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Abstract

This paper presents a neural network approach to hybrid control of manipulators
interacting with the environment. The overall control strategy comprises a nominal
model of the manipulator with separate neural network compensators along the force
and motion controlled directions in the task co-ordinate system. With the learning
mechanism in the task space, modelling errors, dynamic friction and changes in
environment stiffness are automatically compensated for which result in highly
desirable task oriented performance characteristics. Simulation results are provided
using the PUMA 560 arm which demonstrates the applicability of the proposed
method to the position / force hybrid control of manipulators.
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Abstract

This paper presents a neural network approach to hybrid control of manipulators
interacting with the environment. The overall control strategy comprises a nominal
model of the manipulator with separate neural network compensators along the force
and motion controlled directions in the task co-ordinate system. With the learning
mechanism in the task space, modelling errors, dynamic friction and changes in
environment stiffness are automatically compensated for which result in highly
desirable task oriented performance characteristics. Simulation results are provided
using the PUMA 560 arm which demonstrates the applicability of the proposed
method to the position / force hybrid control of manipulators.

1. Introduction

Most present day industrial robots are used for welding, spray painting and material
handling tasks which only require the control of manipulator end effector position and
velocity. In contrast to these several applications such as assembly and machining of
parts involve continuous contact between the end effector and the environment. In
these applications the robot end effector applies forces on various objects in it's
environment and moves along their surfaces. If all the parameters of the robot and it's
environment are known and robot positioning is precise it might be possible to
accomplish these tasks using motion control strategies only. However, in the presence
of inevitable discrepancies in modelling the manipulator and the environment large
reaction forces at the point of contact between end effector and the environment may
be developed that might damage the manipulator and it's environment. In such
situations controlling the interacting forces is a better option.

Conceptually, when a robot makes contact with a smooth and stiff surface, it is
impossible to move the end effector into the surface or to exert a force tangent to the
surface. In a properly defined task co-ordinate system the position controlled axes and
the force controlled axes are orthogonal [9] thereby providing for independent control
of position and force. Numerous position / force control schemes have been devised
based on Cartesian co-ordinates of the end point or of some external reference frame.
Overview of these schemes may be found in [17] [18]. These force / position C‘Sﬁfg
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schemes may be categorised in terms of whether a dynamic model of the arm is
included in the control structure [1] [7] or not [11] [12].

The improvement in the accuracy and stability of the algorithms by using dynamic
models of the arm in Cartesian force control has been demonstrated in [1]. Fixed gain
position / force controllers not incorporating the system dynamics may provide
reduced performance and have limited applicability. In the presence of a well
developed dynamic model of the arm it is feasible to use it as a non-linear control input
to cancel the coupling effects among joints and compensate for the inertial and
gravitational forces. However, uncertainties can always exist in robot, sensor or
environment models which if not neutralised may still degrade system performance.

Adaptive techniques have been proposed to improve the performance under parameter
uncertainties [2] [3]. These approaches have been designed to maintain accurate
motion and force control in the presence of structured uncertainties in system model,
however, their performance cannot be guaranteed in the presence of unstructured
uncertainties. If differences occur in the actual system and model structure robustness
of the adaptive control schemes decreases [10]. Consequently, it may be desirable to
utilise control techniques that learn from experience. Neural Networks offer one such
alternative. Advances in artificial neural networks have provided the potential for new
approaches to the control of systems with complex, unknown and non-linear dynamics.
The advantages of using neural networks for control applications can be summarised
as three-fold. First, they have a flexible structure to express non-linear systems which
may provide for a robust controller. Second, because of their structure they have a
flexible learning capability as against adaptive control method which stays within
unknown parameter identification of a pre-defined model. In addition parallel
processing and fault tolerance are easily achieved.

Recently there has been considerable interest in the application of neural networks to
hybrid force position control of manipulators [5], [15], [16]. These efforts aim at
compensating the dynamics of the arm and the environment within a central neural
controller. Single link or two link manipulators have been considered in the above
approaches. As the number of links of the arm increases so does the complexity and
non-linearity of the underlying system which has to be controlled by the central neural
controller. The neural network controller may therefore require excessive amount of
training data in order to yield a reasonable generalisation and thereby increasing the




training period. As the inverse dynamics of manipulators can be computed efficiently to
a fair degree of accuracy using Newton Euler equations, it is reasonable to utilise the
inverse dynamic model and assist it through neural networks to compensate for the
uncertainties of manipulators. Use of a model also decouples the position and force
control directions so that independent neural networks of relatively small sizes can be
used, each of which has to learn lesser amount of data as compared to a central neural

controller.

This paper presents a de-centralised approach to adaptive hybrid control of robots
using neural network compensators. The motion and force degrees of freedom are
effectively decoupled through an inverse model of the robot. Each motion and force
degree of freedom is then controlled separately by a neural network controller. The
effectiveness of the scheme is demonstrated by simulation studies on PUMA 560
interacting with a rough surface in the presence of uncertainties in the robot model and
that of the environment.

2. Dynamic model formulation

The dynamic equation of a general n-link manipulator can be represented by
D(8)8+h(8,6)+g(8) = u(t) . M

where u(t) is an nx1 applied torque vector for junction actuators, 6(t) is the nx1
joint angular position vector, O(t) is the nx1 joint angular velocity vector, 6(t) is the
nXx1 joint angular acceleration vector, g(0) is an nx1 gravitational force vector,
h(8,6) is an nx1 coriolis and centrifugal force vector and D(6) is an nxn
acceleration-related inertia matrix. When the robot makes contact with the
environment a reactive force at the end effector will be felt at each joint. The dynamic
equation then becomes

D(8)8+h(8,8)+g(8) =u(t)-I"(8) xR ()

where J(0) is the n Xn Jacobian matrix, T is the transpose operator and R the reaction
force / moment vector at the end effector. In this paper it is assumed that J(0) is
bounded away from singularities or equivalently that the arm is bounded away from the
corresponding joint positions producing J(8) to be singular. In order to perform hybrid
control in Cartesian co-ordinates the dynamics can be derived in Cartesian co-ordinates
as shown below.




Let x be an nx1 vector representing a set of Cartesian states of the end effector in a

reference frame Ro. The forward kinematic relationship between joint positions and
end effector configuration can be written as

x=1(0) 3

and the corresponding velocity relation

x=1J(0)0 “4)

Differentiating equation (4) with respect to time the joint acceleration can be obtained |
6=J7"(6)(%X-1(8,6)x6) (5)
The applied torque vector u(t) in (2) can be replaced by a nx 1 fictitious force / torque

vector F using the relationship

u(t)=JT(0)xF (6)

putting (5), (6) in (2) we get

D, (8)X+H,(0,8)+G,(0)+R =F (7

where D,(0) the Cartesian mass matrix, H,(0,0) the vector of velocity terms in
Cartesian space and G, (0) the vector of gravity terms in Cartesian space are given by

D.(8)=J""(8)D(8)I'(8)
H.(6,6)=J"T(8)(h(6,6)-D(8)I"(8)i(6,8)6) (8)

G(8)=1"(8)g(6)

If the manipulator is in contact with a surface at a point whose position is X. in Ry
frame and the effector position is x(t) then interaction can be modelled as a pure elastic
restoring force / torque given by

R=K.(x(t)-x) 9)

where K. is the environment stiffness matrix. If the manipulator is moving along a
rough surface in a direction perpendicular to the force controlled direction, frictional
forces are developed tangent to the surface which have not been considered in (7). The
magnitude of these forces depends on the magnitude of reaction force R. In this paper
the friction model used is




fr =—(UR:V+Gran) (10)

where L is the coefficient of friction, v is the unit vector in the direction of constrained
velocity, R; is the force applied on the surface and (., is a random signal due to
surface irregularities. This friction force may be considered as an unknown disturbance
which the position controller has to neutralise.

3. Hybrid Control

Using [4] and knowing the estimates of D4 (0), H,(0,8) and G(0), equation (7) can
be used to decouple the constrained system into n sub-systems along n degrees of
freedom in Cartesian co-ordinates and modelling errors can then be compensated by
independent controllers with one controller along each degree of freedom. However,
Cartesian space dynamic equation (7) is computationally very expensive which
presents a major obstacle in its real time implementation. As an alternative to (7), it can
be readily seen that the joint torque u(t) needed for the constrained motion and force
control can be computed efficiently through Newton Euler equations using the formula

u(t) = D(0)8" +h(6,8)+g(6)+R" (11)

where 6" is the nx1 acceleration command vector for motion control and R® is the
nx1 command vector for force control, both in joint co-ordinates. In this paper
equation (11) is used for hybrid position / force control and 8" and R* are generated
utilising neural networks to maintain position and force tracking accuracy in the
presence of modelling errors.

3.1 Motion Control

For generating 6°, the motion command vector in joint space, first a pseudo-control
vector is formed in Cartesian space utilising neural networks, which is then
transformed into joint space using Jacobian relation. For p motion degrees of freedom
0" is given below

NN® +PD®
=1
NN(P) + PD(P)

£1(8,6,X) +{Kp (x = x)+ K, (x{ - x))
=5 : (12)
fp (0, é, igp) ) + {Kp(xgp) _ X(P))+ KV()"?) —x® )}




where NN® =£,(6,6,%) is the non-linear compensating function of joint positions,
joint velocities and desired Cartesian acceleration along the ith degree of motion
freedom, implemented through neural networks and PD” = K, (-)+ K, (-) is the output

of the PD controller in Cartesian co-ordinates along the ith degree of motion freedom
with K, and K, being positive gains. The PD controller output is also an error signal

for updating the weights of the corresponding neural network. Each of the p neural
networks has 2n+1 inputs and one output. Equation (12) may be compared with (5)
which may be written as

gl (Bs é: i(]I)) :
=7 j (13)
g (9,9, i(p))

The job of neural network implementing f;(-), apart from compensating for g;(-), is to
reduce motion tracking errors along the ith degree of motion freedom, while motion
errors along the remaining n-p force control directions are ignored.

3.2 Force control

Similar to the motion control strategy pseudo-control vectors are generated in
Cartesian co-ordinates in the n-p force degrees of freedom which are then transformed
into joint co-ordinates using Jacobian relations to form R*. When contact is made with
a hard surface having a large stiffness value, due to very high loop gains, the force
error signal f/=f; —f has very high frequency components. Use of this signal as the
error measure for updating the weights of neural networks in the force loop resulted in
poor convergence. This force error signal was smoothed out to generate f., a suitable
error measure for the neural networks in force loops. Smoothing was performed using
an exponentially weighted recursive filter given by the following equation

£8 = g £0 4 (1— o) X (FF — £+ 0<a<l (14)

The force command vector R" is then given by

NN® +P®

NN®P 4 pe-P




E (£, f)+ K"

R =] (15)

_F(n-p) (fén-p) ! f(n-p) ) T Kff.,(n_m_

which can be compared to (6). NN® =F(f{>,f”) is the non-linear function
compensator implemented by the neural network along the ith degree of force freedom
and P® = K,(-) is the proportional gain also used as an error signal for neural network
weight update. Each neural network in the force loop has two inputs and one output.
Force errors along the p motion controlled directions are ignored.

The control structure for an n link robot is shown in Figure 1 where EWRF is the
exponentially weighted recursive filter and I" represents the transformations from joint
space to Cartesian space. The scheme is computationally efficient and is amenable to
parallel processing implementation within a computing architecture. The inverse
dynamics part, being computationally the most involved part in the algorithm can be
computed using Newton Euler equations in time linear in the number of links on a
single processor. Moreover very efficient implementations on Newton Euler formulas
have been achieved on multiple general purpose processors, also, pipelined dedicated
hardwares have been proposed to further cut down the computation time [6] [8].
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Figure 1. Hybrid control structure




4. Simulation application

To demonstrate the effectiveness of the control scheme , first 3 links of PUMA 560
arm are used in dynamic simulations [13] [14]. The schematic diagram is shown in
Figure 2. A global reference frame R, is fixed to the base frame. The manipulator end
point is moved in a circular trajectory along a surface parallel to y-z plane of R, while
applying a force in the direction of x axis. A rigid robot is assumed. Modelling errors
are introduced by changing the values of robot inertia parameters by 25% from those
used in the controller design, also, using equation (10), frictional forces acting as
disturbances for the motion control part were introduced tangent to the surface. There
are two neural network compensators for the two motion degrees of freedom and one
neural network in the single force loop. Every neural network has two hidden layers
with sigmoidal activation function and a linear output neuron. The number of neurons
in the first and second hidden layer being 20 and 10 respectively. Standard back-
propagation is employed. The structure of the neural networks is given in Figure 3 and
simulation parameters are given in Table 1. Two values for the environment stiffness
were used, 107 N/m for hard surfaces and 10* N/m for relatively soft surfaces. For the
sake of comparison force control without neural network control is also shown.

Figure 3. Neural network structure used in the position and force loops.




Table 1. Simulation parameters.

K, 500
K, 50
K, 0.1
1 0.2
o 0.98
Inertia parameter error 25 %
Control cycle 200 Hz
Weight update rate 200 Hz

Neural network weights were initialised to small random values. Figure 4 shows the
desired and actual motion trajectories along the y-z plane. Very low tracking errors
were observed through out the course of the circular trajectory. Figure 5 shows the
desired and actual force trajectories applied in the direction of x axis while moving
along the y-z plane. Typical force trajectories are constant values, however, to evaluate
the control scheme a trajectory containing ramp and step elements is shown. Figure
5(a) represents the force trajectory with the value of environment stiffness equal to 10*
N/m, while Figure 5(b) represents the same with stiffness equal to 10’ N/m. Smooth
contact may be observed in Figure 5 (a), while in Figure 5(b), because of very high
force loop gain, some oscillations are observed at the time of making of contact, with a
maximum value close to twice the desired value. These oscillations, however, die
down rapidly and once the initial oscillations are over, accurate force tracking for both
the stiffness values may be observed. Figure 6(a) and 6(b) depict the components of
forces of friction along the y and z axes respectively, that act as disturbances for the
motion controllers. To have a comparison, force control without neural networks is
plotted in Figure 7. In Figure 7(a) the value of stiffness is 10* N/m, while in Figure
7(b) it's value is 10’ N/m. Apart from increased oscillations at the time of making
contact, it may be observed that tracking is particularly poor for the higher value of
stiffness and is accompanied with large oscillations. Figure 8 displays the processed
force error, which is the output of the recursive filter that was used to update the
weights of the neural network in the force loop.




In the next stage, robustness of the controller against constraining surface movement
along the force direction is being demonstrated. The constraining surface is given a
velocity in the positive x direction. It should be noted that position is not being
controlled in the x direction. The robot end point was made to follow a circular
trajectory similar to that of Figure 4 along the y-z plane and was required to keep the
force in the x direction constant at 20 N, despite surface movement in that direction.
Simulation results for surface movement in the force controlled direction are given in
Figures 9, 10 and 11. Figure 9 (a) shows the force response for the moving surface
having a stiffness of 10* N/m. and a constant velocity of 2 cm/sec. in the positive X
direction. In this case, larger oscillations that persist for a longer duration of time, are
observed at the start, when compared with the fixed surface case of Figure 5.
However, once the neural network gets trained it is then able to maintain the force
near the desired value, despite surface movement. Figure 9 (b) shows a similar force
response but with surface stiffness equal to 10’ N/m. and surface velocity reduced to 2
mm./sec. It may be noted that for lower surface stiffness the manipulator end point was
able to track and maintain the desired force against a much faster moving surface.
Movement of the surface is shown in Figures 10 and 11, for stiffness values of 10*
N/m. and 107 N/m. respectively. Figure 10 (a) and 11 (a) show the position of the
surface along the x axis, while Figure 10 (b) and 11 (b) show the x co-ordinate of end
point of the manipulator as it tracks the surface while applying the desired force. Apart
from small errors at the start the end point follows the surface closely.

Fig. 4
0.
0.2
0.15
0.1
.|
B
g o
<0.05
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0 i R ) . ;
%.3 02 0.1 0 0.1 02 0.3
meters

Figure 4: desired and actual position trajectory along the y-z plane.
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Figure 5: desired and actual force trajectories. () stiffness = 10* N/m. (b) stiffness = 107 N/m.
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Figure 6. disturbance friction forces. (a) component along y axis. (b) component along z axis.
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Figure 7: Force trajectories without neural compensation. (2) stiffness = 10* N/m. (b) stiffness = 107 N/m.
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Figure 8: Filtered force error (a) stiffness = 10* N/m. (b) stiffness = 107 N/m.
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Fig. 8(a) Fig. 9(b)
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Figure 9: Force trajectories against moving surface. (a) stiffness = 10* N/m. (b) stiffness = 107 N/m.
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Figure 10 (a): Constraint surface movement, (b): endpoint tracking movement. (stiffness = 104 N/m.)
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Figure 10 (a): Constraint surface movement, (b): endpoint tracking movement. (stiffness = 107 N/m.)

The above figures show that despite surface movement the hybrid controller was able

to maintain the desired force.

5. Conclusions

This paper presents a neural network based scheme for hybrid position / force control
of manipulators. The scheme is based on the belief that neural networks perform best
when they are not required to learn too much data, too fast. Use of nominal dynamic
model of manipulators in conjunction with neural networks reduces the job of neural
networks to compensation of modelling uncertainties rather than generating the model

itself. Simulation studies conducted on a realistic system, demonstrate accurate
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position and force tracking performance in the presence of uncertainties in the
manipulator model and the environment. The scheme is computationally efficient and is
well suited for parallel processing implementation within a computing architecture.
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