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Dinh Nho Hào1,2, Phan Xuan Thanh3 and D. Lesnic2

1 Hanoi Institute of Mathematics, 18 Hoang Quoc Viet Road, Hanoi, Vietnam

e-mail: hao@math.ac.vn
2 Department of Applied Mathematics, University of Leeds, Leeds LS2 9JT, UK

e-mails: H.DinhNho@leeds.ac.uk, amt5ld@maths.leeds.ac.uk
3School of Applied Mathematics and Informatics,

Hanoi University of Science and Technology, 1 Dai Co Viet Road, Hanoi, Vietnam

e-mail: thanh.phanxuan@hust.vn

Abstract

The restoration of the space- or time-dependent ambient temperature entering a third-kind

convective Robin boundary condition in transient heat conduction is investigated. The temper-

ature inside the solution domain together with the ambient temperature are determined from

additional boundary measurements. In both cases of the space- or time-dependent unknown

ambient temperature the inverse problems are linear and ill-posed. Least-squares penalised

variational formulations are proposed and new formulae for the gradients are derived. Numer-

ical results obtained using the conjugate gradient method combined with a boundary element

direct solver are presented and discussed.

Keywords: Heat equation, ambient temperature, boundary element method, conjugate gradient

method, inverse problem

1 Introduction

Ambient temperature refers to the temperature which surrounds a heating or cooling object under

investigation and its knowledge is very important for safe and efficient performance of heat transfer

equipment, e.g. thermal flow sensors, [17]. If convection occurs only on a ”hostile” part of the

boundary of the heat conductor which is inaccessible to practical measurements, then, in princi-

ple, the ambient temperature could be determined by solving an ill-posed inverse heat conduction

problem using the Cauchy data measurements of both the temperature and the heat flux on the re-

maining ”friendly” part of the boundary. However, in many physical situations, e.g. high pressures,

high temperatures hostile environments, the measurements of the surface (boundary) temperature

and the heat flux can experience practical difficulties and in some cases the relationship between

these quantities is unattainable, see e.g. [1, 3, 4]. Therefore, in order to prevent this experimental

difficulty, in the mathematical formulation of Section 2 we allow for the convection Robin boundary

condition of the third kind (on the boundary of the solution domain there is convective heat trans-

fer with the environment), as given by Newton’s law of cooling or heating, to be prescribed over

the whole boundary. Then, we study the inverse problems of restoring the ambient temperature

from additional terminal, point or integral boundary temperature measurements (observations).
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Further, in our study the unknown ambient temperature is allowed to vary with space or time.

Therefore, a more realistic model can be proposed for the heat transfer in building enclosures, e.g.

glazed surfaces, where the ambient temperature can vary spatially, or with time, depending on the

local air patterns, e.g. type of flow, external weather conditions, etc., [16].

The plan of the paper is as follows. In Section 2 we formulate the inverse problems for the deter-

mination of a space-dependent (Problem I) or time-dependent (Problem II) ambient temperature

and recall the available existence and uniqueness results in the classical sense. Section 3 is devoted

to defining the weak solutions of the direct and adjoint Robin problems and recalling their unique

solvability. The symmetric Galerkin formulation of the boundary element method (BEM) given in

[2] for the Dirichlet and Neumann direct problems is extended in Section 4 to the Robin problem for

the transient heat equation. Furthermore, in our inverse problems, all the unknowns and additional

observations are at the boundary and the discretization of the boundary only is the essence of the

BEM. Therefore, it seems more natural and appropriate to use the BEM instead of the domain

discretization methods such as the finite element or finite difference methods. Sections 5 and 6 are

devoted to developing the least-squares variational methods for solving the inverse problems I and

II, respectively. In each of these sections we present the numerical results for several benchmark

test examples of interest obtained using the iterative conjugate gradient method (CGM) combined

with the BEM direct solver. In all cases, numerical stability and good accuracy are achieved pro-

vided that the iterative process is stopped according to the discrepancy principle. Finally, Section

7 presents the summary, conclusions and future work.

2 Mathematical formulation

Let Ω ∈ R
d be a bounded domain and denote its boundary by Γ. In the cylinder Q := Ω × (0, T ],

where T > 0, with the lateral surface area S = Γ × (0, T ], consider the following inverse problems

([8] and [9]). Throughout the paper, u denotes the temperature, f the ambient temperature, a the

initial temperature, g the heat source, and σ the heat transfer coefficient.

Inverse Problem I. Find a pair of functions {u(x, t), f(ξ)} such that

ut − ∆u = g in Q, (2.1)

u(x, 0) = a(x), x ∈ Ω, (2.2)

∂u

∂n
+ σ(ξ, t)u = h(ξ, t)f(ξ) + b(ξ, t), (ξ, t) ∈ S, (2.3)

l(u) = χ(ξ), ξ ∈ Γ, (2.4)

where the functions g(x, t), a(x), σ(ξ, t), h(ξ, t), b(ξ, t) and χ(ξ) are given, and n is the outward unit

normal to the boundary Γ. Strictly speaking h should be equal to σ in order for f to represent the

actual ambient temperature, but the boundary condition in (2.3) models a more general situation,

which also include an additional heat flux contribution b(ξ, t). In (2.4), the observation operator l

has one of the following forms:

l(u) = u(ξ, T1), ξ ∈ Γ, (2.5)

where T1 is a fixed known time in (0, T ], or

l(u) =

∫ T

0
ω(t)u(ξ, t)dt, ξ ∈ Γ, (2.6)
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with ω being a given function in L1(0, T ). The additional conditions (2.5) and (2.6) are called

terminal and integral boundary observations, respectively.

Inverse Problem II. Find a pair of functions {u(x, t), f(t)} such that

ut − ∆u = g in Q, (2.7)

u(x, 0) = a(x), x ∈ Ω, (2.8)

∂u

∂n
+ σ(ξ, t)u = h(ξ, t)f(t) + b(ξ, t), (ξ, t) ∈ S, (2.9)

l1(u) = χ1(t), t ∈ [0, T ], (2.10)

where the functions g(x, t), a(x), σ(ξ, t), h(ξ, t), and χ1(t) are given. The observation operator l1(u)

has one of the following forms:

l1(u) = u(ξ0, t), t ∈ [0, T ], (2.11)

where ξ0 is fixed known point in Γ, or

l1(u) =

∫

Γ
ν(ξ)u(ξ, t)dξ, t ∈ [0, T ], (2.12)

with ν(ξ) being a given function in L1(Γ). The additional conditions (2.11) and (2.12) are called

point and boundary integral observations, respectively.

At this stage, it is worth mentioning that in practice conditions (2.6) and (2.12) are indeed measured

by averaging a series of pointwise boundary temperature measurements. This is particularly ad-

vantageous to use in situations where the time pointwise or space pointwise boundary temperature

measurements (2.5) or (2.6) posses different sensitivities with respect to the value of T1 within the

interval (0, T ] or, the boundary point ξ0 along the boundary Γ, respectively. On the other hand, one

can observe that equations (2.6) and (2.12) reduce to equations (2.5) (for T1 ∈ (0, T )) and (2.11)

if one takes the weights ω(t) = δ(t − T1) and ν(ξ) = δ(ξ − ξ0), respectively, where δ is the Dirac

delta function. However, because ω and ν have to be L1-integrable, these choices are not quite

strictly possible. Approximations with Gaussian functions or employing cut-off weights, see later

equations (5.1) and (6.1), can be alternatives to model pointwise measurements (thermocouples

have non-zero width, or the time is never instant) as local averages.

The common feature in the above inverse problems is the Robin third kind boundary condition,

see equations (2.3) and (2.9).

The notation for the spaces of functions involved in the following theorems follows [7]. With the

assumptions that Ω is simply-connected and its boundary Γ ∈ C1+β with β > 0, g ∈ Cβ,0(Q), a ∈
C1(Ω), h, b ∈ C(S), Kostin and Prilepko [8, 9] proved the following results.

Theorem 2.1. Suppose that σ is independent of t, σ ∈ C(Γ), 0 ≤ σ(ξ) on Γ, ω(t) ≥ 0 on [0, T ],

l(h) > 0 almost everywhere on Γ, and the function h is positive on S, monotone non-decreasing

with respect to t. Then the solution (u(x, t), f(ξ)) ∈ C2,1(Q) × C(Γ) to the inverse problem I is

unique.

Theorem 2.2. Assume σ ∈ C(S) and denote by u0 ∈ C2,1(Q) ∩ Cβ,β/2(Q) the unique solution

of the direct problem (2.7)–(2.9) with f = 0 (see [7]). Further, assume that the function χ2(t) :=

χ1(t) − l1(u
0) ∈ C1/2[0, T ] and χ2(0) = 0, d

dt

∫ t
0

χ2(τ)√
t−τ

dτ ∈ C[0, T ]. Then, if h ∈ Cβ,0(S) and

|l1(h)| > 0 on [0, T ], there exists a unique solution (u(x, t), f(t)) ∈ C2,1(Q)×C[0, T ] to the inverse

problem II.
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Although of theoretical interest, these uniqueness theorems cannot be used directly in the numerical

analysis, since it is not straightforward how to use the space of continuous functions in a weak

formulation. Therefore, in this paper we relax some assumptions on the smoothness of the data

posed above so that we can work in the Hilbert space framework. Then we can solve the above

inverse problems in the least-squares sense. We will report about this in the next section.

3 Direct problem

In this section, we suppose that Ω is a bounded Lipschitz domain and introduce the notion for

standard Sobolev spaces as follows.

For a Banach space B, we define

L2(0, T ; B) = {u : u(t) ∈ B a.e. t ∈ (0, T ) and ‖u‖L2(0,T ;B) < ∞},

with the norm

‖u‖2
L2(0,T ;B) =

∫ T

0
‖u(t)‖2

Bdt.

In the sequel, we shall use the space W (0, T ) defined as

W (0, T ) = {u : u ∈ L2(0, T ; H1(Ω)), ut ∈ L2(0, T ; (H1(Ω))′)},

equipped with the norm

‖u‖2
W (0,T ) = ‖u‖2

L2(0,T ;H1(Ω)) + ‖ut‖2
L2(0,T ;(H1(Ω))′).

Now consider the direct problem

ut − ∆u = g in Q, (3.1)

u(x, 0) = a(x), x ∈ Ω, (3.2)

∂u

∂n
+ σ(ξ, t)u = b(ξ, t), (ξ, t) ∈ S, (3.3)

with

g ∈ L2(Q), a ∈ L2(Ω), σ ∈ L∞(S), σ ≥ 0, b ∈ L2(S). (3.4)

Definition 3.1. A function u ∈ W (0, T ) is called a weak solution to the direct problem (3.1)–(3.3),

if
∫

Q
(utη + ∇u · ∇η)dxdt +

∫

S
σuηdξdt =

∫

Q
gηdxdt +

∫

S
bηdξdt (3.5)

for all η ∈ L2(0, T ;H1(Ω)), and u(·, 0) = a.

The following theorem giving the existence and uniqueness of a weak solution to the direct problem

(3.1)–(3.3) is given in [15].

Theorem 3.2. Suppose that conditions (3.4) are satisfied. Then there exists a unique weak solution

in W (0, T ) of the direct problem (3.1)–(3.3). Moreover, there exists a constant cd > 0 independent

of g, b and a such that

‖u‖W (0,T ) ≤ cd(‖g‖L2(Q) + ‖b‖L2(S) + ‖a‖L2(Ω)). (3.6)
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Remark 3.3. The constant cd depends on σ. However, if we suppose that

0 < σ1 ≤ σ ≤ σ2,

where σ1 and σ2 are given, then by examining the proof of this theorem in [10] and [15] we see that

cd depends on these two constants only.

We introduce now the adjoint problem to (3.1)–(3.3) as follows:

−ψt − ∆ψ = aQ in Q, (3.7)

ψ(x, T ) = aΩ(x), x ∈ Ω, (3.8)

∂ψ

∂n
+ σ(ξ, t)ψ = aS(ξ, t), (ξ, t) ∈ S, (3.9)

with

aQ ∈ L2(Q), aΩ ∈ L2(Ω), σ ∈ L2(S), σ ≥ 0, aS ∈ L2(S). (3.10)

From Lemma 3.17 and Theorem 3.18 in [15] we have the following theorem giving the existence

and uniqueness of a weak solution to the adjoint problem (3.7)–(3.9).

Theorem 3.4. Suppose that conditions (3.10) are satisfied. Then there exists a unique weak

solution in W (0, T ) of the adjoint problem (3.7)–(3.9) in the sense that
∫

Q
(−ψtη + ∇ψ · ∇η)dxdt =

∫

Q
aQηdxdt +

∫

S
aSηdξdt −

∫

S
σψηdξdt

for all η ∈ L2(0, T ; H1(Ω)), and ψ(·, T ) = aΩ(·). Moreover, there exists a constant ca > 0 indepen-

dent of aQ, aΩ and aS such that

‖ψ‖W (0,T ) ≤ ca(‖aQ‖L2(Q) + ‖aS‖L2(S) + ‖aΩ‖L2(Ω)).

Furthermore, if u ∈ W (0, T ) is the weak solution to the problem (3.1)–(3.3), then
∫

Ω
aΩ(x)u(x, T )dx +

∫

Q
aQudxdt +

∫

S
aSudξdt

=

∫

Ω
a(x)ψ(x, 0)dx +

∫

Q
gψdxdt +

∫

S
bψdξdt.

(3.11)

4 Boundary element method for the direct problem

The unknown Cauchy data [w :=
∂u

∂n
, u] on S of the direct problem (3.1)–(3.3) with the input

data satisfying (3.4) can be found by the boundary integral equation approach of [2]. Indeed, the

solution of the heat equation (3.1) is given by a representation formula, for (x̃, t) ∈ Q,

u(x̃, t) =

t
∫

0

∫

Γ

E(x̃ − y, t − τ)w(y, τ) dsy dτ −
t

∫

0

∫

Γ

∂E
∂ny

(x̃ − y, t − τ)u(y, τ) dsy dτ

+

∫

Ω

E(x̃ − y, t)a(y) dy +

t
∫

0

∫

Ω

E(x̃ − y, t − τ)g(y, τ) dy dτ, (4.1)
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where E(x, t) is the fundamental solution of the heat equation as given in [2]:

E(x, t) =







(4πt)−
d
2 e−

|x|2

4t for t > 0,

0 for t ≤ 0.

We define the single and double layer heat potentials as

(V w)(x, t) =

t
∫

0

∫

Γ

E(x − ξ, t − τ)w(ξ, τ) dξ dτ, (Ku)(x, t) =

t
∫

0

∫

Γ

∂

∂nξ
E(x − ξ, t − τ)u(ξ, τ) dξ dτ,

for (x, t) ∈ S, and the boundary integral operators N and W ,

(Nw)(x, t) =

t
∫

0

∫

Γ

∂

∂nx
E(x − ξ, t − τ)w(ξ, τ) dξ dτ,

and

(Wu)(x, t) = − ∂

∂nx

t
∫

0

∫

Γ

∂

∂nξ
E(x − ξ, t − τ)u(ξ, τ) dξ dτ

as in [2]. Moreover, we introduce the volume potentials, for (x, t) ∈ S,

(M0a)(x, t) =

∫

Ω

E(x − y, t)a(y) dy, (N0g)(x, t) =

t
∫

0

∫

Ω

E(x − y, t − τ)g(y, τ) dy dτ

and

(M1a)(x, t) =
∂

∂nx

∫

Ω

E(x − y, t)a(y) dy, (N1g)(x, t) =
∂

∂nx

t
∫

0

∫

Ω

E(x − y, t − τ)g(y, τ) dy dτ.

For the properties of the above operators, see [2, 14]. In particular, we have that N is the adjoint

of the double layer potential K with respect to the ”time-twisted” duality, see [2, p.541], i.e.,

〈κT w, Nϕ〉 = 〈κT ϕ,Kw〉,

where the time reversal map κT is defined by κT v(x, t) := v(x, T − t).

As in [2], we obtain the boundary integral equations

(V w)(x, t) =

(

1

2
I + K

)

u(x, t) − (M0a)(x, t) − (N0g)(x, t) for (x, t) ∈ S, (4.2)

and

(Wu)(x, t) =

(

1

2
I − N

)

w(x, t) − (M1a)(x, t) − (N1g)(x, t) for (x, t) ∈ S. (4.3)

From the boundary condition (3.3), we are now in a position to rewrite the boundary integral

equations (4.2) and (4.3) as follows:

A
(

w

u

)

:=

(

V −
(

1
2I + K

)

(

1
2I + N

)

W + σI

)(

w

u

)

=

(

−M0a −N0g

b −M1a −N1g

)

. (4.4)
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Lemma 4.1. The operator A is elliptic, i.e.,

〈

A
(

w

u

)

,

(

w

u

)

〉

=
〈

(

V −K

N W

)(

w

u

)

,

(

w

u

)

〉

+ 〈σu, u〉 ≥ C

(

‖w‖2

H− 1
2

,− 1
4 (S)

+ ‖u‖2

H
1
2

, 1
4 (S)

)

for all w ∈ H− 1

2
,− 1

4 (S), u ∈ H
1

2
, 1
4 (S) and some positive constant C.

Proof. See [2, Theorem 3.11] and use the condition σ ≥ 0.

By assumptions (3.4), the boundary integral equations (4.4) admit a unique solution (w, u) ∈
H− 1

2
,− 1

4 (S) × H
1

2
, 1
4 (S). Let us consider now the numerical discretization of (4.4).

Let Vh be the trial space of functions which are piecewise linear with respect to the space variables

on a triangulation of Γ and piecewise constant with respect to the time variable. We also introduce

a set of ansatz functions Uh consisting of piecewise constant basis functions both in space and in

time, see [2, 14].

The Galerkin variational formulation of (4.4) is to find (wh, uh) ∈ Vh × Uh such that

〈

A
(

wh

uh

)

,

(

τh

vh

)

〉

=
〈

(

−M0a −N0g

b −M1a −N1g

)

,

(

τh

vh

)

〉

for all (τh, vh) ∈ Vh × Uh.

This is equivalent to

{

〈

V wh, τh

〉

S
−

〈 (

1
2I + K

)

uh, τh

〉

S
= −

〈

M0a + N0g, τh

〉

S
,

〈 (

1
2I + N

)

wh, vh

〉

S
+

〈

Wuh, vh

〉

S
+

〈

σuh, vh

〉

S
=

〈

b −M1a −N1g, vh

〉

S
,

(4.5)

for all (τh, vh) ∈ Vh × Uh.

Let

uh(x, t) =
n−1
∑

ℓ=0

m1−1
∑

i=0

uiℓϕ
1
i (x)ψ0

ℓ (t), wh(x, t) =
n−1
∑

ℓ=0

m0−1
∑

j=0

wjℓϕ
0
j (x)ψ0

ℓ (t).

Here, m0 = m1 in two dimensional case, n is the number of time steps, ϕ0
j (x) and ϕ1

i (x) are piecewise

constant and piecewise linear basis functions in space, respectively, and ψ0
ℓ (t) are piecewise constant

basis functions in time.

With these approximations we obtain the following linear system of equations:

{

Vhw − (1
2Mh + Kh)u = f1

(1
2M⊤

h + Nh)w + Whu + Mσ
h u = f2

where Vh,Kh, Nh and Wh are the Galerkin matrices corresponding to the boundary integral opera-

tors V,K, N and W , and Mh is the mass matrix, see [5, 14]. The vectors f1 and f2 are the related

vectors to the right hand sides.

Moreover, we introduce the mass matrix entries

Mσ
kℓ[j][i] = 〈σ(x, t)ϕ1

i (x)ψ0
ℓ (t), ϕ

1
j (x)ψ0

k(t)〉 =

T
∫

0

∫

Γ

σ(x, t)ϕ1
i (x)ψ0

ℓ (t)ϕ
1
j (x)ψ0

k(t) dsx dt,

which are zero whenever k 6= ℓ. For k = ℓ, we denote the matrix Mσ
ℓℓ by Mσ

ℓ .
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Note that the matrix 1
2M⊤

h + Nh can be obtained as follows. We first have the following (block)

lower triangular matrices:

Vh =















V0

V1 V0

... ... ...

Vn−2 Vn−3 V0

Vn−1 Vn−2 V0















, Wh =















W0

W1 W0

... ... ...

Wn−2 Wn−3 W0

Wn−1 Wn−2 W0















1

2
Mh + Kh =















K0

K1 K0

... ... ...

Kn−2 Kn−3 K0

Kn−1 Kn−2 K0















and then

1

2
M⊤

h + Nh =















K⊤
0

K⊤
1 K⊤

0

... ... ...

K⊤
n−2 K⊤

n−3 K⊤
0

K⊤
n−1 K⊤

n−2 K⊤
0















.

The linear system
(

Vh −(1
2Mh + Kh)

(1
2M⊤

h + Nh) Wh + Mσ
h

)(

w

u

)

=

(

f1

f2

)

can be rewritten as follows:














V0

V1 V0

... ... ...

Vn−2 Vn−3 V0

Vn−1 Vn−2 V0





























w0

w1

...

wn−2

wn−1















−















K0

K1 K0

... ... ...

Kn−2 Kn−3 K0

Kn−1 Kn−2 K0





























u0

u1

...

un−2

un−1















=















f1
0

f1
1

...

f1
n−2

f1
n−1















and














K⊤
0

K⊤
1 K⊤

0

... ... ...

K⊤
n−2 K⊤

n−3 K⊤
0

K⊤
n−1 K⊤

n−2 K⊤
0





























w0

w1

...

wn−2

wn−1















+

+















W0 + Mσ
0

W1 W0 + Mσ
1

... ... ...

Wn−2 Wn−3 W0 + Mσ
n−2

Wn−1 Wn−2 W0 + Mσ
n−1





























u0

u1

...

un−2

un−1















=















f2
0

f2
1

...

f2
n−2

f2
n−1















.

From the first two equations of the above systems, we obtain
(

V0 −K0

K⊤
0 W0 + Mσ

0

)(

w0

u0

)

=

(

f1
0

f2
0

)

=⇒
[

K⊤
0 V −1

0 K0 + W0 + Mσ
0

]

u0 = f2
0 − K⊤

0 V −1
0 f1

0 ,

since the matrix V0 is invertible, and then we can solve for u0 and w0. Therefore, wk and uk can

be found from the system
{

Vkw0 + Vk−1w1 + ... + V0wk − Kku0 − Kk−1u1 − ... − K0uk = f1
k

K⊤
k w0 + K⊤

k−1w1 + ... + K⊤
0 wk + Wku0 + ... + W1uk−1 + (W0 + Mσ

k )uk = f2
k

8



for k = 1, ..., n − 1. This system can be re-arranged as follows:

{

V0wk − K0uk = f1
k + Kku0 + Kk−1u1 + ... + K1uk−1 − Vkw0 − Vk−1w1 − ... − V1wk−1

K⊤
0 wk + (W0 + Mσ

k )uk = f2
k − K⊤

k w0 − ... − K⊤
1 wk−1 − Wku0 − ... − W1uk−1.

Observe that the matrices R
m1×m1 ∋ Ak

h := K⊤
0 V −1

0 K0 + W0 + Mσ
k , k = 0, ..., n− 1, are symmetric

and positive definite and the corresponding system of linear equations can be solved efficiently

using standard methods of inversion.

5 Variational method for the inverse problem I

Now we return to the inverse problem I consisting of determining {u(x, t), f(ξ)} from the system

of equations (2.1)–(2.4). If we suppose that g ∈ L2(Q), a ∈ L2(Ω), h ∈ L∞(S), f ∈ L2(Γ), b ∈
L2(S) and σ ∈ L∞(S), σ ≥ 0, then from Theorem 3.2, there exists a unique solution in W (0, T )

of the direct problem (2.1)–(2.3). Since u ∈ W (0, T ), we cannot determine the trace u(ξ, T1),

ξ ∈ Γ, 0 < T1 ≤ T in (2.5). Therefore, in this setting, we take the observation operator l as in (2.6).

Afterwards we use

1

γ

∫ T1

T1−γ
u(ξ, t)dt, (5.1)

where γ > 0 small, as an approximation to u(ξ, T1), if it exists. Here and thereafter, for simplicity,

we suppose that the weight ω ∈ L2(0, T ).

To emphasize the dependence of the solution u of (2.1)–(2.3) on the boundary data f , sometimes

we write it by u(x, t; f) or u(f). Now, the variational approach to the first inverse problem can be

considered as the problem of minimizing the functional

Jα(f) =
1

2

∫

Γ

(

∫ T

0
ω(t)u(ξ, t; f)dt − χ(ξ)

)2
dξ +

α

2
‖f‖2

L2(Γ)

=
1

2

∫

Γ
|l(u(f)) − χ|2dξ +

α

2
‖f‖2

L2(Γ) (5.2)

over L2(Γ), where u(x, t; f) solves (2.1)–(2.3) and α is the regularization parameter.

Since the mapping from f ∈ L2(Γ) to l(u) is affine, by the standard reasoning, we see that the

above minimization problem admits a unique solution, if α > 0.

We note that since the imbedding of the trace of W (0, T ) on S into L2(0, T ; L2(Γ)) is compact, the

mapping from f ∈ L2(Γ) to l(u(f)) ∈ L2(Γ) is compact. Hence the inverse problem in this setting

is ill-posed and so is the minimization problem for J0.

Now we find the gradient of Jα.

Take a variation δf ∈ L2(Γ) and consider problem (2.1)–(2.3) with the data f + δf instead of f .

We have the unique solution u(x, t; f + δf) ∈ W (0, T ).

Set v = u(x, t; f + δf) − u(x, t; f). Then, v ∈ W (0, T ) is the weak solution of

vt − ∆v = 0 in Q, (5.3)

v(x, 0) = 0, x ∈ Ω, (5.4)

∂v

∂n
+ σ(ξ, t)v = h(ξ, t)δf(ξ), (ξ, t) ∈ S. (5.5)

9



We have

J0(f + δf) − J0(f) =
1

2

∫

Γ

(

∫ T

0
ω(τ)

(

u(ξ, τ ; f) + v(ξ, τ ; δf)
)

dτ − χ(ξ)
)2

dξ

− 1

2

∫

Γ

(

∫ T

0
ω(τ)u(ξ, τ ; f)dτ − χ(ξ)

)2
dξ

=

∫

Γ

(

∫ T

0
ω(τ)v(ξ, τ ; δf)dτ

)(

∫ T

0
ω(τ)u(ξ, τ ; f)dτ − χ(ξ)

)

dξ

+
1

2

∫

Γ

(

∫ T

0
ω(τ)v(ξ, τ ; δf)dτ

)2
dξ.

To evaluate the first item in the last equation, we introduce the adjoint problem

−ψt − ∆ψ = 0 in Q, (5.6)

ψ(x, T ) = 0, x ∈ Ω, (5.7)

∂ψ

∂n
+ σ(ξ, t)ψ = ω(t)

(

∫ T

0
ω(τ)u(ξ, τ)dτ − χ(ξ)

)

on S. (5.8)

There exists a unique weak solution in W (0, T ) of this problem and applying Theorem 3.4 to

(5.3)–(5.5) and (5.6)–(5.7), we have that the identity (3.11) yields

∫

S

(

∫ T

0
ω(τ)u(ξ, τ ; f)dτ − χ(ξ)

)

ω(t)v(ξ, t)dξdt =

∫

S
h(ξ, t)δf(ξ)ψ(ξ, t)dξdt

=

∫

Γ

(

∫ T

0
ω(t)u(ξ, t; f)dt − χ(ξ)

)(

∫ T

0
ω(t)v(ξ, t)

)

dξ. (5.9)

On the other hand, in virtue of Theorem 3.2,

‖v‖W (0,T ) ≤ cd‖h‖L∞(Q)‖δf‖L2(Γ).

Hence

J0(f + δf) − J0(f) =

∫

S
h(ξ, t)ψ(ξ, t)δf(ξ)dξdt + o(‖δf‖L2(Γ)).

Thus, we conclude that the functional J0 is Fréchet differentiable and its gradient has the form

J ′
0(f) =

∫ T

0
h(ξ, t)ψ(ξ, t)dt. (5.10)

We immediately have

J ′
α(f) =

∫ T

0
h(ξ, t)ψ(ξ, t)dt + αf. (5.11)

Thus, the optimality condition for the problem (5.2), (2.1)–(2.3) is

∫ T

0
h(ξ, t)ψ(ξ, t)dt + αf = 0. (5.12)

If α > 0, then there is a unique solution fα to this problem.
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5.1 Boundary element method for the variational problem

Denoting the solution of the direct problem (2.1)–(2.3) with f = 0 by u0 and that with g = 0, a =

0, b = 0 by ū, then the solution of (2.1)–(2.3) is u = u0 + ū. The operator A0f = l(ū(f)) is linear

and bounded, and the operator Af = l(u(f)) = A0f + l(u0) is affine. Thus, the functional (5.2)

can be written in the form

Jα(f) =
1

2
‖Af − χ‖2

L2(Γ) +
1

2
α‖f‖2

L2(Γ)

=
1

2
‖A0f − (χ − l(u0))‖2

L2(Γ) +
1

2
α‖f‖2

L2(Γ)

:=
1

2
‖A0f − χ‖2

L2(Γ) +
1

2
α‖f‖2

L2(Γ).

It follows that the gradient of Jα can be represented as

J ′
α(f) = A∗

0(Af − χ) + αf. (5.13)

Here A∗
0 : L2(Γ) → L2(Γ) is the adjoint operator of A0 defined by A∗

0q =
∫ T
0 h(ξ, t)ψ(ξ, t)dt, where

ψ is the solution of the adjoint problem

−ψt − ∆ψ = 0 in Q, (5.14)

ψ(x, T ) = 0, x ∈ Ω, (5.15)

∂ψ

∂n
+ σ(ξ, t)ψ = ω(t)q(ξ), (ξ, t) ∈ S. (5.16)

Now, the optimality condition (5.12) can be rewritten in the form

A∗
0(Af − χ) + αf = 0, (5.17)

from which we see immediately that there exists a unique solution fα of it, if α > 0.

Using the ansatz functions Vh×Uh as described in Section 4 with mesh size h in space variable and

∼
√

h in time variable, we can derive the error estimate

‖u − uh‖L2(Γ) ≤ ch‖f‖L2(Γ) (5.18)

with c being a positive constant. Defining

A0,hf =

∫ T

0
ω(t)uh(ξ, t; f)dt,

we conclude that

‖A0f − A0,hf‖L2(Γ) ≤ ch‖f‖L2(Γ).

Hence the discrete version of the optimal control problem (5.2), (2.1)–(2.3) reads

min
f∈L2(Γ)

(1

2
‖A0,hf − χ‖2

L2(Γ) +
α

2
‖f‖2

L2(Γ)

)

(5.19)

which is characterized by the first-order optimality condition

A∗
0,h(A0,hfα

h − χ) + αfα
h = 0. (5.20)
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Here A∗
0,h : L2(Γ) → L2(Γ) is the adjoint operator of A0,h defined by

A∗
0,h(A0,hfh − χ) =

∫ T
0 h(ξ, t)ψ(ξ, t)dt, where ψ is the solution of the adjoint problem

−ψt − ∆ψ = 0 in Q, (5.21)

ψ(x, T ) = 0, x ∈ Ω, (5.22)

∂ψ

∂n
+ σ(ξ, t)ψ = ω(t)(A0,hfh − χ)(ξ), (ξ, t) ∈ S. (5.23)

If we solve the last problem by the BEM, then we get an approximation Â∗
0,h of A∗

0,h for which

‖A∗
0,h − Â∗

0,h‖ ≤ ch. (5.24)

Thus, we arrive at the variational problem

Â∗
0,h(A0,hf̂α

h − χǫ) + αf̂α
h = 0 (5.25)

with a perturbation χǫ of χ satisfying

‖χ − χǫ‖L2(Γ) ≤ ǫ. (5.26)

By the same technique as in the proof of Theorem 1 in [5] we can prove that if fα is the solution

of the problem (5.12) and α > 0, then

‖fα − f̂α
h ‖L2(Γ) ≤ c(h + ǫ) (5.27)

with c being a constant depending on fα, χ and α.

5.2 Conjugate gradient method for problem (2.1)–(2.4)

1. Initialization

1.1. Choose an initial guess f0 ∈ L2(Γ).

1.2. Calculate the residual r̃0 = Ahf0 − χǫ by solving the direct problem (2.1)–(2.3) with f = f0

by BEM.

1.3. Calculate Jα(f0) = 1
2‖r̃0‖2 + α

2 ‖f0‖2.

1.4. Calculate the gradient r0 by solving the adjoint problem (5.14)–(5.16) with q = r̃0 and set

r0 =

∫ T

0
h(ξ, t)ψ0(ξ, t)dt + αf0.

1.5. Define d0 = −r0.

2. For n = 1, 2, . . .

2.1. Solve (2.1)–(2.3) with g = 0, a = 0, b = 0 and f = dn for calculating A0,hdn. Calculate

αn =
‖rn‖2

‖A0,hdn‖2 + α‖dn‖2
.

2.2. Update fn+1 = fn + αndn.

2.3. Calculate the residual r̃n+1 = r̃n + αnA0,hdn.
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2.4. Calculate the gradient rn+1 by solving the adjoint problem (5.14)–(5.16) with q = r̃n+1 and

set

rn+1 =

∫ T

0
h(ξ, t)ψn+1(ξ, t)dt + αfn+1.

2.5. Jα(fn+1) = 1
2‖r̃n+1‖2 + 1

2α‖fn+1‖2.

2.6. βn = ‖rn+1‖2

‖rn‖2 .

2.7. Update dn+1 = −rn+1 + βndn.

When α = 0, stop at the first n such that ‖r̃n‖ ≤ γ1ǫ, where γ1 is some number greater than 1, or

when ‖rn‖ < ǫ. This discrepancy principle stopping criterion is required in order to achieve a stable

solution, [11]. We can also choose α > 0 as the regularization parameter in Tikhonov’s method

and stop the algorithm with a tolerance error. Of course, as the CGM is in itself a regularizing

method, there is, in principle, no need to include a regularization term in the functional (5.2)

that is minimized. As recently investigated in [5], both methods with or without α included

produce similar results. However, the choice of γ1 > 1 in the CGM with α = 0 is not obvious

and moreover, the inclusion of α > 0 in the CGM tends to achieve a more robust stability than

when α = 0. Finally, we mention that the Tikhonov functional (5.2) with α > 0 is recommended

when used in conjunction with other iterative algorithms for minimization which do not necessarily

have a regularizing effect. This is because otherwise, when α = 0, stopping the iterations at a

threshold given by the discrepancy principle, for example, does not guarantee that a stable solution

is obtained.

5.3 Numerical examples

The one-dimensional spacewise ambient temperature case has been numerically investigated at

length in [13] and therefore, in this subsection the emphasis is put on the multi-dimensional (two-

dimensional) framework. We consider three examples in decreasing order of smoothness, namely:

smooth, piecewise smooth and discontinuous functions.

In all examples in this subsection, Ω = (0, 1) × (0, 1), T = 1, g = 0, a = 0, σ(ξ, t) = ξ2
1 + ξ2

2 + 1,

h(ξ, t) = ξ1 + ξ2 + sin( t
2 + 1), where ξ = (ξ1, ξ2). For the temperature we take the exact solution

be given by, see [2],

u(x, t) =
100

4πt
e−

|x−x0|
2

4t , (5.28)

where x0 = (−1,−1). Then prescribing f we can take b given by

b(ξ, t) :=
∂u

∂n
+ σ(ξ, t)u − h(ξ, t)f(ξ), (ξ, t) ∈ S. (5.29)

The measurement (2.4) is obtained directly from (5.28), via (2.6) or (5.1). In the case of the integral

measurement (2.6) we take ω(t) = t2 + 1. In the case of the terminal-integral measurement (5.1),

γ = 10−5 is fixed throughout, and the terminal time T1 is varied within the interval (0, T ].

In order to investigate the stability of the numerical solution we add noise to the measurement

(2.4), as

χnoisy = χ + ǫ × rand(1), (5.30)

where rand(1) gives random variables in the interval [−1, 1].
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The number of boundary elements is taken as M = 256 and the number of time steps is taken as

N = 128. These numbers are found sufficiently large to ensure that any further increase in them

did not significantly affect the accuracy of the numerical results.

For simplicity, we illustrate the results obtained with α = 0 and the CGM stopped according to the

discrepancy principle with γ1 = 1.05 starting with the initial guess f0 = 0. We have also tested the

unstopped CGM, but regularized with a positive α such as α = 10−5, and we have found similar

results. Therefore, these latter results are not illustrated.

We aim to retrieve the following functions representing the spacewise dependent ambient temper-

ature:

f(ξ) = ξ1 + ξ2 for Example 1, (5.31)

f(ξ) =

{

−
∣

∣ξ1 − 1
2

∣

∣ + 1
2 if ξ2 ∈ {0, 1}, ξ1 ∈ (0, 1),

−
∣

∣ξ2 − 1
2

∣

∣ + 1
2 if ξ1 ∈ {0, 1}, ξ2 ∈ (0, 1)

for Example 2, (5.32)

f(ξ) =

{

1 if ξ2 ∈ {0, 1}, ξ1 ∈ (0, 1),

0 elsewhere
for Example 3. (5.33)

Example ǫ n∗ ‖f − fn∗‖L2(Γ)

1 10−3 6 0.014053

1 10−2 3 0.043466

1 10−1 2 0.136111

2 10−3 7 0.013738

2 10−2 4 0.053866

2 10−1 3 0.094848

3 10−3 13 0.223736

3 10−2 7 0.376212

3 10−1 2 0.665324

Table 1: The stopping CGM iteration numbers n∗ and the L2(Γ)-errors ‖f−fn∗‖L2(Γ) for Examples

1–3 of the inverse problem I with the integral observation (2.6) perturbed by various levels of noise

ǫ ∈ {10−3, 10−2, 10−1}.

Figure 1 shows the the comparison between the exact and numerical solutions of the inverse problem

I with the integral observation (2.6) perturbed by various levels of noise ǫ ∈ {10−3, 10−2, 10−1} for

Examples 1–3. These levels of noise yield the stopping CGM iteration number n∗ and the L2(Γ)-

errors ‖f −fn∗‖L2(Γ) given in Table 1. From Figure 1 and Table 1 it can be seen that the numerical

solutions for all three Examples 1–3 are stable and they become more accurate as the level of noise

ǫ decreases. Obviously, Examples 2 and 3 are more difficult to retrieve accurately because the

functions (5.32) and (5.33) are less regular than the smooth function (5.31). Finally, the low values

of the stopping iteration numbers n∗ reported in Table 1 show that the CGM rapidly achieves the

required level of stability and accuracy.

Next we discuss the numerical results obtained for the inverse problem I with the terminal obser-

vation (2.5). As previously mentioned at the beginning of Section 5, since the trace (2.5) is not

defined for the weak solution, we use instead the measurement (5.1), which is of the integral type

(2.6) with

ω(t) =

{

1
γ , if t ∈ [T1 − γ, T1],

0, otherwise.
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Example T1 n∗ ‖f − fn∗‖L2(Γ)

1 T/3 2 0.128147

1 2T/3 2 0.141655

1 T 2 0.132975

2 T/3 3 0.104567

2 2T/3 3 0.096957

2 T 3 0.086336

3 T/3 9 0.276654

3 2T/3 9 0.274843

3 T 10 0.274150

Table 2: The stopping CGM iteration numbers n∗ and the L2(Γ)-errors ‖f−fn∗‖L2(Γ) for Examples

1–3 of the inverse problem I with terminal-integral observation (5.1) perturbed by ǫ = 10−1 noise

for Example 1, ǫ = 10−2 noise for Example 2, and ǫ = 10−3 noise for Example 3, for various

terminal times T1 ∈ {T/3, 2T/3, T}.

Letting γ > 0 small, such as γ = 10−5, we expect (5.1) to become a good approximation to

(2.5). Figure 2 shows the comparison between the exact and numerical solutions for the spacewise

dependent ambient temperature of the inverse problem I with the terminal-integral observation

(5.1), with γ = 10−5, perturbed by ǫ = 10−2 noise for various terminal times T1 ∈ {T/3, 2T/3, T}
for Examples 1-3. The stopping CGM iteration numbers n∗ and the L2(Γ)-errors ‖f − fn∗‖L2(Γ)

are given in Table 2. From Figure 2 and Table 2 it can be seen that the numerical solutions for all

three Examples 1–3 are stable and they are quite insensitive to the choice of the terminal time T1.

6 Variational method for the inverse problem II

As in Section 5, since u ∈ W (0, T ) we cannot determine the trace u(ξ0, t), t ∈ [0, T ], ξ0 ∈ Γ in

(2.11). Therefore, in this setting, we take the observation operator l1 as in (2.12). Afterwards, we

use

1

2γ

∫

Γ(ξ0,γ)={ξ∈Γ||ξ−ξ0|≤γ}
u(ξ, t)dξ, (6.1)

where γ > 0 is small, as an approximation to u(ξ0, t), if it exists. Here and thereafter, for simplicity

we suppose that the weight ν ∈ L2(Γ).

The variational setting of the inverse problem II given by equations (2.7)–(2.10) and (2.12) is as

follows.

Minimize the functional

Jα(f) =
1

2
‖l1(u(f) − χ1‖2

L2(0,T ) +
α

2
‖f‖2

L2(0,T )

=
1

2

∫ T

0

∣

∣

∣

∫

Γ
ν(ξ)u(ξ, t; f)dξ − χ1(t)

∣

∣

∣

2
dt +

α

2
‖f‖2

L2(0,T ), (6.2)

where u = u(x, t; f) is the solution in W (0, T ) of the problem (2.7)–(2.9) with g ∈ L2(Q), a ∈
L2(Ω), σ ∈ L∞(S), σ ≥ 0, h ∈ L2(S), ν ∈ L2(Γ), and χ1 ∈ L2(0, T ) being given.

There exists a unique solution in W (0, T ) of problem (2.7)–(2.9) for f ∈ L2(0, T ), therefore, the

problem setting has a meaning. Furthermore, since the trace of the space W (0, T ) on S is compactly

imbedded into L2(0, T ), the problem (6.2), (2.7)–(2.9) is ill-posed when α = 0.
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By the same arguments in the variational method for the inverse problem I, as described in Section

5, we can prove that there exists a solution of this minimization problem, the functional (6.2) is

Fréchet differentiable and if ψ is the solution of the adjoint problem

−ψt − ∆ψ = 0 in Q, (6.3)

ψ(x, T ) = 0, x ∈ Ω, (6.4)

∂ψ

∂n
+ σ(ξ, t)ψ = ν(ξ)

(

∫

Γ
ν(ξ)u(ξ, t; f)dξ − χ1(t)

)

, (ξ, t) ∈ S, (6.5)

then

J ′
0(f) =

∫

Γ
h(ξ, t)ψ(ξ, t)dξ.

and

J ′
α(f) = J ′

0(f) + αf.

Denote the solution the direct problem (2.7)–(2.9) with f = 0 by u0 and that with g = 0, a = 0, b = 0

by ū, then the solution of (2.7)–(2.9) is u = u0 + ū. The operator A0f = l1(ū(f)) is linear and

bounded, and the operator Af = l(u(f)) = A0f + l1(u0) is affine.

6.1 Conjugate gradient method for problem (6.2), (2.7)–(2.9)

1. Initialization

1.1. Choose an initial guess f0 ∈ L2(0, T ).

1.2. Calculate the residual r̃0 = Af0 − χǫ by solving the direct problem (2.7)–(2.9) with f = f0.

1.3. Calculate Jα(f0) = 1
2‖r̃0‖2 + α

2 ‖f0‖2.

1.4. Calculate the gradient r0 by solving the adjoint problem (6.3)–(6.5) with the right hand side

of (6.5) equal to ν(ξ)r̃0 and set

r0 =

∫

Γ
h(ξ, t)ψ0(ξ, t)dξ + αf0.

1.5. Define d0 = −r0.

2. For n = 1, 2, . . .

2.1. Solve (2.7)–(2.9) with g = 0, a = 0, b = 0 and f = dn for calculating A0dn. Calculate

αn =
‖rn‖2

‖A0dn‖2 + α‖dn‖2
.

2.2. Update fn+1 = fn + αndn.

2.3. Calculate residual r̃n+1 = r̃n + αnA0dn.

2.4. Calculate the gradient rn+1 by solving the adjoint problem (6.3)–(6.5) with the right hand

side of (6.5) equal to ν(ξ)r̃n+1 and set

rn+1 =

∫

Γ
h(ξ, t)ψn+1(ξ, t)dξ + αfn+1.

2.5. Jα(fn+1) = 1
2‖r̃n+1‖2 + 1

2α‖fn+1‖2.
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2.6. βn = ‖rn+1‖2

‖rn‖2 .

2.7. Update dn+1 = −rn+1 + βndn.

When α = 0 stop at the first n such that ‖r̃n‖ ≤ γ1ǫ, or when ‖rn‖ < ǫ. Otherwise, choose α > 0 as

the regularization parameter in Tikhonov’ method and stop the algorithm with a tolerance error.

6.2 Numerical example

The one-dimensional timewise ambient temperature case has been numerically investigated at

length in [12] and therefore, in this subsection the emphasis is put on the two-dimensional frame-

work.

We take Ω = (0, 1) × (0, 1), T = 1, g = 0, a = 0, σ(ξ, t) = ξ2
1 + ξ2

2 + 1, h(ξ, t) = sin(ξ1 + ξ2) + t2 + 1.

For the temperature we take the exact solution (5.28). Then prescribing f we can take b given by

b(ξ, t) :=
∂u

∂n
+ σ(ξ, t)u − h(ξ, t)f(t), (ξ, t) ∈ S. (6.6)

The measurement (2.10) is obtained directly from (5.28), via (2.12) or (6.1). In the case of the

integral measurement (2.12) we take ν(ξ) = ξ1+ξ2+1. In the case of the point-integral measurement

(6.1), γ = 10−5 is fixed throughout, and ξ0 ∈ Γ is taken arbitrary, for example ξ0 = (0.5, 0) or

ξ0 = (0.9375, 0).

In order to investigate the stability of the numerical solution we add noise to the measurement

(2.10), similarly as in (5.30).

As in subsection 5.3, we take M = 256, N = 128, α = 0, γ1 = 1.05 and f0 = 0. In order to avoid

repetition with the previous spacewise dependent case discussed at length in subsection 5.3 we only

present numerical results for retrieving a severe discontinuous time-dependent ambient temperature

given by

f(t) =

{

1, if t ∈ (1/3, 2/3),

0, otherwise
for Example 4. (6.7)

Although not illustrated, it is reported that for smoother examples, e.g. f(t) = sin(2πt), we obtained

excellent numerical results which were found in good agreement and stability with the available

exact solutions.

Figures 3(a)–3(c) show the comparison between the exact and numerical solutions for the timewise

varying ambient temperature (6.7) of the inverse problem II with the integral observations (2.12),

(6.1) with γ = 10−5, ξ0 = (0.5, 0) and ξ0 = (0.9375, 0), respectively, perturbed by various levels of

noise ǫ ∈ {10−3, 10−2, 10−1} for Example 4. These levels of noise yield the stopping CGM iteration

numbers n∗ and the L2(0, T )-errors ‖f − fn∗‖L2(0,T ) given in Table 3. From this table and by

comparing Figure 3(a) with Figures 3(b) and 3(c) it can be seen that the integral observation

(2.12) yields more accurate results than the point-integral observation (6.1). Also, changing the

boundary point ξ0 ∈ Γ at which a thermocouple/sensor takes the measurement (2.11) shows some

slight sensitivity in the numerically retrieved results, see Table 3 and compare Figures 3(b) and

3(c). Overall, from Figure 3 and Table 3 it can be seen that the numerical solution for Example 4

is stable and becomes more accurate as the level of noise ǫ decreases.
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Observation ǫ n∗ ‖f − fn∗‖L2(Γ)

(2.12) 10−3 23 0.059861

(2.12) 10−2 13 0.060511

(2.12) 10−1 7 0.081467

(6.1) at ξ0 = (0.5, 0) 10−3 10 0.066628

(6.1) at ξ0 = (0.5, 0) 10−2 4 0.120731

(6.1) at ξ0 = (0.5, 0) 10−1 2 0.191686

(6.1) at ξ0 = (0.9375, 0) 10−3 9 0.062297

(6.1) at ξ0 = (0.9375, 0) 10−2 4 0.080687

(6.1) at ξ0 = (0.9375, 0) 10−1 2 0.153459

Table 3: The stopping CGM iteration numbers n∗ and the L2(0, T )-errors ‖f − fn∗‖L2(0,T ) for

Example 4 of the inverse problem II with integral observation (2.12) or (6.1) perturbed by various

levels of noise ǫ ∈ {10−3, 10−2, 10−1}.

7 Conclusions

Multi-dimensional inverse heat conduction problems which require determining the space- or time-

dependent ambient temperature appearing in the convective Robin boundary conditions of the

third-kind from additional terminal, point or integral measurements have been investigated. The

problems have been formulated as least-squares problems and formulae for the gradients have been

delivered. A numerical method based on the CGM+BEM has been developed for obtaining a stable

numerical solution when the input data is subject to noise. Numerical results for several benchmark

test examples were presented in order to illustrate the feasibility of the approach. Intuitively, in

the dimension > 2, the spacewise retrieval of the ambient temperature considered in the inverse

problem I is more difficult than the timewise retrieval considered in the inverse problem II since

we have more unknowns. But clearly, for a reliable comparison one would need to estimate the

rate of decay of the singular values of the linear/affine operators involved in expressions (5.2) and

(6.2) for the inverse problems I and II. This difficult task is deferred to a future work. Analogous

multi-dimensional, but nonlinear inverse problems which require determining the space- and time-

dependent heat transfer coefficient will be investigated in a separate future work, [6].
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Figure 1: The exact and numerical spacewise dependent ambient temperature, as a function of

the arclength s along the boundary Γ (starting from the origin), for various levels of noise ǫ ∈
{10−3, 10−2, 10−1}, for Examples 1–3 (inverse problem I with the integral observation (2.6)).
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(c) Example 3

Figure 2: The exact and numerical spacewise dependent ambient temperature, as a function of

the arclength s along the boundary Γ (starting from the origin), for ǫ = 10−2 and various instants

T1 ∈ {T/3, 2T/3, T}, for Examples 1–3 (inverse problem I with the terminal-integral observation

(5.1) and γ = 10−5).
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(a) Example 4 with the integral observation (2.12)
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(b) Example 4 with the point-integral observation (6.1) at

ξ0 = (0.5, 0) and γ = 10−5
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(c) Example 4 with the point-integral observation (6.1) at

ξ0 = (0.9375, 0) and γ = 10−5

Figure 3: The exact and numerical timewise varying ambient temperature, for various levels of

noise ǫ ∈ {10−3, 10−2, 10−1} for Example 4, inverse problem II.
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