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Hepatitis C virus (HCV) NS5A protein is phosphorylated on multiple residues; however, despite

extensive study, the precise identity of these sites has not been determined unambiguously. In this

study, we have used a combination of immunoprecipitation and mass spectrometry to identify

these phosphorylation sites. This analysis revealed the presence of a major phosphorylated

residue within NS5A from the genotype 1b Con1 isolate – serine 249 (serine 2221 in polyprotein

numbering). However, mutation of this residue (or the corresponding threonine in the JFH-1

isolate) to either a phosphomimetic (aspartate) or a phosphoablative (alanine) residue resulted in

no phenotype. We conclude that phosphorylation of this residue, in the context of a highly culture-

adapted HCV genome, does not play a role in either viral RNA replication or virus assembly. It is

possible that it might be important in an aspect of virus biology that is not recapitulated faithfully in

the Huh-7 cell-culture system.

Hepatitis C virus (HCV) is estimated to infect some
123 million individuals (Shepard et al., 2005), and
establishes a chronic infection that can ultimately result
in liver fibrosis, cirrhosis or hepatocellular carcinoma.
Combination therapy comprising pegylated alpha inter-
feron (IFN-a) and ribavirin is only successful in approxi-
mately 50% of patients. HCV, a member of the family
Flaviviridae, is an enveloped virus with a positive-sense
RNA genome 9.6 kb in length and containing a single ORF.
An internal ribosome entry site mediates cap-independent
translation of the 3000 aa polyprotein, which is cleaved co-
and post-translationally by host-cell and viral proteases to
release the structural proteins (core, E1, E2 and p7) and
non-structural proteins (NS2, NS3, NS4A, NS4B, NS5A
and NS5B).

NS5A has been shown to have many functions: foremost,
as a component of the RNA replication complex, it is
absolutely required for viral RNA replication. Structural
analysis has revealed that NS5A comprises three domains
separated by short low-complexity regions (Tellinghuisen
et al., 2004) (Fig. 1, top). The structure of domain I
has been determined; it coordinates a zinc ion and is
postulated to dimerize (Love et al., 2009; Tellinghuisen
et al., 2005). Domains II and III are less structured and
more flexible; in particular, domain III can accommodate a
GFP insert at the C terminus with no adverse effects (Appel
et al., 2005; McCormick et al., 2006b; Moradpour et al.,
2004). By SDS-PAGE and Western blotting, two forms of
the protein with different apparent mobilities can be

observed: these correspond to alternatively phosphorylated
forms of NS5A – a basally phosphorylated form (apparent
molecular mass 56 kDa) and a hyperphosphorylated form
(58 kDa). Proline-directed kinases such as casein kinase II
(CKII) have been implicated in basal phosphorylation
(Reed et al., 1997), and CKIa has been implicated in
hyperphosphorylation (Quintavalle et al., 2007); however,
there is little consensus as to either the locations or the
number of phosphorylation sites on both forms of NS5A.
Basal phosphorylation sites have been shown to be present
in both domains II and III (Tanji et al., 1995) and
hyperphosphorylation sites have also been mapped to
domain II (Katze et al., 2000; Tanji et al., 1995).
Interestingly, inhibition of hyperphosphorylation either
pharmacologically or by mutation enabled replication of a
non-culture-adapted genotype 1b subgenomic replicon
(Appel et al., 2005; Neddermann et al., 2004).

In order to assign phosphorylation sites unambiguously
within NS5A, we adopted a mass-spectrometric (MS)
approach. We showed previously that a recombinant
baculovirus containing a tetracycline-responsive mammalian
promoter (a BacMAM vector termed FBrepcon1neo;
McCormick et al., 2006a) could be used to drive high levels
of expression of a Con1-derived genotype 1b NS3-5B
subgenomic replicon in HepG2 cells. Importantly, HepG2
supported the replication of a subgenomic replicon delivered
via the baculovirus route, as judged by induction of an IFN-b
response that was not seen following delivery of a GND-
mutant (replication-defective) replicon (McCormick et al.,
2004). Furthermore, NS5A expressed from this vector
exhibited both basal and hyperphosphorylated species (p56
and p58) (McCormick et al., 2006a), similar to those observed
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in Huh7 cells stably harbouring subgenomic replicons. HepG2
cells were therefore transduced with a BacMAM vector
expressing the tetracycline transactivator (BactTA) together
with FBrepcon1neo; NS5A was purified from cell lysates by
using protein G–agarose and polyclonal sheep anti-NS5A
serum, separated by SDS-PAGE and stained with colloidal
blue stain. The p58 band was excised and submitted for MS
analysis. Peptides from a trypsin digest were analysed on two
systems independently: firstly, a 4000QTRAP system, where
precursor ion scanning was used to identify phosphorylated
peptides (Fingerprints Proteomics Facility, University of
Dundee, UK) (Fig. 1), and secondly, a Waters Synapt
HDMS system (Astbury Centre for Structural Molecular
Biology, University of Leeds, UK) (data not shown). Potential
phosphorylated peptides were then identified by MS/MS. In
both cases, only one major phosphorylated peptide was
identified. This was HDpSPDADLIEANLLWR [phospho-
serine 249 (serine 2221 in polyprotein numbering)], which is
situated at the junction of the first low-complexity sequence

and domain II. This site has not been identified previously as
a phosphorylation site, although it is situated close to a cluster
of serine residues that have been postulated to be involved in
hyperphosphorylation (serines 2197, 2201 and 2204) (Tanji
et al., 1995). There are a number of reasons why other
phosphorylated peptides were not identified, including
inefficient ionization, low stoichiometry and failure of some
peptides to be captured by the ion trap. Therefore, the failure
to identify other phosphorylation sites does not mean that the
BacMAM-expressed NS5A in HepG2 cells is not phosphory-
lated on other residues. However, the identification of
phospho-serine 249 by using two different systems in
independent experiments suggests that this is a major site of
phosphorylation within the hyperphosphorylated form of
NS5A.

In order to assess the potential significance of phosphor-
ylation at this residue for viral genomic replication, we
generated two mutant forms of the FK5.1 culture-adapted
subgenomic replicon (Krieger et al., 2001) in which serine
249 was mutated to either an alanine (phosphoablative) or
an aspartic acid (phosphomimetic) by PCR (oligonucleo-
tide sequences are available upon request). We chose FK5.1
because the Con1 replicon is not culture-adapted and does
not replicate at a sufficient level to allow discrimination
between wild type and mutants with impaired replication
efficiency. In vitro transcripts of the FK5.1 replicons were
electroporated into Huh7 cells; cells were then selected for
3 weeks with 1 mg G418 ml21, prior to either staining for
colony-forming assays or generation of stable polyclonal
replicon-harbouring cell lines. Neither mutation had any
effect on either the number of colonies (Fig. 2a) or the
p56 : p58 ratio (Fig. 2b). In order to exclude the possibility
that the replicons had reverted to the wild-type sequence,
RNA was extracted from cells, reverse-transcribed, amp-
lified using PCR, cloned and sequenced (data not shown).
All clones examined contained the original mutation and
had thus not reverted to wild type.

These data were also confirmed in the context of a
transient, luciferase-based FK5.1 subgenomic replicon. In
vitro transcripts of the FK5.1 luciferase replicons were
electroporated into Huh7 cells, and luciferase activity was
measured at both 4 h post-transfection (to assess transfec-
tion efficiency and translation of input RNA) and 72 h (to
assess RNA replication) (Fig. 2c). Relative replication levels
for both mutants were similar to those of the wild type.

Serine 249 is almost completely conserved in all genotype 1
isolates of HCV; however, this residue is not conserved
in other genotypes (Kuiken et al., 2005). Notably, the
equivalent residue in the only isolate that has the capacity
for replication in cell culture, JFH-1, is threonine. In
addition to this, a serine is situated two residues N-
terminally (serine 247) in JFH-1 NS5A (Fig. 3a). The data
in Fig. 2 demonstrated that phosphorylation of serine 249
was dispensable for RNA replication; therefore, to test
whether the presence of a phosphorylatable residue at this
position was important for the role of NS5A in virus

Fig. 1. MS identification of serine 249 phosphorylation. At the top,

a schematic of the structure of NS5A is depicted, showing the

location of the phosphopeptide. LCS, Low-complexity sequence.

For MS analysis, HepG2 cells were seeded onto rat tail collagen-

coated plates and transduced with BactTA and FBrepcon1neo at

800 p.f.u. per cell each, as described previously (McCormick et al.,

2006a). Cells were lysed 24 h post-transduction and NS5A was

purified by using protein G beads and a polyclonal sheep anti-

NS5A serum (Macdonald et al., 2003). Following SDS-PAGE, the

colloidal blue-stained band corresponding to p58 was excised and

digested with trypsin. The tryptic digests were analysed by liquid

chromatography–MS with precursor ion scanning on a

4000QTRAP system. Sums of the peptide masses detected by

precursor ion scanning in the negative-ion mode across the

45 min HPLC separation are shown. The peptide was identified

from the MS/MS fragmentation spectra by database searching and

manual inspection of the spectra. amu, Atomic mass units.

NS5A phosphorylation site
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assembly (Appel et al., 2008; Hughes et al., 2009; Masaki
et al., 2008; Tellinghuisen et al., 2008a), we mutated either
serine 247 or threonine 249 to either alanine or aspartic
acid in the context of full-length JFH-1 virus (Wakita et al.,
2005), previously modified to contain synonymous muta-
tions generating unique restriction sites flanking NS5A
(Hughes et al., 2009). Somewhat surprisingly, neither
mutation had a substantial effect on either virus assembly

or release (Fig. 3a). HCV protein synthesis in infected cells
(Fig. 3b) and the NS5A p56 : p58 ratio were also unaffected.
We conclude that phosphorylation of these residues is not
important for either virus genome replication or particle
assembly; however, we cannot rule out the possibility that,
unlike Con1, in the context of FK5.1 or JFH-1 these
residues are not phosphorylated. To test this, it would be
necessary to express either the FK5.1 subgenomic replicon
or full-length JFH-1 in HepG2 cells using a BacMAM
vector and analyse the phosphorylation status of NS5A.
Such experiments are under way in our laboratory.

What, then, might be the role of phosphorylation of serine
249? It is possible that, in the context of the culture-
adapted FK5.1 subgenomic replicon or the highly effi-
ciently replicating JFH-1 genome, there is no requirement

Fig. 2. Role of serine 249 phosphorylation in genotype 1b RNA

replication. (a) Huh7 cells (4�106) were electroporated with the

indicated in vitro-transcribed FK5.1 RNAs (2 mg), selected in the

presence of G418 (1 mg ml”1) for 3 weeks and colonies were

stained with Coomassie brilliant blue. Number of colonies

produced is presented as a percentage of the initial number of

electroporated cells. (b) Western blot analysis of lysates from

stable cell lines harbouring the indicated FK5.1 replicons with

sheep polyclonal antiserum to either NS3 (Aoubala et al., 2001) or

NS5A (Macdonald et al., 2003). (c) Huh7 cells were electro-

porated with replicon RNA and harvested into passive lysis buffer

(Promega) at the indicated time points (black bars, 4 h; grey bars,

72 h). Luciferase activity (relative luciferase units; RLU) was

measured as described previously (Macdonald et al., 2003). In

both graphs, error bars show SEM; data from three independent

experiments are shown.

Fig. 3. Role of serine 247/threonine 249 phosphorylation in

assembly and release of infectious HCV. (a) Sequence of the

region surrounding serine 249 in Con1, J4 and JFH-1 NS5A.

Mutated residues are shown in bold. Huh7 cells (4�106) were

electroporated with the indicated in vitro-transcribed virus RNAs

(10 mg) and virus release into the culture supernatant (black bars)

was measured by focus-forming assay (Hughes et al., 2009).

Intracellular virus titres (grey bars) were measured by focus-

forming assay following cell disruption by repetitive freeze–thaw

at 72 h post-transfection (p.t.). (b) Huh7 cells were electro-

porated with the indicated virus RNAs and harvested at 48 h p.t.

by lysis in Glasgow lysis buffer (Harris & Coates, 1993). Protein

(10 mg) was analysed by Western blotting with antiserum to

NS5A or glyceraldehyde-3-phosphate dehydrogenase (GAPDH)

as indicated.
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for phosphorylation of this residue. However, in the
context of the non-culture-adapted infectious clones (e.g.
H77, J4, Con1), the phosphorylation of serine 249 might
be important in some aspect of NS5A function. Indeed,
the acquisition of culture-adaptive mutations in NS5A
has been shown to correlate with a loss of hyperpho-
sphorylation, even when the mutations were not at serine
residues (Blight et al., 2000). It will be of interest to
investigate the potential role of serine 249 phosphoryla-
tion in the context of the infectious genotype 1b virus
described recently (Pietschmann et al., 2009). However,
as acknowledged in that publication, the very low
replicative capacity of this isolate in Huh7 cells will
render such an investigation technically challenging. One
attractive hypothesis that may be more tractable to
investigation is the potential structural role of serine 249.
As it is followed by a proline residue, phosphorylation of
serine 249 might influence the recognition of this proline
by peptidyl–prolyl isomerases such as cyclophilin A, a
known NS5A-interacting partner that is important for
viral RNA replication. The location of serine 249,
precisely at the N terminus of domain II of NS5A,
might allow phosphorylation to influence the spatial
orientation of that domain with respect to domain I by
mediating the cis–trans isomerization of the peptidyl–
prolyl bond. Structural studies (e.g. NMR) on purified
wild-type and mutant NS5A, phosphorylated in vitro,
might shed light on this issue, but represent significant
technical challenges.
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