
This is a repository copy of A family of abundant plasma membrane-associated 
glycoproteins related to the arabinogalactan proteins is unique to flowering plants.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/83728/

Version: Published Version

Article:

Pennell, RI, Knox, JP, Scofield, GN et al. (2 more authors) (1989) A family of abundant 
plasma membrane-associated glycoproteins related to the arabinogalactan proteins is 
unique to flowering plants. The Journal of Cell Biology, 108 (5). 1967 - 1977. ISSN 
0021-9525 

https://doi.org/10.1083/jcb.108.5.1967

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright 
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy 
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The 
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White 
Rose Research Online record for this item. Where records identify the publisher as the copyright holder, 
users can verify any specific terms of use on the publisher’s website. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


A Family of Abundant Plasma Membrane-associated Glycoproteins 

Related to the Arabinogalactan Proteins Is Unique to Flowering Plants 

R o g e r  I. Pennel l ,*  J. Pau l  Knox,*  G r a h a m  N. Scofield,* R o b e r t  R .  Se lvendran ,*  a n d  Ke i th  Rober t s*  

* Department of Cell Biology, John Innes Institute, Norwich, NR4 7UH, England; and ~ Institute of Food Research, 
Norwich Laboratory, Norwich, NR4 7UA, England 

Abstract. We have identified a family of abundant pe- 

ripheral plasma membrane glycoproteins that is unique 

to flowering plants. They are identified by a monoclo- 

nal antibody, MAC 207, that recognizes an epitope 

containing L-arabinose and o-glucuronic acid. Immu- 

nofluorescence and immunogold labeling studies locate 

the MAC 207 epitope to the outer surface of the 

plasma membrane both in protoplasts and in intact tis- 

sues. In some cells MAC 207 also binds to the vacuo- 

lar membrane, probably reflecting the movement of the 

plasma membrane glycoproteins in the endocytic path- 

way. The epitope recognized by MAC 207 is also pres- 

ent on a distinct soluble proteoglycan secreted into the 

growth medium by carrot (Daucus carom) suspension 

culture cells. Biochemical evidence identifies this neu- 

tral proteoglycan as a member of the large class of 

arabinogalactan proteins (AGPs), and suggests a struc- 

tural relationship between it and the plasma membrane 

glycoproteins. AGPs have the property of binding to 

/5-glycans, and we therefore propose that one function 

of the AGP-related, plasma membrane-associated gly- 

coproteins may be to act as cell surface attachment 

sites for cell wall matrix polysaccharides. 

T 
HE presence of a rigid cell wall makes the plant plasma 
membrane a relatively inaccessible structure. Quan- 
titative data on protein composition (Kjellbom and 

Larsson, 1984) and protein topography (Grimes and Breiden- 
bach, 1987) are beginning to facilitate comparative studies 
on plasma membranes, but knowledge of constitutive cell 
surface glycoproteins is still fragmentary. Information of the 
kind available for animal cell surface glycoproteins (Hynes, 
1985) and proteoglycans (Hook et al., 1984) is entirely 
lacking. 

Agglutination and fluorescence labeling of plant pro- 
toplasts by lectins has permitted the identification of terminal 
glycan residues on the outer face of the plasma membrane 
(Walko et al., 1987), presumably components of glycopro- 
teins or glycolipids. The presence among these of members 
of the class of glycoproteins termed arabinogalactan proteins 
(AGPs)' (Fincher et al., 1983) has been surmised from 
protoplast agglutination with the/3-glycosyl Yariv reagents 
(Larkin, 1977, 1978; Samson et al., 1983), and from the 
coincident migration during isoelectric focussing of hydroxy- 
proline-rich membrane components and components with 
affinity for ~-galactosyl Yariv reagent (Samson et al., 1983). 
However, since Yariv reagents do not interact with AGPs 
specifically (Jermyn, 1978), and hydroxyproline is the prin- 
cipal amino acid of other arabinosylated plant cell extracellu- 
lar matrix glycoproteins such as extensin (Showalter and 

1. Abbreviation used in this paper: AGE arabinogalactan protein. 

Varner, 1989), it has not yet been possible to confirm that 
some AGPs are plasma membrane components. Moreover, 
few of the antisera and monoclonal antibodies that recognize 
flowering plant cell plasma membranes (Norman et al., 1986; 
Villaneuva et al., 1986; Grimes and Breidenbach, 1987; 
Lynes et al., 1987; Bradley et al., 1988; Meyer et al., 1988) 
have been biochemically characterized, and at present only 
identification of the plasma membrane H÷-ATPase has been 
achieved immunologically (DuPont et al., 1988). 

In this report we describe the characterization of a mono- 
cional antibody (MAC 207), originally prepared from immu- 
nizations with peribacteroid membrane of pea root nodules 
(Bradley et al., 1988) that recognizes a family of antigens as- 
sociated with the plant cell plasma membrane. We show that 
MAC 207 also binds to an AGP secreted by carrot suspension 
culture cells and reason that the composition of the epitope 
and the structural specificity of the antibody can be used 
to define a specific family of AGP-related glycoproteins that 
are associated with the extracellular face of the plasma 
membrane. We suggest that this family of glycoproteins are 
plasma membrane components in somatic cells of many or 
all flowering plants, and that they may function as cell sur- 
face receptors for cell wall matrix molecules. 

Materials and Methods 

Plant Material 

Plant material other than suspension cultures was collected locally. 
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Monoclonal Antibody 

The monoclonal antibody MAC 207 is derived from the fusion described 
by Bradley et al. (1988), and in that study was indistinguishable from an- 

other antibody (MAC 209) derived from the same fusion. The antibody was 

used unpurified from hybridoma culture supernatant. MAC 207 is a rat im- 
munoglobulin of class IgM. 

Culture of Suspension Cells and Preparation 
of Protoplasts 

Suspension culture cells derived from roots of carrot (Daucus carota) were 

grown in continuous light at 25°C in Murashige and Skoog medium sup- 
plemented with 30 g 1-1 sucrose and 1 nag 1-1 2,4-diehloropbenoxyacetic 

acid (2,4-D). Sugar beet (Beta vulgaris) suspension culture 68.3 (kindly 
supplied by De Danske Sukkerfabrikker, Copenhagen, Denmark) was grown 

in PGoB medium (de Greef and Jacobs, 1979) supplemented with 0.2 mg 

1-1 2,4-D and 0.2 mg 1 -l benzylaminopurine. Cells were subcultured every 

7 d and used for experimentation 5 or 6 d after subculture. Protoplasts were 
prepared from carrot cells by cell wall digestion with Driselase (Sigma 

Chemical Co. Ltd., Poole, England) and Cellulase (Onozuka R-10; Yakult 

Honsha Co. Ltd., Tokyo, Japan), both at 0.1% (wt/vol) for 18 h at 25°C in 
a protoplasting medium consisting of 0.45 M sorbitol, 10 mM CaC12, 

1 mM KNO3, 200 #M KH2PO4, 1/~M KI, and 0.1 #M CuSO4 adjusted to 

pH 5.8. Sugar beet protoplasts were prepared by digestion with 0.5% 

(wt/vol) concentrations of Cellulase, Macerozyme R-10 (Yakult Honsha 

Co., Ltd.) and Rhozyme (Pollock & Poole, Ltd., Reading, England) pre- 

pared in PGoB containing 0.5 M mannitol, 3.1 mM 2-(N-morpholino) 
ethanesulfonic acid, and 0.1% (wt/vol) BSA under the same ambient condi- 

tions. The progress of  the digestion was monitored by staining with a freshly 
prepared solution (1 mg l -t) of Fluorescent Brightener 28 (Calcofiuor 

White M2R; Sigma Chemical Co.). Protoplasts were separated from cell 
debris by filtration through muslin and passage through two 0.63 M sucrose 

cushions, and were maintained in protoplasting medium containing the ap- 
propriate osmoticum until use. 

Preparation of Microsomal Membrane Fraction 

Carrot protoplasts, prepared from up to 500 ml of cell culture, were 

homogenized in 4 ml g-I fresh weight (of protoplasts) of 50 mM Tris-HCl 

pH 7.5 containing 0.25 M sucrose, 3 mM EDTA, 2.5 mM DTT, and 1 mM 

PMSE Homogenization was performed on ice with 50 strokes of a Dounce 
glass-in-glass homogenizer (Jencons [Scientific] Ltd., Leighton Buzzard, 
England). The pellet collected by low speed centrifugation (5,000 g for 10 

rain at 4°C) was discarded and the supernatant further centrifuged at 

100,000 g for I h at 4°C. This pellet was collected and resuspended in 5 mM 
potassium phosphate pH 7.8, containing 0.25 M sucrose, 2.5 mM DTT, and 

1 mM PMSE Electron microscopy confirmed the presence of microsomes 
within. 

Preparation of Conditioned Medium 

Conditioned medium was prepared from carrot cell suspensions cultured for 

5 d. The cells were removed by centrifugation and the conditioned medium 
filtered through No. 1 filter paper (Whatman Inc., Clifton, NJ). Ice-cold 

acetone was added to a final volume of 90% (vol/vol) and the solution mixed 

on ice tbr 20 min. The precipitate was collected, redissolved in PBS pH 7.4, 
and dialyzed extensively against PBS before analysis. 

PAGE and Western Blotting 

One-dimensional 10% acrylamide slab gels were prepared according to 

Laemmli (1970). Two-dimensional gels were prepared following O'Farrell 
(1975). Gels were stained with Coomassie Brilliant Blue or ammoniacal sil- 

ver, or were blotted onto nitrocellulose following standard procedures. 
For immunoblotting, nitrocellulose was blocked with 2% (vol/vol) calf 

serum (Sigma Chemical Co.) and 0.2% (wt/vol) ovalbumin in PBS for at 
least 1 h, and reacted for 2 h with a 10-100-fold dilution of MAC 207 culture 
supernatant in the same solution. Bound antibody was located with a horse- 
radish peroxidase-conjugated rabbit anti-rat IgG (H+L) antiserum (ICN 
Biomedicals Ltd., High Wycombe, England), using 4-chloro-l-naphthol in 

the developing solution. For aliinoblotting with Con A, nitrocellulose was 
blocked with 0.05 % (vol/vol) polyoxyethylenesorbitan monolaurate (Tween 
20) in Tris-buffered saline (TBS) pH 7.4 for 1 h, washed in TBS, and in- 

cubated for 24 h in TBS containing 1 mM CaCl2, 1 mM MnCI2, and 100 
/~g I -I horseradish peroxidase-conjugated Con A (Sigma Chemical Co.). 

For blotting with Yariv reagent, carrot conditioned medium was resolved 

electrophoretically and transferred to nitrocellulose as described above, 

blocked with 0.2% ovalbumin in PBS, and immersed for 15 min in the 
B-glucosyl Yariv reagent, an artificial carbohydrate antigen bound by AGPs 
(Yariv et al., 1965; Jermyn and Yeow, 1975). This was prepared by coupling 

diazotized p-aminopbenyl-B-D-glucopyranoside (Sigma Chemical Co.) to 

phloroglucinol as described by Yariv et al. (1962). The concentration of the 
Yariv reagent was 2 g 1 -t. The nitrocellulose was washed in 1% (vol/vol) 
sodium chloride before observations were made. 

Isolation of MAC 207 Antigen 

The MAC 207 antigen (identified by immunoblotting) was resolved from 
carrot-conditioned medium in a 2 × 40 × 110 mm 10% curtain gel, and 

its precise position identified by stained marker lanes with comparable pro- 

tein loadings. Care was taken at this stage to discriminate between the MAC 
207 antigen and the 56-kD band nearby. The acrylamide containing the 

MAC 207 antigen was cut from the gel and electroeluted for 5 h at 10 mA 

into 1 ml one-dimensional running buffer (250 mM Tris-base pH 8.3, 192 
mM glycine, 10 g 1-1 SDS). The antigen was dialyzed extensively against 

distilled water to remove all traces of running buffer before lyophilization 
for chemical analysis. 

Chemical Analysis of MAC 207Antigen 

The protein content of the lyophilized proteoglycan was determined follow- 

ing Lowry et al. (1951). Hydroxyproline was measured by the technique of 
Kivirikko and Liesmaa (1959). 

The content of neutral sugars was determined using o-galactose as the 
standard in a phenol-HzSO4 assay. 5 ml of the diluted sample was added 1o 

0.3 ml of 5% (wt/vol) aqueous phenol. After mixing, 2 ml of concentrated 
H2504 was added rapidly and mixed. The absorbance at 484 nm was deter- 

mined 30 rain later. For carbohydrate analysis the lyophilized residue 

('~1 nag) was dissolved in 1 ml distilled water and an aliquot of 0.4 ml used 

for estimation of sugars as alditol acetates following Selvendran et al. 
(1979). The remainder was lyophilized again and subjected to methylation 

analysis during which the partially methylated alditol acetates (PMAA) 

were identified by GLC-MS as described by Ring and Selvendran (1978) and 

Selvendran and Stevens (1986). The PMAA were separated on a bonded 

phase OV-255 wide-bore capillary column (0.53 mm × 15 m) with 1 #m 
film thickness and carrier gas (He) at 8 cm 3 min -I. The temperature was 

150°C for 5 min and I°C per rain to 220°C. 

Biochemical Analysis of MAC 207 Binding 

To study the effects of protease and periodate and of various monosaccha- 

rides and glycoproteins (Table IV) on MAC 207 binding, a preparation of 

carrot microsomes containing 50 nag 1 -~ protein was coated for 18 h onto 

microtitre plates. When the plates had been blocked by immersion in PBS 

containing 0.2% ovalbumin for 1 h, a 10-fold dilution (in the same buffer) 
of MAC 207 culture supernatant was applied and allowed to remain for 2 h. 
Bound antibody was visualized with a 2,000× dilution of the rabbit horse- 

radish peroxidase-conjugated anti-rat lg antiserum described for immuno- 

blotting, but for ELISA tetramethylbenzidine was used in the developing so- 

lution. In certain instances the immobilized membranes were treated before 

addition of antibody with protease type XXV (Pronase E; Sigma Chemical 
Co.) at a concentration of 1 g 1-1 in 50 mM Tris-HCI pH 7.5, or 25 mM 

sodium metaperiodate in 50 mM sodium acetate buffer pH 4.3. In both 

cases, treatment was for 1 h at room temperature in the dark. The periodate 
reaction was stopped by incubation with 1% (wt/vol) glycine in PBS for 30 

min. To determine inhibition, the monosaccharides and glycoproteins were 
titrated into coated microELISA plates before the addition oftbe lO-fold di- 
lution of MAC 207. The concentration required to inhibit antibody binding 

by 50% was then determined. 

Detergent Partitioning of Carrot Microsomes 

Triton X-114 partitioning of carrot microsomes was performed following 
Bordier (1981). Aqueous and (pooled) detergent phases were dialyzed 
against PBS, lyophilized, and reconstituted in 50 #1 distilled water, l-~d dots 
of these solutions were applied to nitrocellulose and reacted with MAC 207 

and peroxidase-conjugated anti-rat Ig as described for immunoblotting. 

lmmunoagglutination 

Freshly prepared protoplasts of carrot or sugar beet were mixed (in the 
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Table L Distribution of Plasma Membrane MAC 
207-binding Macromolecules among 18 Species of 
Autotrophic Plants 

Plasma membrane 
MAC 207-binding 

Species macromolecules 

Chlamydomonas reinhardii 

Mnium hornum 

Equisetum arvense (field horsetail) 

Pteridium aquilinum (bracken) 

Taxus baccata (English yew) 

Pinus sylvestris (Scots pine) 

Beta vulgaris (sugar beet) 

Papaver rhoeas (common poppy) 

Halimione portulacoides (sea purslane) 

Cucurbita pepo (zucchini) 

Brassica napus (rape) 

Pisum sativum (pea) 

Daucus carota (carrot) 

Nicotiana tabacum (tobacco) 

Lonicera periclymenum (honeysuckle) 

Allium cepa (onion) 

Hyacinthoides non-scriptus (bluebell) 

Agave americana (sisal hemp) 

- ,  absent; +, present. 

proportion of 105 protoplasts per ml) with a 10-fold dilution of MAC 207 
in 100 mM Tris-HCl pH 7.5 containing 0.45 M sorbitol (carrot) or 0.5 M 
mannitol (sugar beet) and 0.2% ovalbumin, and agitated for 10 min. 

lmmunofluorescence Microscopy 

For studies on living material ",~10 s carrot or sugar beet protoplasts were 
pelleted at 60 g in Eppendorf tubes (Sarstedt Ltd., Leicester, England) and 
resuspended in MAC 207 culture supernatant as described for immunoag- 
glutination. The tubes were gently agitated for 40 min and washed by 
repeated centrifugation from Tris-HCl containing 0.45 M sorbitol (carrot) 
or 0.5 M mannitol (sugar beet). 

lmmunofluorescence was also performed upon frozen sections. Root tips 
of carrot, pea (Pisum sativum), and onion (Allium cepa) were excised and 
fixed for 18 h in 3.7% (vol/vol) fresh formaldehyde in 100 mM Pipes pH 
6.94, 1 mM EGTA, 100 #M MgSOa (PEM), and infused for 3 d with a 
0.5% (vol/vol) solution of formaldehyde containing 1.5 M sucrose. Trans- 
verse slices ('~1 mm thick) were frozen onto stubs by immersion in liquid 
ethane cooled in liquid nitrogen to just above its freezing point. The stubs 
were fitted to an Ultracut E FC 4D cryo-ultramicrotome (Reicherl-Jung 
Ltd., Slough, England) and 400 nm frozen sections cut at -111°C. Sections 
were collected on small drops of 2 M sucrose and settled onto multiwell 
slides. A 10-fold dilution of MAC 207 culture supernatant (in PBS contain- 
ing 0.2% ovalbumin) was applied to washed sections for at least 1 h at room 
temperature. 

Bound rat immunoglobulins were detected in both instances by means of 
a goat anti-rat IgG (H+L) antiserum linked to fuorescein isothiocyanate 
(ICN Biomedicals Ltd.) applied at a 100-fold dilution in the appropriate 
buffer. Slides were examined with a Zeiss Photomicroscope III equipped 
with epifuorescence illumination. Control preparations were treated with 
an irrelevant hybridoma culture supernatant or hybridoma culture medium 
alone. 

Immunogold Electron Microscopy 

For ultrastructural labeling of frozen sectioned tissue, onion root tips were 
frozen in sucrose by liquid ethane as described for immunofluorescence. 
Sections ,'~100 nm thick were cut at -111°C and collected onto gold grids. 
For ultrastructural and topographical analysis of binding to low temperature 
resin-embedded sections, carrot suspension culture cells, vegetative tissues 
from 18 species (Table I) and mature sugar beet pollen grains were fixed 
in 2.5% (vol/vol) glutaraldehyde in PEM for 2-3 h in the dark. The suspen- 
sion cells and pollen grains were washed and suspended in a small volume 
of 4 % (wt/vol) low melting point agarose (Bethesda Research Laboratories, 

Gaithersburg, MD) for ease of handling. Suspension cells and organized tis- 
sues were dehydrated and embedded in L. R. White resin (London Resin 
Co., Basingtoke, England) at sub-zero temperatures (Wells, 1985), with the 
exception that the 1:1 ethanol/resin mixture was cooled to only -20°C. Sec- 
tions were prepared for electron microscopy with an Ultracut ultramicro- 
tome (Reichert-Jung Ltd.) and collected onto coated nickel grids. 

Indirect immunogold labeling was performed by transferring grids be- 
tween small drops of MAC 207 culture supernatant and a goat anti-rat IgG 
(H+L) antiserum conjugated to 10 nm gold particles (GARa G10; Janssen 
Pharmaceutica, Beerse, Belgium). Grids were blocked with TBS containing 
10% (vol/vol) calf serum for 10 min, floated on culture supernatant for 18 h 
and, after washing, floated on the gold-conjugated antiserum (diluted 1:20 
in the same buffer) for 1 h. Controls were as described for immunofluores- 
cence microscopy. In some instances 100 mM concentrations of L-arabinose 
were mixed with the MAC 207 culture supernatant before application to sec- 
tions of carrot suspension cells. All washings were performed with TBS and 
all incubations took place at 4°C in the dark. Grids were finally dried and 
stained with an aqueous solution of uranyl acetate and examined with a 
JEOL JEM-1200EX transmission electron microscope operating at 80 kV. 

Topographical Analysis of Antibody Binding 

To determine the precise position of the MAC 207 epitope at the plasma 
membrane, high resolution immunogold electron micrographs were se- 
lected in which the section plane was perpendicular to the plasma membrane 
and in which the bilamellar leafet could be accurately identified. These 
were photographically enlarged so that a distance of 1 mm on the print rep- 
resented 15 nm on the section. A transparent overlay divided into I mm 
lanes was then used to ascribe each gold particle to a lane, taking into ac- 
count all particles directly above the bilamellar leaflet and within 90 nm 
(6 mm on the print) of each surface. Since the gold particles were ,vl0 nm 
in diameter it was possible to score each particle in one lane. 

Figure 1. Immunofluorescence of  living protoplasts prepared en- 

zymically from suspension culture cells o f  sugar beet  (a) and carrot  

(b). In the carrot protoplast the binding of  the decavalent antibody 

to surface epitopes has led to patching. Bar, 10 #m. 
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Figure 2. Frozen ultrathin sections of root cortex of carrot and onion prepared with MAC 207 for immunofluorescence and immunogold 
electron microscopy, respectively. C~, cell wall; PM, plasma membrane. Bars: (a) 50 ttm; (b) 0.5/~m. 

Results 

Binding of MAC 207 to Representatives of Three 
Classes of Autotrophic Plants 

Taxonomic analysis by immunocytochemistry (Table I) re- 
vealed that MAC 207 bound to somatic cells of flowering 
plants and to vegetative cells of sugar beet pollen grains but 
not to cells of any class of cryptograms. Both dicotyledonous 
and monocotyledonous angiosperms possessed plasma mem- 
brane molecules containing the MAC 207 epitope, and it 
could be identified in eight families of the former (Papaver- 
accae [Papaver], Chenopodiaceae [Beta, Halimione], Cucur- 
bitaceae [Cucurbita], Cruciferae [Brassica], Leguminoseae 
[Pisum], Umbelliferae [Daucus], Solanaceae [Nicotiana], 
Caprifoliaceae [Lonicera]) and two families of the latter (Li- 
liaceae [Allium, Hyacinthoides], Agavaceae [Agave]). Non- 
reactive species included an alga (Chlamydomonas), a moss 
(Mnium), two pteridophytes (Equisetum, Pteridium), and 
two conifers (Taxus, Pinus). 

Structural Analysis of MAC 207 Binding 

MAC 207 agglutinated living protoplasts into clumps of up 
to 400 within 10 min of mixing. MAC 207 also labeled the 
surfaces of living carrot and sugar beet protoplasts (Fig. 1) 
and the cell surface in frozen sections of carrot (Fig. 2 a), 

pea and onion root during immunofluorescence. Cell surface 
fluorescence of living protoplasts underwent a time-depen- 
dent "patching" in some instances (Fig. 1 b). Frozen section 
immunofluorescence often made apparent tissue-specific 
variation in the labeling of intracellular membranes. For ex- 
ample, in pea root tips tonoplasts were labeled in the cortical 
cells but not in the cells of the stele (Fig. 3). Immunofluores- 
cence was not generated when MAC 207 culture supernatant 
was omitted or replaced with an irrelevant IgM antibody. 

Frozen section immunogold electron microscopy of onion 
root confirmed that the plasma membrane was the main site 
of antibody binding (Fig. 2 b). Fine structural analysis of la- 
beled resin sections revealed that in carrot suspension cells 
and tissues of all flowering plants the principal site of MAC 
207 binding was the outer face of the plasma membrane (Fig. 
4). In the somatic cells of some species there was little 
significant labeling of intracellular membranes (e.g., leaf 
mesophyll cells of sugar beet), but in some others there were 
occasional binding sites on local regions of the tonoplast 
(e.g., carrot suspension cells) or the membranes of small 
cytoplasmic vesicles (e.g., mesophyll cells of zucchini hy- 
pocotyl). Labeling the vegetative cell plasma membranes of 
sugar beet pollen was generally intense, but in all instances 
binding to the plasma membrane was accompanied by equally 
notable labeling of cytoplasmic vesicles. The only region of 
plasma membrane that was not labeled (in frozen ultrathin 

The Journal of Cell Biology, Volume 108, 1989 1970 



Figure 3. Low power MAC 207 immunofluorescence micrograph of frozen ultrathin longitudinal section of part of a pea root tip. Although 
plasma membranes are labeled throughout, tonoplast membranes are labeled only in the cortex (C). S, stele; dotted line, approximate posi- 
tion of endodermis. Bar, 100 ~tm. 

sections) was that forming the lining of the plasmodesmata. 
There were no instances of labeling of other organelles or in- 
tracellular structures and control preparations were wholly 
negative. The presence of 100 mM arabinose in the MAC 
207 culture supernatant completely abolished all binding to 
resin sections of carrot suspension cells. 

In the most striking resin preparations the frequency of 
gold particles upon the plasma membrane was ~35 per lin- 
ear/zm. Typically, >90% of the gold particles associated 
with plasma membranes were at their outer surfaces at the 
interface with the cell wall (Fig. 4). The mean distance be- 
tween the outer surface of the Cucurbita plasma membrane 
and the centres of the gold particles was 22.5 nm, and the 
modal value was 30 nm (Fig. 5). 

aftinoblotting (Fig. 6 b). Since immunogold electron micros- 
copy revealed that in carrot suspension culture cells the only 
significant MAC 207 binding site was the plasma membrane 
(Fig. 4 c), the MAC 207-reactive spots were judged to repre- 
sent components of plasma membranes present in the micro- 
some fraction. The isoelectric points and molecular masses 
of these macromolecules are listed in Table II. The spots 
numbered 4 (58.9 kD), 12 (39.7 kD), and 14 (35.5 kD) repre- 
sented between them ~80 % of the MAC 207-binding activity 
(Fig. 6 a), and ~5 % of the total protein resolved from the 
microsome fraction. 

Dot-blots of Triton X-114 partitioned carrot microsomes 
revealed that the MAC 207 epitope could be detected only 
in the aqueous phase. 

Characteristics of  the MAC 207-reactive Plasma 
Membrane Macromolecules 

One-dimensional immunoblotting of carrot microsomes re- 
vealed that a discontinuous smear of '~15 principal bands 
with Mr 210,000-28,000 reacted with MAC 207. Blotting af- 
ter two-dimensional separation indicated that 18 discrete 
spots with Mr 66,000-13,200 (Fig. 6, a and c) bound the 
antibody. None of these spots reacted with Con A during 

Characterization of the Soluble MAC 207-reactive 
Proteoglycan Secreted by Carrot Suspension 
Culture Cells 

MAC 207 was also found to bind to components of carrot 
suspension culture conditioned medium (in addition to plas- 
ma membrane glycoproteins). SDS-PAGE (Fig. 7 a) and 
subsequent immunoblot analysis (Fig. 7 b) of concentrated 
conditioned medium indicated that a polydisperse smear of 
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Figure 5. Distribution of 119 gold particles around the plasma 
membrane of a representative Cucurbita mesophyll cell. Numbers 
on vertical axis denote gold particles counted; numbers on horizon- 
tal axis, nanometers across transect. 

material with an apparent Mr of 100,000-70,000 reacted 
with the antibody. The same component of the conditioned 
medium also stained red with/~-glucosyl Yariv reagent (Fig. 
7 c). Two-dimensional electrophoresis followed by silver 
staining revealed that the MAC 207-reactive material iden- 
tified by one-dimensional immunoblotting focussed between 
pH 6.6 and 7.1 (Fig. 7 d). 

Chemical analysis of the MAC 207-reactive material indi- 
cated that it was a proteoglycan containing 95 % carbohydrate 
and 5 % protein. Hydroxyproline accounted for 20 % of the 
protein. Analysis of the glycan component is presented in Ta- 
ble III and shows the linkages of arabinose and galactose, the 
two most abundant sugars. The mole percentages were calcu- 
lated after the removal of glucose (34.6 % of the carbohydrate 
in the sample) which was lost during dialysis and therefore 
presumed not to be a covalently linked component of the pro- 
teoglycan. Only 43 #g of uronic acids were present. This was 
insufficient for further analysis and hence uronic acids have 
been identified in toto. This analysis indicated that the neu- 
tral proteoglycan is an arabinogalactan protein (AGP). 

Inhibition of MAC 207 Binding 

Treatment of carrot microsomes with protease decreased 
MAC 207 binding by 58% (relative to controls) and perio- 
date by 62%. Hapten inhibition with saccharides revealed 
that MAC 207 binding to carrot microsomes was effectively 
restricted by L-arabinose (presumably the furanoside isomer 

since the l-O-methyl-B-L-arabinopyranoside was significant- 

ly less active) and D-glucuronic acid (Table IV). 200-t~M 
concentrations of D-galactose, 1-O-methyl-/~-o-galactopyra- 
nose, and 3-O-/~-D-galactopyranosyl-o-arabinose did not in- 
hibit MAC 207 binding. Two glycoproteins were also potent 
inhibitors of MAC 207 binding to carrot microsomes: the 
Acacia senegal AGP gum arabic, and the secreted carrot pro- 
teoglycan recovered from carrot suspension culture condi- 
tioned medium (Table IV). Neither Solanum tuberosum lec- 
tin nor Chlamydomonas reinhardii cell wall glycoprotein 
2BII (Roberts et al., 1985, both arabinosylated hydroxypro- 
line-rich glycoproteins) were effective inhibitors, however. 

Discussion 

Monoclonal Antibody MAC 207 Recognizes a Family 
of Abundant Glycoproteins That Are Associated 
with the Plant Plasma Membrane 

Immunoagglutination of suspension cell protoplasts, immu- 
noblotting of carrot microsomes, and immunocytochemistry 
suggest that MAC 207 locates a family of abundant macro- 
molecules that are associated with plant plasma membranes. 
Two-dimensional immunoblots of carrot microsomes reveal 
18 plasma membrane-associated MAC 207-reactive spots, of 
which three (Mr 58,900, 39,700, 33,500) represent -,80% 
of the total. Immunoagglutination and immunofluorescence 
(of whole protoplasts and of frozen sections) and immuno- 
gold labeling (of resin sections) confirm that the MAC 207- 
reactive antigens are located on the outer face of the plasma 
membrane. The topographical spread (from the mode) of 
gold particles binding to a section of Cucurbita plasma mem- 
brane conforms to a simple and symmetrical distribution, 
suggesting that the MAC 207 epitope is present at a more or 
less constant distance ('~22 nm) from the external face of the 
plasma membrane. This suggests that they could be either in- 
tegral or peripheral membrane components. Movement of 
the MAC 207 antigen into the aqueous phase during deter- 
gent partitioning favors the notion that they are peripheral. 

The extent to which other membranes in the cell (and in 
particular the tonoplast) are labeled by MAC 207 appears to 
reflect consistent differences between tissues, and is proba- 
bly a measure of endocytic activity. It is known that material 
taken up by endocytosis in plant protoplasts ends up in the 
vacuole (Tanchak et al., 1984). 

Plasma Membrane Macromolecules Recognized by 
MAC 207 Are Unique to Flowering Plants 

Structural analysis of resin sections indicates that MAC 207 
binds to the plasma membranes of all flowering plants exam- 
ined, including both monocots and dicots. This distribution 
contrasts markedly with that of other related plant cell sur- 
face macromolecules that occur also in cryptogams (Clarke 
et al., 1979; Roberts et al., 1985). 

Figure 4. High resolution MAC 207 immunogold electron micrographs. Cells from three dicots and one monocot are represented in the 
same orientation. The dicot examples are a mesophyl cell of Cucurbita hypocotyl (a), a vegetative cell of a Beta pollen grain (b), and 
a suspension culture cell of Daucus (c). The monocot cell is from leaf mesophyll of Hyacinthoides (d). Binding in each instance is prin- 
cipally at the plasma membrane (PM). C, cytoplasm; CW, cell wall; E, exine. Bar, 0.5 #m. 

Pennell et al. Plant Plasma Membrane Glycoproteins 1973 



Figure 6. Identification of MAC 207-reactive macro- 

molecules of carrot microsomes by two-dimensional 

SDS-PAGE and blotting. Numbers refer to MAC 207- 
binding spots, ranked by molecular mass and listed in Ta- 
ble II. (a) MAC 207 immunoblot; (b) Con A affinoblot; 

(c) silver-stained polyacrylamide gel. The eight principal 
MAC 207-binding spots in a fail to react with Con A 
(square in b). Similarly, the Con A-binding macromole- 

cules do not react with MAC 207, and are made visible 
in the (overdeveloped) immunoblot by slight negative 
staining (square in a). Numbers on vertical axes are rela- 
tive molecular masses in kilodaltons; numbers on 
horizontal axes are pH. 
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Table II. Features of Carrot Microsome MAC 207-reactive 
Macromolecules 

No. pI Mr 

pH 

1 5.55 66,000 
2, 3, 4* 6.25, 6.75, 7.00 58,900 
5, 6, 7 7.25, 7.45, 7.50 57,400 
8 6.85 52,500 
9 6.70 47,800 
10 5.20 44,700 
11, 12" 5.15, 7.20 39,700 
13, 14" 6.10, 6.85 35,500 
15 7.00 24,500 
16 6.05 24,000 
17 4.90 19,800 
18 6.80 13,200 

* Molecular species representing together •80% of the MAC 207 reactivity. 

Saccharide Inhibition Suggests an 

L-Arabinose-containing Epitope 

L-Arabinose and o-glucuronic acid inhibited the binding of 
MAC 207 to membrane microsomes. Of the known classes 
of arabinosylated glycoproteins only the AGPs contain sig- 
nificant amounts (up to 20% of the carbohydrate) of uronic 
acids (Clarke et al., 1979). Gum arabic, an extracellular 
AGP prepared from Acacia senegal, and the soluble carrot 
AGP described in this paper were very effective inhibitors of 
MAC 207 binding, also implying that the antibody binds 

AGP-related macromolecules. However, three other classes 
of arabinosylated hydroxyproline-rich glycoproteins occur in 
plants: the extensins (Showalter and Varner, 1989), Solanum 

tuberosum lectin (Ashford et al., 1982), and the Chlamydo- 

monas reinhardii cell wall glycoproteins (Roberts et al., 

1985). Of these, neither Solanum lectin nor Chlamydomonas 

glycoprotein 2BII cross-reacted with MAC 207 in ELISA, 

and can therefore be discounted as possible antibody binding 

sites. Purified extensins were not available for inhibition 
studies. Nevertheless, we believe it is unlikely that extensins 

contain the MAC 207 epitope for three reasons: extensins 
contain mono-, di-, tri-, and tetra-arabinosides linked with- 
out galactose directly to hydroxyproline (Lamport, 1967; 
Showalter and Varner, 1989), and not the arabino-3,6-galac- 
tan linkages characteristic of gum arabic and other AGPs 
(Fincher et al., 1983); the arabinosides of extensin contain 

only 1,2 and 1,3 linkages (Akiyama et al., 1980), and not the 
1,5 linkages present in the soluble carrot AGP described in 
this paper; and recently extensins have been immunolocal- 
ized throughout the texture of the cell wall (Averyhart-Ful- 
lard et al., 1988; Stafstrom and Staehelin, 1988), and not at 
the interface with the plasma membrane as are the macro- 
molecules discussed here, Taken together, these data indicate 
that MAC 207 binds to membrane glycoproteins related to 
AGPs and not to any other known family of arabinosylated 

macromolecules. 

Soluble, Secreted MAC 207-reactive Proteoglycan Is an 
Arabinogalactan Protein 

The chemical composition and affinity for Yariv reagent of 

the MAC 207-reactive proteoglycan found in carrot suspen- 
sion culture-conditioned medium indicates it is an arabino- 
galactan protein (Clarke et al., 1979; Fincher et al., 1983). 
A suggested partial structure of the soluble carrot AGP (de- 
termined from methylation analysis) is shown in Fig. 8. 

AGPs form a large class of plant glycoproteins and soluble 

Figure 7. Coomassie Brilliant Blue 
stain (a) and corresponding MAC 
207 immunoblot (b) and Yariv rea- 
gent stain (c) of carrot suspension 
culture-conditioned medium mac- 
romolecules. MAC 207 and Yariv 
reagent bind only to the Mr 100,000- 
70,000 band. (d) Detail of silver- 
stained two-dimensional polyacryl- 
amide gel of the carrot-conditioned 
medium reveals that the Mr 100,000- 
70,000 band focusses at pH 6.6-7.1 
and is relatively homogeneous in 
composition. The stained material 
below the 66-kD marker in a and d 
is not a component of the smear that 
reacts with MAC 207 in b. Numbers 
on vertical axes are relative molecu- 
lar masses in kilodaltons; numbers 
on horizontal axis (in d) are pH. 
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Table III. Sugar Composition and Linkage Analysis of the 
Soluble AGP Secreted by Carrot Suspension Cells 

Sugar Linkage Mole percent 

Rha 2 

Fuc 4 

Ara 48 

2,3,5-Me3-Ara 1- 29 

2,3,-Me2-Ara 1,5- 21 

Xyl 10 

Man 7 

Gal 29 

2,3,4-Me3-Gal 1,6- 12 

2,3,6-Me3-Gal 1,4- 13 

2,4-Me2-Gal 1,3,6- 25 

The Ara and Gal linkages are expressed as mole percentages of the linkages 
involving Ara and Gal, not of all linkages present in the AGP. 

proteoglycans. They vary in composition (Cassab, 1986; van 
Hoist and Clarke, 1986; Tsumuraya et al., 1988), and are 
found throughout the plant kingdom (Clarke et al., 1979). 
One characteristic of AGPs is their lectin-like ability to bind 
artificial carbohydrate antigens or Yariv reagents (Yariv et 
al., 1962). The presence of AGPs in the conditioned medium 
of suspension culture cells has been reported before (Ander- 
son et al., 1977; Pope, 1977), and it is likely that soluble 
AGPs are also secreted into the apoplast of Phaseolus hypo- 
cotyls (Samson et al., 1983) and Nicotiana styles (Sedgley 
et al., 1985). The compositions of the slimes secreted by 
plant roots (Moody et al., 1988) also resemble the soluble 
AGP described in this paper. 

Analysis of the Soluble Proteoglycan Provides a Basis 
for Discriminating between Families of AGPs 

The finding that MAC 200 recognizes a soluble AGP sup- 
ports the view (drawn from inhibition studies) that the MAC 
200-reactive plasma membrane:associated glycoproteins 
form a specific family of this large class of plant macro- 
molecules. It is noteworthy in this context that none of the 
membrane-bound arabinosylated glycoproteins bind Con A, 
confirming the absence from them of terminal glucosyl and 
mannosyl residues. Although it has been suggested before 
that AGPs may be plant plasma membrane components (Lar- 
kin, 1978; Samson et al., 1983), data in each instance have 
been based only upon observations involving Yariv reagents. 
It is known, however, that macromolecules other than AGPs 
bind Yariv reagents (Jermyn and Yeow, 1975), and therefore 
conclusions based solely upon Yariv reagents are open to 
doubt. 

Our data therefore define for the first time (by their ability 
to bind MAC 200) a putative family of plasma membrane- 
associated arabinosylated glycoproteins. It seems that in both 
intact and wounded tissues (e.g., suspension culture cells) 
these macromolecules may coexist with soluble extracellular 
proteoglycans that form another distinct AGP family. The 
membrane-bound glycoproteins probably contain a lower 
proportion of carbohydrate than the soluble proteoglycan (as 
evidenced by their mobility during electrophoresis), but 
otherwise nothing is known of the difference between these 
two families chemically. In the absence of a clear functional 
definition of AGPs in general (Fincher et al., 1983), we sug- 

gest that this large heterogeneous class of glycoproteins con- 
tains numerous overlapping families of related, arabinosyl- 
ated macromolecules. Moreover, characterization of the 
soluble proteoglycan has allowed us to define a major group 
of plasma membrane-associated macromolecules immuno- 
logically, and in a way that could not be achieved by MAC 
207 affinity separation of the membrane molecules per se. 
Until functions can be ascribed to some of these families of 
arabinosylated glycoproteins, they will remain classified un- 
der the unsatisfactory "AGP" umbrella. 

Biochemical and Structural Features of the Plasma 
Membrane MAC 207-reactive Glycoproteins Suggest 
Functional Parallels with Known Plasma Membrane 
Matrix-binding Macromolecules 

The conserved nature of the MAC 200 epitope and the possi- 
bly ubiquitous distribution among flowering plants of the 
macromolecules bearing it implies that the MAC 200-re- 
active plasma membrane macromolecules play a fundamen- 
tal role at the cell surface. Our data suggest that this role 
may be to bind components of the extracellular matrix to 
the plasma membrane. The absence of the MAC 200-reactive 
glycoproteins from the membrane linings of the plasmo- 
desmata and the rapid return of the antigens to the plasma 
membrane after enzymic digestion of cell surface polysac- 
charides imply that they are important cell surface com- 
ponents whose presence at the plasma membrane is a neces- 
sary antecedent to wall assembly. Moreover, the ability of the 
MAC 200-reactive component of conditioned medium to 
bind the ~-glucosyl Yariv reagent suggests that the MAC 207- 
reactive macromolecules themselves may have lectin-like 
properties (Barondes, 1988). This would make the related 
plasma membrane macromolecules the functional equivalents 
of the well-characterized adhesive glycoproteins fibronectin 
and laminin that bind mammalian cells to connective tissues 
and basal laminae, respectively (McDonald, 1988). Discoi- 
din I plays a comparable role in Dictyostelium (Springer 
et al., 1984). It is also an endogenous N-acetylgalactos- 
amine-binding lectin with distinct cell-binding and carbohy- 
drate-binding domains (Gabius et al., 1985). Bridging mac- 
romolecules such as these may allow plant cells to detect 
radial tensions set up between plasma membrane and cell 
wall during turgor pressure changes. Comparable stresses 
and tissue tensions could also help determine division planes 
and organogenesis in plant tissues (Green, 1986). Although 
speculative, this hypothesis is open to experimentation. 

Table IV. Inhibition of MAC 207Binding by Hapten 
Saccharides and Arabinosylated Hydroxyproline-rich 
Glycoproteins 

Concentration required for 
Inhibitor 50% inhibition of binding 

L-Arabinose 4 m M 

D-Glucuronic acid 9 m M 

1 -O-methyl-/3-D-arabinopyranoside 40 m M 

1 -O-methyl-/$- L-arabinopyranoside 82 m M 

Gum arabic 5 nM 

Carrot-secreted AGP l0 nM 

The molarity of gum arabic has been calculated assuming a mean Mr 1.5 x 

l06 (Clarke et al., 1979). 
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Figure 8. Suggested partial structure of the soluble AGP recovered 
from carrot suspension cell-conditioned medium. 
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