterra series, but by a few local Volterra

series.

From the nonlinear system analysis perspective, the Volterra series kernels are
very useful in describing the system input-output behaviour and in finding system
properties in a manner which is independent of the inputs. The Volterra kernels
have also been studied extensively in the frequency domain. where almost all types
of useful mathematical operations in the time-domain are transformed into algebraic

operations.

The Fourier transform of the kerncls hn(7y.....7,) in the Volterra series (1)

H, is called the nth-order Generalised Frequency Response Function (GFRF) of the




system [George. 1959]
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The Generalised Frequency Response Function can also be found in the literature
with the name frequency domain Volterra kernel [Bovd et al. 1984]. or nonlinear
transfer function [Chua and Ng, 1971(a)].

A frequency domain formula which gives an expression for the output re-
sponse in terms of the input spectrum and generalised frequency response functions
is obtained by replacing the input signal u(¢) with the inverse Fourier transform

20
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where the nth term Y, (jwi.....jw,) can be thought- of as an n-fold convolution
product of U. weighted by H,(jwi,....jw,)
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The formula (4) describes mathematically the complexity induced by system
nonlinearities. While for linear systems the relationship between the input and
output spectra is linear, with a frequency range in the output identical with the
input components, for nonlinear systems new frequency components are generated,‘

showing nonlinear phenomena described by intra- and inter-kernel interference.

The frequency response function has been studied in relation to the gener-
alised frequency response functions and important properties have been derived in
the literature, see for example Chua and Ng [1979 (a) and (b)] where the contribu-
tions of the Volterra kernels at a certain intermodulation frequency were determined. -~
The output frequency characteristics have more recently been analyvsed in Lang and
Billings [1996, 1997]. for multi-tone and arbitrary inputs. The frequency domain
properties were also related to typical nonlinear phenomena such as nonlinear dis-

tortion and interference.

[t should be noted that the generalised frequency response function based

representation is valid only for systems which admit a Volterra series representation




since the response functions are defined based on the Volterra series. In other words.

the predictive property of the representation (4) is only applicable if a Volterra series

exists and is convergent for the particular input-output map considered.

3 Bifurcation Diagrams and

Response Spectrum Maps

Explicit solutions of the differential equations, such as the Duffing equation,
which describe the system in terms of elementary functions or Volterra series are
not always possible. In spite of this, geometric interpretation of the differential
equations is often undertaken and useful information of a qualitative character can

often be obtained.

The geometrical approach of solving differential equations adopted during the
last two decades provides useful insight into the realm of nonlinear oscillations. A
dynamical system can have a rich variety of solutions: perjodic. quasi-periodic or
chaotic. It is also common in nonlinear svstems to have different coexisting steady-
state solutions. or to have several periodic and chaotic motions for the same param-
eter values but with different initial conditions. Such behaviours can be reflected in

the Poincaré Map or Bifurcation Diagram.

In the case of a non-autonomous system. such as the Duffing equation consid-
ered in the next section, the Poincaré Map is equivalent to sampling the trajectory
of the solution at a rate equal to the forcing frequency [Parker and Chua, 1989].
Fixed points and closed orbits indicate a periodic solution. A fixed point of the
Poincaré Map corresponds to a period-one solution and a k-periodic closed orbit

corresponds to a kth-order subharmonic.

The Bifurcation Diagram can be seen as a succession of compressed Poincaré
Maps. derived for a certain varying parameter. The point r of a Bifurcation Diagram
for a non-autonomous system driven by Acos(wt) can be defined as [Aguirre and
Billings. 1994]

r={(yg-)eRxI | y=ylti) A=Hdp ti=to+ Ny x 27/} (6)

where [ is the interval [ = i d;] CR.0 <ty €27/w. Ay a constant.

However it is often useful to analyse systems in both the time and the fre-

quency domain. As discussed in the previous section, when a nonlinear svstem
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can be suitably described by a Volterra series. the Generalised Frequency Response
Functions (GFRF) provide useful information about the syvstem dynamics. How-
ever the GFRF’s cannot be applied to explain complex nonlinear behaviour. such
as limit cycles. subharmonics and chaos. In such cases a new analvsis. similar to
the Bifurcation Diagram. will therefore be introduced to provide insight into the
operation of nonlinear systems in the frequency domain. This will be called the

Response Spectrum Map.

The Response Spectrum Map (RSM) will be defined as the ensemble of re-
sponse power spectra corresponding to a nonlinear system response described and
generated with a varying parameter. In analogy with the definition of a Bifurcation

Diagram stated above for a varying parameter .4, the Response Spectrum Map can

be defined as

Sy [0 fv] % [As Af] = By Sy(f,A) = Sy, (f) (7)

where S5, (f) is the power spectrum estimated for the system response y4, when the -

varying parameter has the value A € [4;; 4;] C IR. The frequency f is varied in the

interval [0: fy], where fy is the Nyquist frequency.

In practice the Response Spectrum Map is very easy to generate. As in the
case of the Bifurcation Diagram. the steady-state system response y4 is required. for
a range of values of the parameter 4. For each value of 4 the power spectrum of the
system response is computed, using for example the Welch averaged periodogram
method. This is repeated for each value of A and a complete map is obtained for the
set of values A € [A;; 4]. The frequency response map generates a three dimensional
plot of the response power spectrum versus frequency and versus 4. However a
two dimensional representation is obtained if only a plan view or contour plot are
considered. The response spectrum is dependent on both the svstem characteristics
and the input properties. As in the case of the Bifurcation Diagram. the Response

Spectrum Map is meaningful only if the input is periodic.

It is well known that frequency domain analysis based on the conventional
power spectrum has been applied to nonlinear systems showing complex nonlinear
behaviour since the formal interpretation of the cascade to chaos. almost two decades
ago [Feigenbaum. 1980]. [C'vitanovié¢ and Jensen. 1982]. However a response power
spectrum mapping of the type introduced in this section has never been used before
to the best of our knowledge. The Response Spectrum Map can show the well
known cascade to chaos, but more importantly. the map reveals the evolution of the
frequency domain features of the system associated with the extra-dimension of the

varving parameter and the continuity or discontinuity of these features.

=1




The Response Spectrum Map can be seen as a projection of the information
in the Bifurcation Diagram into the frequency domain. Notice that the Bifurcation
Diagram and the Response Spectrum Map can be generated at the same time. While
the former provides information about the intersection point in the time domain of
the flow with a certain plane when a parameter is varied. the latter gives information

about the response power spectrum in the frequency domain.

The Response Spectrum Map can be used to identify the various states of a
system. States showing complex, strongly nonlinear behaviour. such as subharmon-
ics and chaos are revealed. Mildly nonlinear behaviour, which corresponds to the
case where Volterra series can be applied, can also be analysed using the Response
Spectrum Map. The main advantage therefore is that the Response Spectrum Map,
like the Bifurcation Diagram, is not restricted to the Volterra model class, it can
be applied to all nonlinear systems. The insight that this new plot provides will be

revealed with examples based on the Duffing model in the next section.

4 Simulation results: The Duffing Equation

The example which will be analysed in detail in this section is the Duffing
oscillator. The Duffing model represents a driven damped nonlinear oscillator and
was introduced by Duffing in 1918

mij + cy + ky + kay® = u(t) (8)

where m. ¢. ky and ks are the mass, the damping. and the linear and nonlinear
stiffness respectively. This model can for example represent a pendulum where
the angle of the pendulum swing is y(t) and the applied torque u(t) is given by
u(t) = Acos(juwot).

One of the first studies of the Duffing equation using the Volterra series was by
Barrett [1963. 1963]. For the Duffing equation (8) Barrett derived the time-domain
Volterra kernels. The first two non-zero terms of the Volterra series were obtained
as

+x

y(f) = f hl(t—fl)ll(l‘l)(lfl—
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(10)

otherwise

h(t) = (A = A)7HeMt — el fort >0
: 0

in which Ay and A3 are the roots of the characteristic equation mA? + ¢\ + &k = 0

and
ha(t =ty t — byt — 1) = f Balt = )u(t = t)ha(t — t)ha(t — ta)ds  (11)

The question of convergence of the Volterra series for the Duffing equation

has been analysed by many authors. Barrett [1965] found that in the case where

= > 0and £ > 0 (to ensure stability), if ¢ > 45 the series is convergent (i) for all
( ) when %2 2 0. (i1) when %; < 0 for all u(t) satisfying

Jhl ki
3|3

maz|u(t)] < — for —oc <t < 40 (12

and if ¢? < 4% the series is convergent for all u(t) satisfying

2H m
maz|u(t) ‘i Ii[ | where H = kﬂ.‘gh(_;coté) (13)
3 &=

¢ being the angle of the complex roots. This result has been confirmed by Chris-
tensen [1968].

The Duffing equation has also been analysed in the frequency domain. Schet-
zen [1980] derived the first Volterra kernel Fourier transforms. which correspond to

the time-domain kernels presented above

1
m(jw1)? + c(Juy) + ky
Hz(jwhj'wz) =0 (15)

5. ks -
HS(j&“""‘l-j“"‘"‘!vj“"B) 3 Hi[]”l)ffl(JwD)Hl ‘]z.._g H] (] Zq.) (16)

i=1

Hl(j“-"l) =

Because the Duffing equation (8) contains a cubic nonlinear term in y(+). the
number of terms in the Volterra series expansion may become infinite. The Volterra
series representation used by Barrett [1963] and Schetzen [1981] was truncated after
the third order nonlinearity. on the assumption that higher order nonlinearities have
an insignificant effect on the system output. The Duffing equation is reduced in this

case to a weakly nonlinear system. However there are situations where the imput



signal of the oscillator induces significant nonlinear eflects making the truncation of

the Volterra series and convergence impossible,

By considering only nonlinearities up to the third order the steady-state si-

nusoidal response is given [Schetzen, 1930] by

. - 342 o .
y(t) = ARe{H(juwo)e™'} + TRE{HB(ij.jw'D. — Judp e}
A3 ,
+TRE{H3(.ij'}ij:jwﬂ)ea]uuz} (17)

The steady-state response (17) is valid as‘long as the Volterra series 1s con-
vergent and the nonlinearities are mild. In other words the output signal y(t) can
be predicted from the input signal u(¢) and the Fourier transform of the Volterra
kernel only for input values included in the Volterra series radius of convergence. In
practice the reconstructed signal y(t) is only an estimate of the true y(t), because

of truncation effects.

One of the major limitations of the Volterra series representation, as discussed
in Section 2. is limited convergence. The Volterra series representation of a physi-
cal system may converge for only a limited range of the system input amplitudes.
Vloreover. the Volterra series can only be applied around stable equilibrium points of
the system. In order to assess the implications of these limitations. the convergence

domain is analysed next for different sets of parameters in the Duffing equation.

4.1 Location and stability of equilibrium points

The first step in analysing any nonlinear system is often the identification
of the equilibrium points [Guckenheimer. Holmes, 1983]. The equilibrium points
are the stationary points of the system. Equilibrium points are important because
only stable equilibrium points can be observed naturally. Unstable states cannot be
realised in any experiment [Guckenheimer, Holmes, 1983]. Moreover Volterra series

can only be applied around a stable equilibrium point of the nonlinear system.

For a system of differential equations, the equilibrium states are calculated by
setting all the time derivatives to zero in the unforced (autonomous) system. The

Duffing equation (8) can then be reformulated as an autonomous systemn

0
S

<

by replacing a = <. 3= & and 7 = £ in (8). The equivalent state space equation
¥ m m ) m
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for the unforced system is given by

{?:I (19)

£I= —-..311 = j,yS — T

If% > 0 there is only one equilibrium point (2.y); = (0.0) and if 2 < 0. there are
3 equilibrium points: (z,y); = (0.0), (z,y): = (O,,/ﬁg), (£,4)a = (0.—/=£)

The eigenvalues of the Jacobian matrix evaluated at an equilibrium point
determine the dynamic behaviour in the neighbourhood of the equilibrium, according

to the stable manifold theorem for an equilibrium point. The Jacobian matrix of

0 1
f = ( —B =37yt —o ) L

By analysing the eigenvalues of the Jacobian J corresponding to each equilib-

the system (19) is

rium point, some relations between local stability properties and parameter values
can be established. The conditions for local stability in the Duffing equation (18) .
case are summarised in Table 1.

Table 1: Local stability conditions for the equilibrium points of the Duffing equation

Equilibrium a®—43<0 a? —~48 =0 ﬁ
points a>0,8>0a<0,8>0 >0 3=
a<0 [a>0
(0.0) stable unstable unstable | stable unstable
a®*+83 <10 a?4+83>0
(0,+y/~2) |@>0,8<0]a<0,8<0 3>0 <0
a >0 F< 0
stable unstable unstable unstable ’ stable_l

The stability of the non-autonomous Duffing equation periodic solutions. cor-
responding in this case to the periodic forcing u(t) = Acos(wt). is mainly discussed
in the literature in terms of characteristic (Floquet) multipliers, or from a more

geometrical point of view, based on Poincaré Maps.

For the non-autonomous system (3), in the case of a periodic forcing u(t) =

Acos(wt). the stability of the periodic response can be further investigated using

11




Bifurcation Diagrams. The Duffing equation will be analvsed for different input
amplitude values and considering the parameters m. c¢. k; and ks fixed. which pro-

duce different dynamics. in the examples below.

4.2 Example 1

The example considered in this section has previously been analysed by
Schetzen [1930], as an approximating model for the simple pendulum with linear
damping. This example is repeated here for a comparison with the convergence
limits derived by Barrett [1965]. The model is

§+6my +wi(l + :l—)y — lwé(l + _i)ys = 3 x 10°cos(wt) where wp = 307 (21)
50 6 20

The equilibrium points in this case are (z,y) = (0.0) which is stable and

(¢,y) = (0. £v/6) which are unstable, and these are found by using Table 1. In this
case a Volterra series may exist around the origin. which is the unique equilibrium
point. By applying the formula (13) deduced by Barrett [1963], the Volterra series
is convergent for max|u(t)| < 3487.3. The value chosen for 4 = 3 x 10® is included
in the convergence interval and a convergent Volterra series is therefore expected for

this example.

By replacing the coefficients of equation (21) in the higher order frequency

response function formulas (14-16), it is found that

1

Hi(jw) = — - - 22
=) = Gy ¥ Be ) + (307775, )
Ha(jwr,jw2) =0 (23)

ﬂ‘ . : 3
Hy(jwr, Jws, jws) = —3—',H1(jw1)H1(jw2)H1(Ji—="3)H1 (J sz) (24)

= =1

where 7 = —£(307)%2L.

After applying the probing method (or harmonic expansion method) [Bedrosian.
Rice. 1971]. [Peyton-Jones. Billings. 1989] the higher order frequency response func-

tions up to the seventh order can be found

‘ . e 2 i , . . . "
H.B(jw'].....ju;'g) = 5" Hl(] Z""‘i)ZH3(J"‘"i1"'"]"“'ia)Hl(J"""H)Hl(J""'ia) (2))
= =1 %
He(jwyi.v...juws) =0 (26)
HT(j\.{,‘l ..... Jw") = *%Pfl (J Zw‘g) (3' Z HS(_].(—UE, see s J‘-“;tJ) + Hl(ju“is)Hl(J—u"!‘T)

(e=s | =




+ 3823 (3 Hljws - e ) Hal s o, )) Hi(jwi)
(27)

where the sum }° in Hs is taken over all combinations of 5 coordinates w; taken 3
at a time. The first sum > in H: is taken over all combinations of 7 coordinates
taken 5 at a time while the second sum - contains all 10 distinct combinations of
6 coordinates taken 3 at a time. in group?of 3.

Schetzen [1980] computes the steady-state response considering nonlineari-
ties up to the fifth order. Here the steady—sta,té response is computed considering

nonlinearities up to the seventh order

y(t) = y1(t) + ya(t) + ys(t) + yz(2) (28)

where, like in the formula (17). the even order responses make no contribution to -

the system response. The individual values of the higher order responses are

/—\/——‘\

e
o

3_{.»0?}

+ } R(i{H" J[-uD _]u.U,_]u,D jwo _]»Q —0. —u.o)

A ) - .
wnlt) = Q—He{Hl(JMD)eiwD} (20)
: A3
lj3(t) = (7) RE{Hg \]‘*O .]"'D Ju‘v J'—UOf} (30)
A
T 6(7) Re{Hs(jwo. jwo, —wp)e?0!}
Avs
B(t) = (7) Re{ Hs(jwo, jwo, juo, jwo, ju)e™ "}
Ays
+ 10()) Re{H— _]L(_,‘D .]"-“‘O j"""Oyj*'-‘-O _“"'O 3_}.0){‘}
£y el t :
+ 20(7) Re{ Hs (juwo, juwo, jwo, —wo, —wg)el*ot} (31)
AnT ) . . . ' . . e
y=(t) = 2(7}—) Re{ H7(jwo. jwo, Jwo, Jwa, Two, Jwo-. Jwo)e }
AnT n
T 14 7) RE{H -]""'0 JL“’O .]““01_;"(""07]"-‘-‘0 j'-'-(J | )E J Ot}
A
?
A

) 70(7) Re{ H=(jwo. jwo, jwo. jus, —wo. —ios —wo )&t} (32)

The Duffing equation (21) was simulated using a fourth-order Runge-Kutta

alcrouthm with an integration interval of 1/1800 and the response y(t) was compared
i(0dd) A

for different levels of approximation given by ¥ y;(t), w:th y;(t) defined as above
=1

n (29-32). The truncation error for different w values is presented in Table 2, where

13




Table 2: Different levels of approximation for the stable state response (28) corre-

sponding to the model (21)

“ | e [ | es[%] | es [%] | e [%]

== | 241 | 203 | 203 | 2.03
w=2 | 48 | 407 | 4.06 | 4.06
w=20| 808 | 7.03 | 6.99 | 6.99
w=uwp | 53.03 | 45.08 | 34.55 | 30.95
w=2| 274 | 226 | 2.26 | 2.26

i(odd)
ei(t) =y(t)— X y;(t), 7 € {1,3.5,7} expressed as a percentage of the corresponding
=1

maximuim response.

The Volterra series is convergent, as shown by Table 2. The significance of
different higher order terms is found to increase with the amplitude in relation to
n. where n is the nonlinearity order. For example. for w = %. nonlinearities of
order higher than 5 do not change the truncation error very much. while for w = wy.
which is the resonant frequency where the response of the system is a maximum, the

approximation error is high. even when seventh order nonlinearities are considered.

Schetzen [1980] also remarked that the closer w is to wy the less rapidly the
steady-state of the error e;(¢) decreases with increasing i. and hence higher orders

of nonlinearity are required.

Storer and Tomlinson [1993] also observed that at the natural frequency of
the linear system, which in this case is fo = 15 Hz (307 rad/s), distortions of the
measured nonlinear transfer functions occur, which increase and become more ap-
parent with an increasing level of the input excitation. The distortions are generated
by the increasing significance of the higher order nonlinearities in the steady-state
response. and consist of a bending (to the right or left) of the measured (real) trans-
fer function of systems with a hardening or softening stiffness nonlinearity. as the

amplitude of the excitation increases.

Figure 1 shows the magnitude of the following frequency response func-
tions: H,(jw) from equation (22). Hs(jw) = Hjs(jw.jw, jw). which is a projec-
tion of the three dimensional function (24) on the axis wy = wy = wy. H5(jw) =
Hs(jw. jo. Jar. ju, Jw) from (25) and Hr:(jw) = Hr(jw. jw. jw, jw. jw. jw. j«) in equa-

%
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Figure 1: Primary and subharmonic resonances for the higher order frequency re-

sponse functions of the model (21)

tion (27). The figure shows the local maxima also observed by Schetzen and called

subharmonic resonances [Schetzen, 1980, p-152).

For Hi(jw) the maximum magnitude value is attained around the primary
system resonance f = f;, = 15 Hz. The H3(jw) plot shows two maxima at 15 Hz
and 5 Hz. corresponding to the primary and i subharmonic resonance. The higher
order components f5(jw) and H;(jw) have a supplementary maximum at 3 Hz for
the 1 subharmonic resonance and respectively at 2.1 Hz and 3 Hz for the : and :

subharmonic resonances.

4.3 Example 2

The model taken here as an example has been analysed previously by Billings
and Lang [1997], in connection with Volterra series truncation
mij() + ejlt) + kiy(t) + kay?(t) = u(t) (33)

where m = 39.2. ¢ = 39.2. &y = 4.9 x 10°, k3 = 4.9 x 10'°, and u(t) = Acos(87t).
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The equilibrium point for the unforced equation is (w.y) = (0.0} which is
stable. therefore the conditions for the existence and uniqueness of a \olterra series
are fulfilled. By applving the formula (13) deduced by Barrett [1965]. the limit
for Volterra series convergence is 4 = maa|u(t)] < 596.40. This result is in good
agreement with the analysis performed in Billings and Lang [1997]. where for 4 =
max(u) = 500 the truncating order was 3. but for 4 = max(u) = 1000 seventh and

even higher order nonlinearities became significant in the syvstem response.

For the present analysis equation (33) was simulated for u(t) = Acos(87t),
where 0 < 4 <10000. A fourth-order Runge-Kutta algorithm with an integration
interval of 0.001 was used to simulate the response of the system to the sinusoidal

input.

The contributions provided by different orders of nonlinearities are given in

Table 3, for different amplitude values. As in the preceding example presented in
. i(odd)

section 4.2, the truncation error €;(¢) = y(¢t)— Y y;(¢) is the difference between the
J=1

simulated output in equation (33) and the estimated stable state from the formula
(28), also expressed as a percentage of the corresponding maximum response. It is
apparent from Table 3 that the significance of higher order nonlinearities increases

with the input amplitude.

Table 3: Different levels of approximation for the stable state response (28) corre-

sponding to the model (33)

Amplitude 4 | e; [%] | e3 [%] | es [%] | er [%)
A = 100 0.6 0.5 0.5 0.5
4 = 500 14.13 1149 | 11.82 | 1Ll
A = 550 17.34 14.44 | 14.65 | 14.62
A =1000 29.09 2147 | 23.79 | 22.94
A4 = 1500 46.84 25.58 | 39.95 | 28.08

The significance of the nonlinear terms can also be analysed in the frequency
domain. from the Response Spectrum Map, represented for the varving amplitude
0 < A < 10000. These results for both the plan and contour views are shown

together with the Bifurcation Diagram in Figure 2.

The Response Spectrum Map in Figure 2 shows that the output signal consists
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Figure 2: Bifurcation Diagram and Response Spectrum Map (plan view and contour

plot) for the equation (33)

of spectral terms at the input frequency (0.4 Hz) and at higher (odd) harmonics.
Figure 2 confirms in a simple pictorial way the results presented in Billings and
Lang [1997]. The Response Spectrum Map shows the significance of the higher
order harmonics as the amplitude increases. In particular at 4 = 300 the third
order harmonic becomes significant, and similarly. for .1 = 1000 the seventh order

harmonic is high in amplitude. as concluded in Billings and Lang [1997].

A comparison of the Response Spectrum Map with the Bifurcation Diagram is
also revealing. In Figure 2 the jump resonances occurring at 4 = 2150 and 4 = 8460
are clearly shown in the Response Spectrum Map to generate new high frequency
terms. Such information is not evident or predictable from the Bifurcation Diagram.
The Response Spectrum Map is therefore complementary to the Bifurcation Diagram
and it reveals considerable insight into the complex frequency domain behaviour of

a wide class of nonlinear systems.




4.4 Example 3: The Duffing-Ueda equation

The Duffing-Ueda model is a version of the Duffing equation (3), studied
extensively by Ueda [1930]
§+ky+y = ult) (34)

This version of the Duffing equation has no linear stiffness and would arise
physically for a beam loaded to precisely its (Euler) buckling load [Thompson, Stew-
art, 1991]. Once again, for the Duffing-Ueda equation solutions are impossible to
derive and digital computations show that after transients have decayed, the system

settles down to a condition of steady-state chaos.

By applying the conditions previously found and summarised in Table 1, we
can conclude that the Duffing-Ueda equation has only one (0.0) equilibrium point.

The corresponding Jacobian matrix is

{0 1 =
J:(O—k) (35)

The eigenvalues of the Jacobian matrix are A; = 0 and A» = —k. A zero
eigenvalue is considered a special case in ordinary differential textbooks, called de-
generate or non-hyperbolic. The dynamics near a degenerate equilibrium point are
structurally unstable [Guckenheimer, Holmes, 1983]. The stability of a degenerate
or non-hyperbolic point cannot be determined from the eigenvalues (for the au-
tonomous case) or characteristic multipliers (for a period solution) alone [Parker,
Chua, 1989]. One possible way of analysing non-hyperbolic equilibrium points is by

studying local bifurcations in parameter regions.

For the present analysis the Duffing-Ueda equation (34) was simulated for
k = 0.1 and u(t) = Acos(t), where 0 < A4 < 12. A fourth-order Runge-Kutta
algorithm with an integration interval of 7 /3000 was used to simulate the response
of the system to the sinusoidal input. The input and output signals were further

sampled at periods of T = 7/60 sec.

The Bifurcation Diagram of the simulated model is presented in Figure 3.
The parameter which was varied was the amplitude of the sinusoidal input which
was varied in the range 0 < A < 12. This diagram gives a precise indication of how

the system bifurcates as the amplitude is varied.

A very detailed and comprehensive diagram of the Duffing-Ueda dynamic
regimes was provided by Ueda [1980]. where various attractors of the final motions

are displayed, depending on the system parameters 0 <k < 0.8 and 0 < A <25, as
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well as on the initial conditions. One region in the & — | plane may have multiple
attractors. each attractor having its own ensemble of starting conditions. Moreover

periodic and chaotic attractors may coexist in the same Ak — 4 region.

The Response Spectrum Map. for a varying amplitude A of the input signal
u(t) = Acos(t) is also given in Figure 3. The map is represented as a plan view of
the response power spectra and this shows only the relevant features. The frequency
of the sinusoidal input f =1/(27) = 0.159 Hz is present for all amplitude 4 values.
The map clearly reflects various regimes such as subharmonic generation and chaotic

states and confirms the results previously obtained by Ueda [1980].
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Figure 3: Bifurcation Diagram and Response Spectrum Map (plan view and contour

plot) for the Duffing-Teda equation (34)

The map shows a subharmonic of order % at 0.053 Hz and a subharmonic of
order % at 0.265 Hz in the amplitude range 1.39 < 4 < 1.61. where a % and a %

order subharmonic should be present according to Ueda. A superharmonic of order

2 appears at 0.315 Hz for 3.12 < 4 < 4.86, and this is the 2nd-order superharmonjc
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found by Ueda for the same amplitude interval. In the interval 5.82 < 4 < 9.67

there is a subharmonic of order % at 0.053 Hz and one of order —; at 0.106 Hz.

in the interval 6.67 < A < 8.03. Two windows of chaos appear in the intervals
555 < 4 < 5.82 and 9.94 < 4 < 11.64 and are easy to recognise by the almost

continuous spectrum. Both windows of chaos are preceded by cascades to chaos of

1
3=27

order - and respectively.

4.5 Example 4: The Duffing-Holmes equation

Another very well known version of the Duffing equation is the Duffing-
Holmes equation. Introduced by Holmes [1979], the equation has been used to

model mechanical oscillations arising in two-well potential problems [Moon, 1987]
j+ ay + By +y° = Acos(wt), where 3= —1 (36)

The location and stability of the equilibrium points is first considered, for no
external forcing. A = 0. By analysing the results summarjsed in Table 1 it Is easy
to conclude that for 3 = —1 and a = 1.5 there are two stable equilibrium points at

(z,y) = (0. £/=3) = (0, £1), and one unstable equilibrium at (z.y) = (0.0).

. The non-autonomous case has been analysed in the literature. see for example
Guckenheimer and Holmes [1983] or Aguirre and Billings {1995]. The Bifurcation
Diagram was further analysed for the particular case a = 1.5. 3 = —1 and w =1
rad/sec

J4+ 1.5 —y+y° = Acos(t) (37)

This equation was simulated using a fourth-order Runge-Kutta algorithm
with an integration interval of /15, for an amplitude 4 varying in the range 1 <
A < 1.6. The Bifurcation Diagram is shown in Figure 4. The Bifurcation Diagram
shows a series of flip bifurcations. also referred to as period doubling or subharmonic
bifurcations [Guckenheimer, Holmes, 1983]. The first flip bifurcation appears at
A = 1.1. with a subcritical counter-part at 4 = 1.51. A second flip bifurcation
occurs at A = 1.25. with the subcritical bifurcation at 4 = 1.42. As A continues to
increase. a further bifurcation occurs at A = 1.29 with the corresponding subcritical
point at 4 = 1.38. These bifurcations accumulate at a point at which transition

from periodic to incomplete cascade to chaos occurs. in the window 1.32 < 4 < 1.36.

The corresponding Response Spectrum Map is also given in Figure 4. For

each flip bifurcation a new subharmonic is produced. In the interval 1.1 < A% 1.81
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a i; subharmonic appears at 0.078 Hz. generated by the first fip bifurcation, A :
subharmonic is further generated at 0.039 Hz in the interval 1.25 < 4 < 1,492, and
s subharmonics appear at 0.019 Hz for L2 € & < 138 The incomplete cascade to
chaos is represented by an almost continuous spectrum in the range 1.32 < 4 < 1.36.

The conventional power spectra of the output are represented in Figure 5 for
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Figure 4: Bifurcation Diagram and Response Spectrum Map (plan view and contour

plot) for the Duffing-Holmes equation (37)

the amplitude values corresponding to the flip (subharmonic) bifurcations. The
subharmonic halving can be followed from Figure 5 (a) to (d). Such cascades of
period doubling bifurcations have been studied extensivelyv and have many inter-
esting universal properties. Feigenbaum analysed the response power spectrum of
a period-doubling sequence for the Duffing equation in Feigenbaum [1980] where it
was concluded that for every subharmonic halving there is a drop of 8.2 dB in the

subharmonic power spectrum.
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Figure 5: Response power spectra for different subharmonic bifurcations of the

Duffing-Holmes equation (37)

5 Conclusions

The objective of this paper was to introduce the Response Spectrum Map
and to investigate the modelling limitations of the Volterra series using the Duffing
oscillator as an example. Mildly nonlinear systems can be studied by analysing just
the first few terms in the Volterra series. In these cases inspection of the kernel plots
or the equivalent Generalised Frequency Response Functions provides a complete

characterisation of the system properties.

However the Volterra series has limitations and it can only be used to model
severely nonlinear systems around the equilibrium points within a relatively small
area of convergence. Four cases of the Duffing oscillator were used to illustrate
these effects. Outside the Volterra convergence area the Duffing equation dvnamics
can be much more complex. Phenomena associated iwith strong nonlinearities are

generated including limit cycles. subharmonics and chaos.

The Response Spectrum Map was introduced for the first time as a simple

[
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visual aid to interpreting these effects in the frequency domain. The advantage of

the Response Spectrum Map is that is easy to compute and it provides a pictorial
display of the system characteristics which is complementary to the Bifurcation
Diagram. The Duffing model examples clearly show that a combined analysis and
interpretation of both the Bifurcation Diagram and the Response Spectrum Map
provides a very clear insight into the operation of even very complex nonlinear

syvstems.
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