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Abstract

Background: Molecular probes are required to detect cell wall polymers in-situ to aid

understanding of their cell biology and several studies have shown that cell wall epitopes have

restricted occurrences across sections of plant organs indicating that cell wall structure is highly

developmentally regulated. Xyloglucan is the major hemicellulose or cross-linking glycan of the

primary cell walls of dicotyledons although little is known of its occurrence or functions in relation

to cell development and cell wall microstructure.

Results: Using a neoglycoprotein approach, in which a XXXG heptasaccharide of tamarind seed

xyloglucan was coupled to BSA to produce an immunogen, we have generated a rat monoclonal

antibody (designated LM15) to the XXXG structural motif of xyloglucans. The specificity of LM15

has been confirmed by the analysis of LM15 binding using glycan microarrays and oligosaccharide

hapten inhibition of binding studies. The use of LM15 for the analysis of xyloglucan in the cell walls

of tamarind and nasturtium seeds, in which xyloglucan occurs as a storage polysaccharide, indicated

that the LM15 xyloglucan epitope occurs throughout the thickened cell walls of the tamarind seed

and in the outer regions, adjacent to middle lamellae, of the thickened cell walls of the nasturtium

seed. Immunofluorescence analysis of LM15 binding to sections of tobacco and pea stem internodes

indicated that the xyloglucan epitope was restricted to a few cell types in these organs. Enzymatic

removal of pectic homogalacturonan from equivalent sections resulted in the abundant detection

of distinct patterns of the LM15 xyloglucan epitope across these organs and a diversity of

occurrences in relation to the cell wall microstructure of a range of cell types.

Conclusion: These observations support ideas that xyloglucan is associated with pectin in plant

cell walls. They also indicate that documented patterns of cell wall epitopes in relation to cell

development and cell differentiation may need to be re-considered in relation to the potential

masking of cell wall epitopes by other cell wall components.
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Background
Cell walls are major components of plant cells that impact
significantly on the modes of cell development and the
growth and the mechanical properties of plant organs.
Plant cell walls are also of considerable economic signifi-
cance in that they are major components of terrestrial bio-
mass and of plant-derived materials that are used for fibre,
fuel and food. Primary and secondary cell walls are com-
prised of sets of polysaccharides of considerable structural
complexity and diversity [1-3]. The major polysaccharide
classes are cellulose, hemicelluloses (or cross-linking gly-
cans) and pectic polysaccharides with the latter two
classes containing a diversity of polymer structures. In
order to understand how specific configurations of
polysaccharides and their interactions and associations
constitute diverse cell wall structures and functions, meth-
odologies are required to assess polymers in-situ through-
out organs and within cell walls. Tagged proteins, with the
capacity to specifically bind to a structural motif of a
polysaccharide, are currently one of the best ways to do
this. These proteins are most notably monoclonal anti-
bodies and carbohydrate-binding modules. Cell wall
probes, directed to some structural features of polymers of
the three major polysaccharide classes have indicated that
the occurrence of cell wall polysaccharide structures can
be highly regulated in relation to developmental context
[4-10]. However, probes are not yet available for all the
structural motifs known to occur within cell wall compo-
nents and thus in-situ locations of all polymer structures
cannot yet be determined.

Xyloglucans are one of the most abundant hemicelluloses
of the primary cell walls of non-graminaceous species and
are proposed to have a functional role in hydrogen bond-
ing to and tethering the cellulose microfibrils together.
This load-bearing hemicellulosic network maintains the
strength of primary cell walls which is a crucial factor
underpinning expansive plant growth [1-3,11,12]. The
xyloglucan set of hemicelluloses is highly diverse and dis-
plays significant taxonomic variation in structure [1,12-
15]. Xyloglucans have a backbone of (1→4)-β-D-glucan
and some glucosyl residues are substituted with short side
chains. A structure-based nomenclature has been devel-
oped for xyloglucan-derived oligosaccharides to indicate
the attachments to backbone glucosyl sequences [16]. For
example, an unbranched glucosyl residue is designated G,
a glucosyl residue bearing a single xylose is designated X
and one bearing a disaccharide of β-Gal-(1,2)-α-Xyl is des-
ignated L. Xyloglucans are classified as XXXG or XXGG
type based on the number of backbone residues that carry
side chains with the XXXG type having three consecutive
glucosyl residues with xylose attached and a fourth
unbranched residue [17]. To date it has not been easy to
put this structural complexity into cell biological context
as only few probes are available. An antiserum to xyloglu-

can [18] and a monoclonal antibody (CCRCM1) that
binds to a fucosylated epitope that is carried by xyloglucan
[19] have been developed. These have been used to detect
xyloglucan in-situ [4,7,20-22].

Here we describe the coupling of a heptasaccharide with 3
xylosyl and 4 glucosyl residues (XXXG in xyloglucan
nomenclature) obtained from tamarind seed xyloglucan
to a protein carrier to act as an immunogen. Subsequent
to immunization we have identified a rat monoclonal
antibody, designated LM15, that binds to the XXXG motif
of xyloglucan and we have used this antibody to demon-
strate the regulation of xyloglucan structure and occur-
rence within cell walls and in relation to plant anatomy in
a range of species.

Polysaccharides do not exist in isolation in plant cell walls
and understanding the links and associations between
classes of polymers is an important goal to increase our
understanding of plant cell wall biology. Biochemical evi-
dence is accumulating that xyloglucan can be attached to
pectic polymers in plant cell walls [23-27]. Using enzy-
matic degradation to remove the pectic homogalacturo-
nan (HG) from cell walls of transverse sections of plant
materials in conjunction with the LM15 anti-xyloglucan
monoclonal antibody we have demonstrated the exist-
ence of developmentally regulated sets of xyloglucan
epitopes within cell walls that are masked by the presence
of HG. This observation has significant implications for
our understanding of the precise developmental patterns
of occurrence of xyloglucan in cell walls and of cell wall
biology in general.

Results
Selection of a XXXG-directed xyloglucan monoclonal 

antibody

To understand xyloglucan structure in the context of plant
cell development a set of probes covering aspects of
xyloglucan structure is required. As the XXXG oligosaccha-
ride is a major motif of xyloglucans a specific monoclonal
antibody probe directed to this motif was generated. The
XXXG heptasaccharide from tamarind seed xyloglucan
was coupled to BSA by reductive amination. Subsequent
to immunization with this neoglycoprotein immunogen,
fusion products were screened by ELISAs using tamarind
xyloglucan as the antigen. Several cell lines were selected
that bound effectively to tamarind xyloglucan and one,
secreting a rat IgG2c monoclonal antibody and desig-
nated LM15, was selected for full characterization. The
binding of LM15 to tamarind seed xyloglucan and the
XXXG-BSA neoglycoprotein in an ELISA is shown in Fig.
1. To determine the specificity of LM15 recognition of
xyloglucan and to assess its possible binding to other cell
wall polymers, LM15 was used to probe glycan microar-
rays in which large numbers of plant cell wall polysaccha-
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rides were assembled [28]. A representative result is
shown in Fig. 2 and indicates that there is little recogni-
tion of cell wall polymers other than a sample of tamarind
xyloglucan (that is non-fucosylated) and pea xyloglucan
(that contains fucosylated side chains). The low level of
binding to pectic polymer samples and gums tragacanth
and karaya is possibly due to low levels of xyloglucan in
these extracted samples. Samples of extracts of organs of
the model plant Arabidopsis thaliana were also included in
the microarray [28] and recognition of these was greater
for the alkali-solubilised materials rather than cation che-
lator-solubilised materials – a pattern that would be
expected for xyloglucan [28].

The binding of LM15 to tamarind seed xyloglucan in
ELISA and in the context of the glycan microarray indi-
cated that it bound specifically to this class of cell wall pol-
ymer. In order to confirm this and to determine the
structural features required for binding, the inhibition of
LM15 binding to tamarind seed xyloglucan by the pres-
ence of a range of xyloglucan-derived and related oligosac-
charides was determined using competitive-inhibition
(hapten) ELISAs. When LM15 hybridoma supernatant
was used at 100-fold dilution in an assay with tamarind
seed xyloglucan-coated ELISA plates, the most effective

hapten inhibitor was the XXXG oligosaccharide as shown
in a representative competitive inhibition ELISA in Fig. 3.
The concentration of the XXXG oligosaccharide required
to inhibit LM15 binding by 50% was 1.9 μg/ml. Equiva-
lent inhibition was achieved with 4.3 μg/ml of a mixture
of XXLG and XLXG isomers (that cannot be readily sepa-
rated), 348 μg/ml XLLG and 560 μg/ml of the GGGG cel-
lotetraose. These data indicate that the presence of two
galactosyl residues to a large extent prevented recognition
of the xyloglucan oligosaccharides by LM15, although one
galactosyl residue was more readily tolerated. Isopri-
meverose (α-Xyl(1→6)Glc) and a xylose disaccharide (β-
Xyl(1→4)Xyl) had no impact on LM15 binding to
xyloglucan when present at 1 mg/ml. In summary, we
have generated a monoclonal antibody to the XXXG struc-
tural motif of xyloglucan. This probe was used to explore
xyloglucan structure and occurrence in relation to plant
cell types and cell wall microstructures.

Xyloglucan in cell walls of cotyledon parenchyma of 

tamarind and nasturtium seeds

Xyloglucan is known to be a major structural component
of the cell walls of the cotyledon parenchyma of tamarind
and nasturtium seeds [29-31]. To explore the binding of
the XXXG-directed monoclonal antibody LM15 to plant
cell walls, excised cotyledon parenchyma tissue from
mature seeds of these two species were fixed and embed-
ded in resin and sectioned prior to indirect immunofluo-
rescence analysis. The mouse monoclonal antibody
CCRCM1 [19] that binds to a fucosylated epitope of
xyloglucan (not present in tamarind seed xyloglucan but
present in nasturtium seed xyloglucan) was used for com-
parison with LM15.

A comparison of LM15 binding and Calcofluor White
staining of tamarind seed cotyledon parenchyma indi-
cated that LM15 bound throughout the cell walls, includ-
ing the extensive cell wall thickenings of the cotyledon
parenchyma (Fig. 4). In contrast, CCRCM1 did not bind
to these cell walls although it did bind to non-thickened
cell walls of the vascular tissue (not shown). Tamarind
belongs to the family Fabaceae in the order Fabales.
Xyloglucan is also an abundant storage polymer in seeds
of nasturtium belonging to the family Tropaeolaceae in
the order Brassicales. The binding of LM15 and CCRCM1
to nasturtium seed cotyledon parenchyma cell walls is
shown in Fig. 4 and indicates recognition of distinct
regions of the seed parenchyma cell walls. LM15 bound to
the thickened regions of cell walls and most strongly to
the outer regions next to middle lamellae (Fig. 4c,d). In
contrast, the CCRCM1 epitope was less abundant and var-
iable in occurrence and when present it was exclusively in
a thin region of the inner cell walls facing the plasma
membrane (Fig. 4e,f).

ELISA of rat monoclonal antibody LM15 binding to the XXXG-BSA glycoprotein used as immunogen, tamarind xyloglucan and mannanFigure 1
ELISA of rat monoclonal antibody LM15 binding to 
the XXXG-BSA glycoprotein used as immunogen, 
tamarind xyloglucan and mannan. Absorbance values 
shown are duplicate means with the standard deviations 
being ≤ 0.05 absorbance units. The result shown is repre-
sentative of at least three separate experiments. LM15 bound 
effectively to the immunogen and tamarind xyloglucan but 
did not bind to ivory nut mannan. Polysaccharides were 
coated on to plates by incubation at 50 μg/ml. The LM15 
hybridoma supernatant displayed effective recognition of the 
glycoprotein and tamarind xyloglucan when diluted 500-fold.
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LM15 binding to cell walls of tobacco and pea stems is 

increased by a pre-treatment with pectate lyase to remove 

pectic homogalacturonan

The structure of xyloglucans is taxonomically diverse with
species such as pea and arabidopsis, belonging to the Ros-
idae, having a XXXG type xyloglucan [1,3]. Bright field
and Calcofluor White stained images of a region of a
transverse section through a pea stem internode show a
portion of the ring of vascular bundles (with larger bun-
dles at stem corners) linked through interfascicular
regions by a band of sclerified parenchyma or fibre cells
and cortical and pith parenchymas in distal and proximal
regions respectively (Fig. 5a,b). Indirect immunofluores-
cence analysis of LM15 binding to an equivalent section
of pea stem indicated that this antibody bound to a lim-
ited set of cell walls in the inner protoxylem regions of

vascular bundles (Fig. 5c). There was also some weak
binding to cells in the region of the phloem of the vascular
bundles and to the pith parenchyma. Omitting LM15
from the immunolabelling procedure on an equivalent
section resulted in no observed fluorescence (not shown).
This unexpectedly low level of recognition of the cell walls
by LM15 was explored further by removal of pectic HG
from sections by a pre-treatment with a recombinant pec-
tate lyase. This pre-treatment led to a large increase in the
detection of the LM15 epitope across the section and in a
distinct pattern of cell walls as shown in Fig. 5d, i.e. the
pre-treatment of the section had exposed a set of LM15
epitopes. The pectate lyase pre-treatment resulted in the
LM15 epitope being detected in abundance in the epider-
mal cell walls, those of the cortical and pith parenchymas
and cells in the phloem region of the vascular bundles and

Microarray analysis of LM15 binding to an array of plant cell wall polysaccharides and CDTA- and NaOH-solubilised isolates of Arabidopsis cell wallsFigure 2
Microarray analysis of LM15 binding to an array of plant cell wall polysaccharides and CDTA- and NaOH-solu-
bilised isolates of Arabidopsis cell walls. Pectic and hemicellulosic polysaccharides from a range of species were microar-
rayed on nitrocellulose sheets and the relative binding of LM15 determined using an enzyme-linked secondary antibody 
detection system. Binding intensities were quantified and the horizontal scale indicates relative binding. The result shown is 
representative of at least three separate glycan profiling assays.
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the inner regions of the xylem strands. In pith paren-
chyma cells directly adjacent to cells with thickened cell
walls in the interfascicular regions the occurrence of the
LM15 epitope stopped abruptly at the junction with the
fibre cell (Fig. 5d) indicating that only three of the four
walls of a cell in section were labelled by the antibody. In
summary, the LM15 epitope was detected in most cells
other than cells with secondary cell walls (sclerenchyma
fibres of the vascular bundles and the interfascicular
fibres). Similar patterns of occurrence, before and after
enzyme treatment were observed for the CCRCM1
epitope (not shown). This pattern of occurrence after
enzyme treatment is similar to that of pectic HG in an
equivalent section as shown by the binding of anti-HG
monoclonal antibody JIM5 [32] to a section not treated
with the enzyme in Figure 4e. All control sections in this
study not treated with pectate lyase were incubated with
the high pH buffer required for maximal enzyme action.
The high pH results in de-esterification of pectic HG and
therefore, in this case, JIM5 indicates the presence of HG
present in cell walls independent of original methyl-ester-
ification status. The loss of the JIM5 HG epitope from the
section as a consequence of pectate lyase treatment is
shown for comparison in Fig. 5f.

At a tissue level the LM15 epitope unmasked by pectate
lyase action and the JIM5 epitope on an untreated section

have a similar occurrence. To document the occurrence of
the LM15, pectate-lyase-unmasked LM15 and JIM5
epitopes in more detail higher magnification micrographs
of vascular bundles are shown in Fig. 6. In an untreated
section the LM15 epitope was most abundant in cell walls
of protoxylem cells, discrete domains of metaxylem cell
walls and also certain cells of the phloem region that can
also be identified from Calcofluor White labelling to have
in some cases thickened cell walls and in other cases not

Competitive-inhibition ELISAs of LM15 binding to tamarind xyloglucan with xyloglucan oligosaccharide haptensFigure 3
Competitive-inhibition ELISAs of LM15 binding to 
tamarind xyloglucan with xyloglucan oligosaccharide 
haptens. Absorbance values shown are duplicate means 
with the standard deviations being ≤ 0.05 absorbance units. 
The result shown is representative of at least three separate 
experiments. LM15 was used at a 100-fold dilution and hap-
ten oligosaccharides tested at five-fold dilutions from 1 mg/
ml.

Indirect immunofluorescence detection of xyloglucan epitopes in sections of tamarind and nasturtium seed cotyle-don parenchymaFigure 4
Indirect immunofluorescence detection of xyloglu-
can epitopes in sections of tamarind and nasturtium 
seed cotyledon parenchyma. a. LM15 binding to cell walls 
of tamarind cotyledon parenchyma cells. b. Same section 
stained with Calcofluor White showing extent of cell walls. c. 
LM15 binding to cell walls of nasturtium cotyledon paren-
chyma cells. d. Micrograph c combined with Calcofluor 
White fluorescence. e. CCRCM1 binding to cell walls of 
nasturtium cotyledon parenchyma cells. f. Micrograph e com-
bined with Calcofluor White fluorescence. Arrowheads in a 
and b indicate inner cell wall. Arrowheads in c and d indicate 
inner edge of abundant LM15 immunolabelling. Arrowheads 
in e and f indicate inner cell wall and region of CCRCM1 
immunolabelling. Scale = 20 μm.
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(Fig. 6b). In addition, the epitope was detected in cells,
with the characteristics of parenchyma cells, adjacent to
the smallest protoxylem cells. After pectate lyase treat-
ment the occurrence of labelling was maintained along
with the strong labelling of all cell walls in the phloem
region and the cortical and pith parenchymas. The pattern
of the JIM5 epitope was similar in that it was also present
in discrete domains of metaxylem cell walls but showed
subtle distinctions in that it was abundant in the cambial
layer between the xylem and phloem regions. In the
phloem region the JIM5 epitope did not appear through-
out cell walls but at intercellular regions and was also rel-

atively more abundant at cell corners in the cortical
parenchyma in comparison with the LM15 epitope.

Solanaceous species, belonging to the Solanales of the
Asteridae, do not have XXXG xyloglucan but have distinct
xyloglucan oligosaccharides of type XXGG and XSGG
where S indicates an arabinosyl residue attached to the
xylosyl residue [1,13,33]. LM15 bound weakly to cell
walls in sections of tobacco stem as shown in Fig. 7 and
this was mostly to collenchyma, distinct periodic cells in
the cambium and pith parenchyma adjacent to the band

Indirect immunofluorescence detection of xyloglucan and pectic HG epitopes in TS pea stem internode vascular bun-dlesFigure 6
Indirect immunofluorescence detection of xyloglucan and pectic 
HG epitopes in TS pea stem internode vascular bundles. a. Cal-
cofluor White image of section showing all cell walls. b. LM15 binding to 
an equivalent section to a. The antibody binds most strongly to a region of 
protoxylem but also certain cells in the phloem region. c. JIM5 binding to 
an equivalent section shows binding to protoxylem and cambial cells. d. 
LM15 binding to an equivalent section pre-treated with pectate lyase 
shows the epitope detected abundantly in the phloem/cambial regions and 
cortical parenchyma. Arrowheads indicate cells in the phloem regions 
without thickened cell walls in which the LM15 epitope is detected with-
out pre-treatment. Double arrowheads indicate cells with thickened cell 
walls/LM15 epitope in the phloem region. Sets of arrows indicate the 
punctuate presence of LM15 and JIM5 epitopes in xylem vessel cell walls. 
Asterisk indicates distal extent of the protoxylem. cp = cortical paren-
chyma, p = phloem region, pf = phloem fibre bundle, x = xylem vessel, if = 
interfascicular fibres. Scale = 10 μm.

Indirect immunofluorescence detection of xyloglucan and pectic HG epitopes in TS pea stem internodeFigure 5
Indirect immunofluorescence detection of xyloglu-
can and pectic HG epitopes in TS pea stem inter-
node. a. Bright field image showing anatomy. b. Calcofluor 
White image of section shown in a showing all cell walls. c. 
LM15 binding to an equivalent section. The antibody binds 
most strongly to distal region of protoxylem (arrowheads). 
d. An equivalent section to c that had been pre-treated with 
pectate lyase to remove pectic HG. LM15 binds strongly to 
epidermal and parenchyma cell walls. e. Section immunola-
belled with pectic HG probe JIM5. f. Equivalent section to e 
pre-treated with pectate lyase indicates that the JIM5 epitope 
had been abolished. Arrows indicate inner edge of pith 
parenchyma. Dotted shaft arrows indicate junction between 
non-sclerifed parenchyma cell walls with sclerified paren-
chyma/fibre cell walls. cp = cortical parenchyma, pp = pith 
parenchyma, ep = epidermis, vb = vascular bundle, pf = 
phloem fibre bundle. Scale = 100 μm.
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of xylem (Fig. 7b). Pre-treatment of an equivalent section
with pectate lyase to remove pectic HG increased LM15
binding. After HG removal, the LM15 epitope was
detected throughout cell walls of the epidermis, the corti-

cal collenchyma and parenchyma and also the cambium
and pith parenchyma (Fig. 7c). Monoclonal antibody
CCRCM1 did not bind to tobacco stems before or after
pectate lyase treatment (not shown). Labelling of sections
with anti-HG JIM5 before and after section treatment with
pectate lyase indicated that HG epitopes were effectively
removed from the section (Fig. 7d,e) and also indicated
that the JIM5 HG epitope occurred more widely than the
LM15 epitope in all cell walls of all cell types throughout
the organ. To explore how a pectate lyase pre-treatment
impacts on the capacity to detect other cell wall epitopes
in this system, equivalent untreated and treated sections
were probed with monoclonal antibody LM6 directed to
the (1→5)-α-L-arabinan, a structural motif that is often
associated with the rhamnogalacturonan-I polysaccharide
of pectin [34]. This antibody bound in a similar pattern to
epidermal cells, cortical and pith parenchymas before and
after treatment with pectate lyase although the fluores-
cence signal was more intense after pectate lyase treatment
(Fig. 7f,g).

A more detailed comparative analysis of the LM15 and
JIM5 epitopes in cortical regions where collenchyma cells
merge into parenchyma cells is shown in Fig. 8. The LM15
xyloglucan epitope, revealed by pectate lyase pre-treat-
ment, occurred throughout collenchyma wall thickenings
but was most abundant in cell wall regions adjacent to
middle lamellae, a pattern of occurrence that was main-
tained in the cortical parenchyma (Fig. 8). In contrast, the
JIM5 HG epitope was distributed evenly across thickened
collenchyma cell walls and some cases a stronger abun-
dance at the inner cell wall adjacent to the plasma mem-
brane was observed. The epitope was particularly
abundant in cell walls lining the intercellular spaces in the
parenchyma cells. In the pith parenchyma (Fig. 9), enzy-
matic removal of pectic HG uncovered the LM15 epitope
throughout the cell wall but a particularly abundant
occurrence was always observed in this tissue at the junc-
tions between adhered and unadhered cell walls at inter-
cellular spaces (Fig. 9a). In contrast, the JIM5 HG epitope
was most abundant in cell walls lining the entire intercel-
lular spaces (Fig. 9f). In the section preparation used for
this study, certain cells were viewed not only in section
across longitudinal walls but were observed in addition to
present intact inner surfaces of transversal cell walls – see
asterisk in Fig. 9a. Immunocytochemical analysis of such
walls can provide an additional insight in to cell wall
microstructures [35]. Higher magnification of these
regions of the inner face of cell walls with Calcofluor
White fluorescence (Figs. 9c-e) revealed regions with
reduced fluorescence, that are possibly pit fields. These
regions displayed more LM15 fluorescence relative to
regions showing strong Calcofluor White fluorescence
(Figs 9c–e). A similar differential labelling of regions
showing strong and weak fluorescence with Calcofluor

Indirect immunofluorescence detection of xyloglucan, pectic HG and arabinan epitopes in TS tobacco stem internodeFigure 7
Indirect immunofluorescence detection of xyloglucan, pectic HG 
and arabinan epitopes in TS tobacco stem internode. a. Calcofluor 
White image of section showing cell types from epidermis to pith paren-
chyma. b. LM15 binding to an equivalent section to a. There is weak recog-
nition of cortical collenchyma/parenchyma and isolated groups of cells in 
the cambial region. c. An equivalent section to b that had been pre-treated 
with pectate lyase to remove pectic HG. LM15 binds strongly to epidermal 
and parenchyma cell walls. d. Section immunolabelled with pectic HG 
probe JIM5 which binds to all cell walls. e. Equivalent section to d pre-
treated with pectate lyase indicates that the JIM5 epitope has been abol-
ished. f. Section immunolabelled with arabinan probe LM6 which binds 
most strongly to cell walls of cortical and pith parenchyma. g. Equivalent 
section to f pre-treated with pectate lyase indicates increased detection of 
the same pattern of the LM6 epitope. ep = epidermis, cl = collenchyma, cp 
= cortical parenchyma, c = cambium, x = xylem, ip = internal phloem, pp = 
pith parenchyma. Scale = 100 μm.
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White was shown by JIM5 although this was less marked
(Figs. 9g–i).

Discussion
We show that immunization with a neoglycoprotein has
been successful in the generation of a rat monoclonal
antibody, LM15, directed to the XXXG motif of xyloglucan
that can bind effectively to tamarind xyloglucan (a poly-
mer without fucosylation) and also to cell walls in a range

of species. LM15 can bind to pea cell walls (with XXXG
xyloglucan) and also to tobacco stem cell walls with
XXGG xyloglucan indicating that the LM15 antibody may
not require the entire heptasaccharide XXXG for optimal
recognition – a facet of LM15 binding to xyloglucan that
was also indicated by hapten oligosaccharide inhibition
studies in which a mixture of XXLG and XLXG oligosac-
charides was observed to effectively inhibit binding.

Polysaccharide-directed probes such as monoclonal anti-
bodies are important tools to gain an understanding of
polysaccharide diversity and occurrence in cell walls
which is an essential aspect of understanding the molecu-
lar basis of cell wall functions. A xyloglucan antiserum
[18] and a monoclonal antibody CCRCM1 [19] have been
used to demonstrate developmentally regulated patterns

Indirect immunofluorescence detection of xyloglucan and pectic HG epitopes in TS tobacco stem internode showing higher magnification micrographs of region of pith paren-chymaFigure 9
Indirect immunofluorescence detection of xyloglucan and pectic 
HG epitopes in TS tobacco stem internode showing higher mag-
nification micrographs of region of pith parenchyma. a. LM15 bind-
ing to cell walls after pectate lyase pretreatment is most strong at points 
of cell adhesion at corners of an intercellular space (arrows). b. Same sec-
tion as a shown combined with Calcofluor White fluorescence. c. Cal-
cofluor White fluorescence of an intact cross wall in pith parenchyma – 
equivalent cell shown as an asterisk in a and b. d. Same cell as c showing 
LM15 binding. e. Combined image of c and d. Single-headed arrows in c, d 
and e indicate points of weaker Calcofluor White/stronger LM15 fluores-
cence. Double-headed arrows in c, d and e indicate points of stronger Cal-
cofluor White/weaker LM15 fluorescence. f. Equivalent section 
immunolabelled with JIM5 showing epitope particularly abundant around 
the entire lining of intercellular spaces. Arrows indicate points of cell 
adhesion at corners of an intercellular space. g. Equivalent section to c. h. 
Same section as g showing JIM5 labelling. i. Combined image of g and h. 
Arrows in g, h and i indicate cell wall regions with weaker Calcofluor fluo-
rescence. Scale = 10 μm.

Indirect immunofluorescence detection of xyloglucan and pectic HG epitopes in TS tobacco stem internode showing higher magnification micrographs of region of cortical collen-chyma/parenchymaFigure 8
Indirect immunofluorescence detection of xyloglu-
can and pectic HG epitopes in TS tobacco stem 
internode showing higher magnification micrographs 
of region of cortical collenchyma/parenchyma. a. 
LM15 binding to cell walls after pectate lyase pretreatment is 
most strong at outer regions adjacent to middle lamellae. b. 
Same section as a shown combined with Calcofluor White 
fluorescence. c. Equivalent section to a immunolabelled with 
JIM5 showing HG across cell walls and abundance at inner 
cell walls and intercellular spaces of parenchyma (bottom of 
micrograph). d. Same section as c shown combined with Cal-
cofluor White fluorescence. Arrows in a and b indicate outer 
cell wall regions adjacent to middle lamellae with abundant 
LM15 epitope. Arrows in c and d indicate inner edge of cell 
walls and abundant JIM5 epitope. Double headed arrows indi-
cate intercellular spaces. Scale = 10 μm.
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of xyloglucan occurrence in a range of systems [7,21,22].
In sections of nasturtium seed monoclonal antibodies
LM15 and CCRCM1 bound to distinct regions of cotyle-
don parenchyma cell walls indicating the spatial regula-
tion of xyloglucan structure within these cell walls. A
region of the nasturtium cell walls between the regions
bound by these antibodies (revealed by Calcofluor White
fluorescence) was not strongly bound by either probe
(and pre-treatment with pectate lyase had no impact on
epitope occurrence). To know whether xyloglucan is
reduced in amount or the xyloglucan is structurally dis-
tinct in these regions requires the development of probes
for other structural features of xyloglucans.

Binding of LM15 to untreated transverse sections of stem
internodes of pea and tobacco indicated recognition of
only a few cell types and often weakly. Binding was shown
to be increased considerably by the enzymatic removal of
pectic HG. In cell wall immunochemistry studies, it is
often assumed that a section through an organ/cell and
thus across cell wall layers from the plasma membrane to
the middle lamella would expose all polymers present in
the cell walls. The implication, from many documented
occurrences of cell wall epitopes, has been that a restricted
occurrence of an epitope reflected the presence or absence
of a particular epitope and this has in some cases been
supported by physicochemical analysis of isolated poly-
mers. This is the first report of a clear case of substantial
epitope masking where most of the copies of an epitope
present in a section have been masked by the presence of
another cell wall polymer, in this case pectic HG. It is of
considerable interest that, in both pea and tobacco stem
internodes, some xyloglucan epitopes were detected with-
out enzymatic removal of pectic HG in addition to those
revealed by pectic HG removal. This suggests the possibil-
ity of two distinct presentations of the LM15 epitope in
relation to pectin in cell walls. These observations have
important implications for our understanding of cell wall
polymer configurations and should be born in mind
when considering the developmental regulation of cell
wall structures, as evidenced by antibody probes.

The basis of the uncovering of xyloglucan epitopes by pec-
tic HG removal could be a general increase in cell wall
porosity allowing increased access to epitopes or alterna-
tively an intimate specific structural association between
pectin and xyloglucan in muro that occludes xyloglucan
structures. The comparative assessment of the LM6 arab-
inan epitope in tobacco stem indicated that its detection
increased after pectate lyase treatment but not to the
extent observed for the LM15 xyloglucan epitope. Moreo-
ver, no difference in the pattern of occurrence of the LM6
epitope was revealed. This observation suggests that the
pectate lyase pre-treatment can increase cell wall porosity
and thus all antibody access to some extent. However, the

clear impact on the extent and pattern of LM15 xyloglucan
epitope detection indicates a more intimate association
between xyloglucan and pectin in this system.

Pectin and xyloglucan are both quantitatively important
polymers of plant cell walls comprising approximately a
third each of the polysaccharides of primary cell walls of
dicotyledons [1]. In terms of cell wall architectures,
xyloglucan is known to attach to cellulose microfibrils by
means of hydrogen bonds and is proposed to tether adja-
cent microfibrils providing the mechanical basis of the
resisting cell enlargement. The complex pectic network of
several polymers (the major one being HG) embeds the
cellulose-xyloglucan network and imposes cell wall prop-
erties including cell wall porosity [2,36,37]. An early
model of cell wall structure proposed a glycosidic link
between xyloglucan and a neutral side chain of pectin
[38]. Recent evidence has confirmed a link between
xyloglucan and acidic pectic polymers but specifically
through the rhamnogalacturonan-I domains of the pectic
molecules [23-27]. These studies indicate that such links
are widespread and, in the case of cultured cells of arabi-
dopsis, evidence has been reported that up to 50% of
xyloglucan is synthesized on a pectic primer prior to cell
wall deposition and that the interpolymer bonds are sta-
ble in the cell wall [26,27]. The significance of glycosidic
links between pectic polymers and xyloglucan and the
observations reported here are not yet clear.

In cell walls of pea and tobacco stem internodes the pectic
HG and the LM15 xyloglucan epitope do not co-localize
precisely. It is of interest that the uncovered LM15 xyloglu-
can epitopes occurred in diverse complex patterns in rela-
tion to cell wall features and microstructures in a range of
cell types such as parenchyma, metaxylem and collen-
chyma cells. In many cases the LM15 epitope was not
evenly distributed throughout cell walls. At the inner face
of transverse walls in the pith parenchyma of tobacco
stem the LM15 epitope did not co-localize with Cal-
cofluor White fluorescence (likely to be indicative of cel-
lulose). Other approaches have indicated that cellulose
microfibrils may not be evenly coated with xyloglucan,
that xyloglucan can occur in distinct cell wall domains
and may be minimal in some cell walls [39,40]. It has also
been demonstrated that xyloglucan structure changes dur-
ing cell growth in pea [41] and it is possible that structural
changes are spatially regulated within cell walls during
cell development. The detection of abundant LM15
xyloglucan epitope at corners of intercellular spaces,
shown most strikingly in this study for tobacco pith
parenchyma cell walls, is a pattern of occurrence that has
been observed for the LM7 pectic HG epitope in a wide
range of parenchyma systems [6]. This may indicate, for
this tissue, a role for xyloglucan in intercellular space for-
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mation or stabilisation, possibly through an association
with pectin.

Conclusion
A novel xyloglucan binding rat monoclonal antibody
LM15 has been developed for xyloglucan analysis in

planta. The demonstration that, in certain organs, large
sets of xyloglucan epitopes are masked by the presence of
pectic HG has implications for understanding xyloglucan
function in primary cell walls and cell wall biology in gen-
eral. The use of enzymic degradation in conjunction with
cell wall probes is likely to be an important analytical tool
for the study of the developmental regulation of links
between pectic polymers and xyloglucan. Further work
will be required to dissect the extent of cell wall epitope
masking occurring between other sets of cell wall polysac-
charides.

Methods
Preparation of neoglycoprotein immunogen, 

immunization protocol and isolation of a xyloglucan-

directed monoclonal antibody

A neoglycoprotein (XXXG-BSA) was prepared by coupling
a heptasaccharide containing 3 xylosyl and 4 glucosyl res-
idues (XXXG, Megazyme, Bray, Ireland) to BSA by reduc-
tive amination [42]. XXXG (30 mg) was dissolved in 1.0
ml of 0.2 M sodium borate buffer pH 9.0. This was fol-
lowed by the addition of 20 mg BSA and then 30 mg of
sodium cyanoborohydride. The mixture was maintained
in a water bath at 50°C with occasional mixing. After 24
h the pH was adjusted to pH 4.0 by the addition of 45 μl
of 80% (v/v) acetic acid. The solution was then dialysed
extensively against distilled water with several changes
over 4 days.

Rat immunization, hybridoma preparation and cloning
procedures were performed as described previously [34].
Two male Wistar rats were injected with 100 μg XXXG-BSA
in complete Freund's adjuvant administered subcutane-
ously on day 0, with the same amount administered with
incomplete Freund's adjuvant on days 33 and 71. On day
145, a selected rat was given a prefusion boost of 100 μg
XXXG-BSA in 1 ml PBS by intraperitoneal injection. The
spleen was isolated three days later for isolation of lym-
phocytes and fusion with rat myeloma cell line IR983F
[43]. Antibodies were selected by ELISA using tamarind
xyloglucan as antigen. Subsequent characterization was
by means of a glycan microarray of cell wall polymers [28]
and competitive inhibition ELISAs using the xyloglucan
XXXG heptasaccharide from tamarind xyloglucan and a
series of related xyloglucan oligosaccharides. A mixture of
the XXLG and XLXG octasaccharide isomers and the XLLG
nonasaccharide were derived from tamarind xyloglucan
as described [44] and purified by HPLC using Tosoh TSK
Gel Amide column (21.5 × 300 mm) eluted with 65%

aqueous acetonitrile. Cellotetraose GGGG was prepared
by acetolysis of cellulose [45] and separated from the mix-
ture of deacetylated oligosaccharides by HPLC as above.
The sample of pea xyloglucan was a gift from Marie-Chris-
tine Ralet (INRA, Nantes, France). ELISAs were carried out
as described previously [6] and in all cases immobilised
antigens were coated at 50 μg/ml. Mannan, tamarind
xyloglucan polymers, isoprimeverose and xylose disac-
charide were obtained from Megazyme, Bray, Ireland. The
selected antibody, an IgG2c, was designated LM15.

Plant materials and immunocytochemistry procedures

Tamarind (Tamarindus indica L.) seeds were obtained
from Jungle Seeds, Watlington, UK) and nasturtium (Tro-

paeolum majus L. cv Tom Thumb) seeds from Mr.
Fothergill's Seeds Ltd., Newmarket, UK. Tamarind and
nasturtium seeds were imbibed for 24 h and then pieces
of cotyledon parenchyma were excised, fixed and pre-
pared for embedding in LR White resin with subsequent
sectioning for indirect immunofluorescence analysis as
described previously [8]. Tobacco (Nicotiana tabacum L.)
and pea (Pisum sativum L.) plants were grown in a green-
house with 16 h days and maintained between 19 and
23°C. Regions of second internodes from the top of six-
week old plants were fixed, embedded in wax and sec-
tioned as described previously [46].

In addition to LM15, three further monoclonal antibodies
were used in this study using indirect immunofluores-
cence: CCRCM1, a mouse monoclonal antibody to a fuc-
osylated epitope of xyloglucan [19], a gift from Dr.
Michael Hahn (CCRC, University of Georgia, USA), JIM5,
a rat monoclonal antibody to methyl-esterified and unes-
terified epitopes of HG [32] and LM6, a rat monoclonal
antibody to arabinan [34]. Section pre-treatment to
remove HG from cell walls involved incubation of sec-
tions with a recombinant microbial pectate lyase 10A [47]
(a gift from Prof. Harry Gilbert, University of Newcastle-
upon-Tyne) at 10 μg/mL for 2 h at room temperature in
50 mM N-cyclohexyl-3-aminopropane sulfonic acid
(CAPS), 2 mM CaCl2 buffer at pH 10 as described [10].
The high pH of the enzyme buffer removes HG methyl
esters in cell walls and results in HG being susceptible to
pectate lyase degradation and also suitable for recognition
by JIM5. Sections not treated with the pectate lyase were
incubated for an equivalent time with the high pH buffer
without enzyme and imaged as untreated controls. After
enzyme or buffer treatment, sections were incubated in
phosphate-buffered saline (PBS) containing 5% (w/v)
milk protein (MP/PBS) and a 5-fold dilution of antibody
hybridoma supernatant for 1.5 h. Samples were then
washed in PBS at least 3 times and incubated with a 100-
fold dilution of anti-rat IgG (whole molecule), or anti-
mouse IgG, linked to fluorescein isothiocyanate (FITC,
Sigma, UK) in MP/PBS for 1.5 h in darkness. The samples
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were washed in PBS at least 3 times and incubated with
Calcofluor White (0.2 μg/mL) (Fluorescent Brightner 28,
Sigma, UK) for 5 min in darkness. Samples were washed
at least 3 times and then mounted in a glycerol-based anti-
fade solution (Citifluor AF1, Agar Scientific, UK). Immun-
ofluorescence was observed with a microscope equipped
with epifluorescence irradiation and DIC optics (Olym-
pus BX-61). Images were captured with a Hamamatsu
ORCA285 camera and Improvision Volocity software.
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