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The validity of polynomial models for the
tracking of a physical field

Edwards, J. B. and Igbal, R.

Abstract

This report is the fourth in a series and expands the investigation of the feasibility of using the
linear relationship for the (n-1)th spatial derivative of an n'th order field model for locating a
sensor within the sampled field. Taking the electrical (or magnetic) field between two
meandering parallel conductors as an example, the effect of a non polynomial field equation for
generating the field measurements is explored. Criteria for the best polynomial fit for position-
location purposes are examined and promising results achieved.

1. Introduction

Previous research reports (1), (2), (3) in this series have concentrated on the
determination or estimation of position y, in a physical field H(y) given n values of

H(y){= H(y, +iAy) where 0 <i<n—1} of known spacing Ay. The field has been
assumed to be modelled exactly by a polynomial function, i. .
2 n
H(y)=a,+ay+a,y* - a,y (1)
where constant coefficients a,---a, are known and the positional determination made
using the derived equation:

A'H (n=1)
———=D""H+-——=D"HAy
Ayn—] 2 - (2)
where D'H denotes d'H/dy (3)
ANH ‘y: A™'H|,,,,—AH|, (4)
and AH| = H(y+Ay) - H(y) 5)
Since D"'H=(m-D'a, +n'lay 6)
and D'H =nla, ™)
equation (2) can be written as a simple linear formula for the calculation of y thus:
1 |AH n-1
)= 7y I:—AJ)T—(H-—I)IG“_, i )n!a”AyJ 8)

For  finding the first wvalue y; of the equispaced sequence
Yor Yo+ Ay, -y, +(n+ 1Ay, A H is evaluated at the first sampling point (i.e.

A™'H in (8) is interpreted as A"'IH!,\U ).




The previous reports have concentrated on the effect of white noise on the
measurements of H(y) on the accuracy of the yg - estimate obtained from formula (8)
and on the improvements possible by combining estimates from using the formula on
measurements of H exceeding the deterministic minimum number n. The white noise
could be interpreted as measurement noise or as deviations between an idealised,
deterministic field model (described by eq”. (1)) and its real life, part-random, part-
deterministic realisation. Correlated (i.e. coloured) random deviations were not
considered. White noise effects are more readily analysed and are likely to be more
serious because the finite differencing process (to form A™IH) should be more
immune to the more slowly changing disturbances that coloured noise describes. The
argument could also be made that, slow variation (from the polynomial model H(y))
would be present in successive scans as the machine passes-through the field. This is
because field isotropy considerations would make it unlikely for random deviations to
occur rapidly in the (x-) direction of machine travel yet slowly in the (y-) direction of
scanning. Thus, slow changes in the y- direction are probably better modelled by an
improved, a priori choice of polynomial rather than by adding coloured noise to the
original model.

The question therefore arises as to the best choice of polynomial model for a
physical field. Previous reports were motivated by the problem of tracking layered
strata fields comprising bands of material of different hardness repeatedly scanned and
sensed by a strain-gauged cutting tool as the cutting machine progresses along the
strata field. Here, a field of n-1 tuming points (i.e. maxima, minima and inflexions)
within the y - range of interest would be modelled by an n'th order polynomial
calculated to pass through n+1 points selected close to the turning points. The
question of whether increase of order n might generate a better positional estimate is
interesting. In this report this question is addressed by consideration of a much
simpler physical field in order to assess the potential benefit of higher-order field
modelling before proceeding (if necessary) to the complexity of geological fields in
subsequent reports.

2. The Electric Field Example

The simple field considered is the electrostatic field £(x,y) created between two
long, cylindrical, charged conductors 1 and 2 lying parallel to one another in the flat
plane z=0 and separated by distance d. The small 'vehicle' carrying a field strength
detector is constrained to travel only in the plane of the two conductors and the
problem posed is the determination of position y, O<y<d from conductor 1 from
measurements of the field strength. This hypothetical situation is illustrated in Fig 1.
Since the conductors are of constant cross-section (having radii r; and r, respectively),
long (compared to d), parallel and subject to only gentle lateral undulations (i.e. of
curvature radius>>d) then the field will be independent of x i.e.

E(x,3)=E0) ©)
Provided vehicle position y is always such that
hSC YL d—1 (10)

and the vehicle itself is of small dimensions (compared to conductor spacing, d) so that
the field remains sensibly unaffected by it its presence, then the field strength at any
chosen point (e.g. point P in Fig 1) will be given by




__1 106, o0,
é(})—mgn[}, +y_d} (11)

[As y approaches r; or d-r,, then equation (10) will become progressively invalid since
it is based on the assumption of ideal linear conductors of zero cross-section: Hence
the necessity for constraint (10)]. g, is the permittivity of the insulating medium
between the conductors! . For simplicity of notation in subsequent analysis and for
consistency with previous notation in this sequence of reports, we here define field
function H(y) to be:

H(y)=2me,E(y) (12)
so that
H(y) =1+ 2 (1)
y y-d
o) o
Stasd B MR 12
and DH(y) {yl +(d*},)2} (12)

plane z=0

™~

Conductor 2

Conductor 1 (Charge density,
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Fig. 1. Electrostatic Field between two charged parallel conductors lying in plane z=0

1 An equation similar in form to (11) above could be used to describe the magnetic field P(y) resulting
from currents I, and I, flowing along the conductors 1 & 2 but with I, and 1, replacing &, and &, and
with medium permeability p  replacing (1/e,).




2.1. Some Field Characteristics

It is readily shown that a minimum value exits at

- d{o, - J(=0,0,)}

G, +0,

(13)

which yield a real solution only if
signg, = —signo, (14)

If (14) is not satisfied (i.e. if the conductors are charged in the same sense, rather than
opposite senses) then the value of H(y) will move between near-infinite values of
opposite sense as y increases from near zero to near d and passing through zero (i.e.
through a null point ) at

y=0,d/(0,+0,) (15)

without passing through a turning point. The curve of H(y) is therefore monotonic in
the case of charges of similar sign. We shall therefore concentrate on the more
challenging case of opposite sign charges which involves duplicate solutions for y for
any given H(y) is the range (10). In particular we will restrict attention to ;>0 and
0, <0 so that:

S, =|o)| (16)
6, =0, 17)

Under there circumstances, equation (13) predicts a minimum field stren gth of :
H(y)=H,, = (o, +o,])’ /d (18)

occurring at:

J5id
P (19)
5, +4o)

2.2. A Numerical Example

As a test example we choose , rather arbitrarily, d=20. Noting constraint(10)
we shall assume that the vehicle track remains within the bounds

4<y<17 (20)

The explored width of field will be a fairly substantial fraction (0.65) of the conductor
spacing, d. To introduce a good measure of asymmetry we choose 6,=4.0 and
6, =-1.0so0 that

4.0 1.0
Hp)=s—= 4 - 21
) y 20-y @D

yielding a minimum value, H,;,=0.4500 @ y=13.333. Curves of H(y) and DH(y) are
shown in Fig 2.

It is clear from Fig 2 that a polynomial of minimal order=2.0 i.e. a parabola would be
needed as an approximation to generate the single turning point in H(y) but it is also




clear that associated straight line approximation to DH(y) might involve significant

errors that would reflect in estimates of y derived using formula (8) and measurements
of H(y) and H(y+Ay) (needed to form AH(y)) and the parameters a; and a, used to

describe the best straight - line fit to the curve of DH(y) shown in Fig 2.

H(y) DH(y)
T— 12

1.2 =

o

10 11 12 13 14 15 16 17 18
| T -02
|
| — -04

Fig 2. Curves of H(y) and DH(y) for 6,=4, 0©,=-1 and d=20

3. Choosing a polynomial to approximate the real

field function

For reasons of analytical and computational convenience (and possibly also for
greater noise immunity) a polynomial of minimal order is desirable as a field function

approximation provided the main features of the field are reproduced within the
desired range

V<Y<Y, (22)




(In our numerical example the chosen limits y; and y, are 4 and 17 respectively). The
most prominent features of a field function are its turning points so that, if there are,
say, n, of these within the range of interest, then the order n of the polynomial should
be at least=n+1. We will use this minimum number initially (i.e. set n=2) for the
chosen electric field example and consider the merits of increasing the order of the
polynomial later in Section (5).

3.1. From a Taylor Expansion

Having selected the value for n there remains an infinitely free choice of curves
all described by different combinations of parameter values ag to a,. Where excursions
of y are expected to remain very close to some nominal working point y, then an nth -
order Taylor expansion about y=y, would be a worthy candidate for the best
polynomial to use. In our example for instance, choosing y,=13.333 (=the turning
point location in this case - see Fig. 2), then the 2nd-order Taylor expansion
polynomial would be

ﬁ()‘) =1.35-0.135y +5.0625y* x10™ -
and DH () =-0.135+10.125y x10™ 04)

The symbol H(y) is now used to denote the polynomial approximation for a given y,
whilst retaining H(y) to denote the true field function. As a check note that equation
(24) vyields DH (»)=0.0 at y=13.333 and the associated minimum value of
ﬁ(y) =0.45 which matches the minimum value of H(y), all as expected. The value of
parameters a; and a, defining DH (¥) in this case are therefore

@, =-0.1350 , a,=5.0625x10" (25)

For small deviations (say 8,=%2.0) either side y,, (here=13.333), using these values in
position predictor formula (8) (in conjunction with a AH(y) value measured or derived
from the true field function H(y)) does yield reasonable predictions of location y, as
demonstrated in Section (4.1). In general however we shall be interested in estimating
excursions in a wider range (22) i.e. within limits 4 <y <17 in our chosen example,
for which the Taylor approximation is less adequate.

3.2.I Orthogonal Least Squares Approximation the
D" H Characteristic

At first sight, the use of computational least squares (with respect to a,---a,)
to minimise the error function

o[ {Hy-Am)) &

e (25)
] % (}'3 =X )
where estimate 4 (y) is given by
H()=a,+a,y+a,y ay" (26)

would appear to offer a valid method for determining the best parameter values for the
exercise. However it should be borme in mind that only a,; and a, are needed in
formula (8) indicating that minimisation of

n-1




=1 N D™ ’
= {D™H)-D A} i @7)
i =)

with respect to a,; and a,, would be not only simple, but also would generate just the
two parameters needed for formula (8). The least squares operation would be a simple
straight line regression fitting process since D"'ilfl(y) is linear in y. Such an operation
yields the result

DH (y) =-0.2436+19.306 X107y (28)

the fit of which to DH(y) is compared to that from the Taylor expansion result (24) in
Fig 3. In this case the approximation is better towards the limits of the y - range and
less good around in the neighbourhood of the H(y) turning point. Indeed, the
intersection no longer occurs at DH(y)=0 (i.e. at y=13.333) as in the case of the
Taylor expansion, but remains close @ y=-a, /2a, =243.6/19.306=12.618. The
parameter values in this case are

a, =-0.2436, a,=9.653x10" (29)
compared to those given in eq". (25) for the Taylor expansion.

Whereas the use of the values given in eq”(29) produces generally better estimates of
position y, across the range 4<y,<17 using formula (8), as demonstrated in Section
(4.2), further improvement remains possible. This is because our true purpose is the
estimation of y from D"1H, not the other way around! Hence the regression line
really needed is that which minimises
~72
= (eiy-Yrd
e;’_ ZJ {- - } q (30)
Ui q‘2 - qi
where y is the value derived from the true curve D™'H(y), whereas $ is the value
derived from the linear approximation

y=b+bD"H(y) 31
or ¥=b+byg (32)
where q(y)=D""H(y) (33)
and limits
4, =90, 9, =4(»,) (34)
In our second order example, model (31) could be written alternatively in the from
DH(y)=a,+2a,y (35)

where the desired pair of polynomial parameters are obtained from those resulting
from of least squares process simply thus:

a,=1/2b, (36)

and a,=-b /b, (37)
In our example we get

DH(y)=-0.26697+22.0416 x107* (38)




i.e. parameters a; and a, are given by
a, =—0.26697, a,=11.0208x107 (39)

the values obtained from this "orthogonal q on y regression process” clearly differing
slightly but significantly from those obtained by the conventional "y on q" process.
The orthogonal regression line is also shown in Fig 3. The turning point of the
polynomial (i.e. the zero of DH(J) now occurs at y =12.112 compared to y=12.618
for the conventional regression line (and y=13.33 for the Taylor expansion) and the
orthogonal regression line deviates slights more from the Taylor expansion line than
does the conventional.

2T | : | |
0.15 + l least squares fit of DH(y) to DH(y)
01t |
0.05 T | 2nd order Taylor approximation

'
= ¢ / | Il Il | ! Il 1 il Il
T T T T T T T l

12 13 14 15 16 17 18
| Y

Orthogonal Regression Line l

™ DHy)

Fig. 3 Comparing alternative linear approximations to DH(y)

for the Electrostatic Field Example

4. Specimen Results

To find an estimate 3, of the position yg from a sequence of n measurements
H(y,), H(y, +Ay) '-H{yo +(n —l)Ay} equispaced at Ay from real field function H(y)
implicitly approximated by the n'th order polynomial

I;f(_v) =a,+ay+--a, Yy +a,y"
we merely need to utilise formula (8) written in the form
. 1 An—lH
Ayn—l

= —1a, , ~ (”; D n! a”Ay}

0 i
' D
nla,

(40)

where A" H

- is the (n-1)th the order finite difference of H(y) calculated at the

unknown location y, from the above mentioned measured samples of H(y). In our

electrostatic field example the measurements are obtained from H(y) defined by
eqn.(20)




4.0 10
H(y) ="t = a1
ie s @1)

at preselected values of y; and intersample spacing Ay and the alternative values for
parameter pairs a; and a, used in (40) for the purpose of comparing the different
estimates 3, produced.

4.1 Taylor Expansion Model: Narrow field

Table 1: Specimen Result using the Taylor Expansion Model

~

Yo Ay | HGo | Hyg+Ay) | AHly, Fa Error
Yo = Yo
11333 | 2.0 | 0.468 0450 | -0.018 | 11.444 | 0.111
11333 | 40 | 0.468 0.475 | +0.007 | 11.506 | 0.173
13333 | 2.0 | 0.450 0.475 | +0.025 | 13.568 | 0.235
15333 | 2.0 | 0.475 0.450 | -0.025 | 15568 | 0.235

The 2nd-order Taylor approximation (24) is first validated for values of y,
chosen close to the turning point (y=13.333) of the true field function H(y) and using a
small sample spacing Ay. The results are shown in Table 1.

Errors range from 2.775% to 5.875% of the narrow field-width (=4.0) under
exploration. Errors will clearly increase significantly if the same a; and a, parameter
values are used in the wider field 4 <y, <17 for which regression models are more

appropriate and the performance of which are now examined.

4.2 Regression Model for DH(y)

Applying the previous four tests to the conventional regression model of eq™.(28)
yields the results of Table 2.

The absolute errors are clearly some 4.5 times larger than with the Taylor expansion
model in the region of the turning point but as a percentage of the field width
(17 -4 =13)the errors range only between -8.22 to +7.96%.

Table 2: Specimen Result using conventional Regression Model

Yo Ay H(ys) | H(yp+A | AH I Yo ¥ Error
y) Fo =
11.333 2.0 0.468 0.450 | -0.018 | 11.152 | -0.182
11.333 4.0 0.468 0.475 | +0.007 | 12.368 | 1.035
13.333 2.0 0.450 0.475 | +0.025 | 12.265 | -1.068

15.333 -2.0 0.475 0.450 | -0.025 | 14.265 | -1.068

Table 3 shows the variation of prediction ¥, with yg using Ay=2.0 over the range

4 <y, <15. Errors range from -3.4% to 16.72% of the field range at its extremes but

are clearly much smaller near to centre of range. Of course the window of observation
for Table 3 is very small (=Ay=2.0). Increasing Ay to say 7.0 improves the estimation




somewhat. For insténce, with y4=6.0, using Ay=7.0 yields an estimate §, = 7.0036

which is a clear improvement on the value (7.748) obtained using Ay=2.0. See Table
3

Table 3. Variation of Regression Model Prediction with y, (Ay=2.0)

Yo H(yo) AH=H(y+2)-H(yg) | Jo =25AH +11.618
4.0 1.0625 -0.3224 3.558
5.0 0.8667 -0.2184 6.158
6.0 0.7381 -0.1548 7.748
7.0 0.6483 -0.1134 8.783
8.0 0.5833 -0.0833 0335
9.0 0.5349 -0.0602 10.113
10.0 0.5000 -0.0417 10.575
11.0 0.4747 -0.0223 11.060
12.0 0.4583 +0.0084 11.828
13.0 0.4524 +0.0476 12.808
14.0 0.4667 +0.1196 14.608
15.0 0.5000 +0.2222 17.173
16.0 0.5863
17.0 0.7222

4.3 Orthogonal regression Model

As anticipated, the orthogonal regression model yields improved estimation as
illustrated, again for Ay=2.0, in Table 4:

The error band is somewhat reduced in extent compared to the conventional
regression model. It ranges from -6.22% to +12.31% and is more symmetrically
disposed about zero than before.

Increasing Ay from 2 to 7 improves the estimate yq at yg=0.0 from 7.600 (Table 4) to
6.760 and this is a significant improvement also on the prediction of 7.0036 using the
conventional regression model with Ay=7.0.

4.4 Using Extra Measurements

In a previous report (3) it has been shown that using formula (8) on several
sets of n measurements all within a given observation window yields an averaged
estimate that is a significant statistical improvement on a single estimate for the same
window size but utilising the deterministic minimum number n of measurements. That
investigation was confined to white noise deviations however.

We here assess the benefits of using additional measurements to improve errors
resulting from the systematic discrepancies that result from the inevitable mismatch

10




between a non-polynomial H(y) and its polynomial approximation. The electrostatic
field example is again used as the simple case study.

Table 4. Variation of Orthogonal Regression Model with y, (Ay=2.0)

Yo H(yo) AH=H(y+2)-H(yo) | Jo =22.684AH +11.112
4.0 |1.0625 -0.3224 3.799
5.0 0.8667 -0.2184 6.158
6.0 0.7381 -0.1548 7.600
7.0 0.6483 -0.1134 8.540
8.0 0.5833 -0.0833 9.222
9.0 0.5349 -0.0602 9.746
10.0 | 0.5000 -0.0417 10.166
11.0 | 0.4747 -0.0223 10.606
12.0 | 0.4583 +0.0084 11.303
13.0 | 0.4524 +0.0476 12.192
14.0 | 0.4667 +0.1196 13.825
15.0 | 0.5000 +0.2222 16,152
16.0 | 0.5863 - -
17.0 | 0.7222 - -

For an n'th order polynomial field , the minimum number of (accurate) measurements
required to determine location yp is n. However, if the number of H-samples available
is n+r, then, using the same value of Ay in each case, formula (40) may be used to
estimate y,, y, + 98y, y, +28y--+y, + 19y, where dy is the spacing between successive
samples and Ay is retained to mean the distance over which finite differences are taken.

Thus r+1 calculations of yg could be made from the following (modified) version of
formula (40).

+(n=1)la, ;=

Uuﬂﬁﬂ

n=]
L {A i nla,Ay |-id, (42)

O i,Ay | |
Yo, 4) n'a, Ay™!

(n=-1)
2

where 0<isr (43)
Now, as illustrated in Fig 4, the observation window width required will be
W =(n-1)Ay+r8,

and if the additional H-sampling points are partly interleaved with the originals (that
were spaced at intervals Ay) such that

8, =|Ay|/n (44)
then

W={(m-1n+r}s, = {n —1+L}|A}’| (45)
; B

1

11




The total number N of H-samples thus required for the r+1 estimates of yj is thus:

N=§/—+l=(n—1)r,+r+l (46)

Y

Where the field is truly described by the known n'th order polynomial, then the r
additional calculations (i.e. the N-n additional measurements) would be redundant
since ¥,(i,Ay) will be independent of i and = y itself. Where the polynomial is only an

approximate model, then the averaging of §,(i,Ay) across the range 1<i <r should
assist in reducing the average estimation error across the range of exploration.

As an example we here set r;=2 and r=5 so that N=8 ordinates (compared to
n=2) and W=7 compared to |Ay|=2.0, and 8, =1.0. Table 5 shows the results of

averaging the y,(i,Ay) ordinates for a range of y,,
Table 5. Showing the effect of averaging the 6 y,-estimates calculated over

the wider window (=7.0)

Yo Po Fwd. Averaged ¥, | Rev. Averaged y,
(From Table 4) (i.e. Ay=+2.0) (i.e. Ay=-2.0)

4.0 3.799 5.011 -

5.0 6.158 6.072 -

6.0 7.600 6.813 -

7.0 8.540 7.431 -

8.0 0.222 8.039 -

9.0 9.746 8.806 10.011
10.0 10.166 9.874 11.072
11.0 10.606 - 11.813
12.0 11.303 - ' 12.431
13.0 12.192 - 12.039
14.0 13.825 - 13.806
15.0 16.152 - 14.874
16.0 - - -

17.0 - - -

The averaging process has further reduced the error band which now ranges
from -1.49% to +8.25% of the field width (=13.0) investigated. The blank entries in
Table 5 merely indicate that forward estimates of y, are not possible beyond y,=10.0
with a window of 7 in a field limited by y,=17 and , similarly, reverse estimates are not
possible below y,=9 because of the lower limit y,=4.

The opposite discrepancies in the forward and reverse averaged estimates in
the overlap region of yy=9.0 and 10.0 is interesting and suggests that further

12




improvements in accuracy may be achievable in the combining of predictions from
(deterministically) redundant data. There is possible scope for optimisation in this

darea.

= T lpy | > Window for n-sample estimation
r Extra Window for
¥ = - . )

Finite difference base r-additional estimations

9‘\% & rﬁy—9

By =Interleaved Sample Spacing

w=Total Window Size

——

Fig 4. Showing composition of enlarged observation window W

necessary to accommodate additional estimations

3. Higher Order Polynomial Approximations

The results of Section 4 indicate that a reasonable predication, §,, of sensor-
location, y,, is possible from n measurements of H(y) using the three parameters ap-1,
ap and n of a minimal-order polynomial approximation H(y). However, it is

reasonable to enquire whether or not the parameters of a polynomial of higher order
might yield a more accurate positional estimate.

In the chosen example, it is clear that any increase in the chosen value of n

must be made in increments of 2. i.e. polynomials of order only 2,4,6,8 ...... should be
utilised in this case. This is because the (n-1)th derivative function is given by:
-1)""'4 1
D"'H(y)=n-1) ![( )" + ":I (47)
y (20-y)

so that choosing n=any odd integer yields a curve for D" H(y) that is nonmonotonic
in the region of interest, 0<y<20 thus precluding a straight-line approximation. Setting
n=2,4,6.8...... , however, yields a monotonic curve for D"'H(y) for which a straight-

line might be a reasonable approximation. [Note that a n'th order polynomial 4 (y)
produces a curve for D" H(y) that is truly linear].

13




Inspection of (42), however, reveals that, for n even, increasing n in steps of 2
makes the curve of y versus D"'H(y) progressively more sigmoid in shape ie.
progressively less linear over a given range of y. Thus the polynomial approximation
becomes less-and-less appropriate for the purpose of position-finding (in this type of
field at least) and numerical experiments readily confirm this observation. Thus, as in
the case of experiments with more-undulating field profiles (1,2,3), utilising a
polynomial of minimal order (i.e. just sufficient to produce the number of actual
turning points in H(y)) would again seem to be the best policy to adopt.

6. Conclusions

Previous reports (1),(2),(3) in the series have examined the feasibility of
determining location y, within a known field H(y) from a sequence of measurements
H(y,), H(y, +Ay), «+++-- H{y{,+(N—1)Ay}. Thoughout the field was assumed to be

described by a polynomial in y, having known coefficients. These reports showed such
an exercise to be entirely feasible even in the presence of white noise on the
measurements of H(y). In the noisy situation the necessity of over-sampling, i.e.
setting number of samples N>polynomial order n was demonstrated in order to retain a
reasonable level of prediction accuracy. The basic technique relies on the use of the
formula for D"'H(y) that is, of course, linear in y and thus unambiguous in its
solution (for the deterministic case).

In this fourth report, the question has been addressed of whether a polynomial
approximation H ( ¥) , might be used for a field governed by other physical laws. The
related questions of the best fit polynomial of given order n, and the necessary value of
n have been investigated also. The physical field used as a case study has been the
electrical field set up between two oppositely charged parallel conductors ( or the
magnetic field between two parallel counter-current-carrying conductors described by
a similar mathematical equations).

There being only a single tuming point in H(y), a parabolic polynomial
approximation H (y) has been used initially to provide the parameters a,_1 and ap
needed by the position estimation formula. The "best-fit" model employed was the
least squares regression, straight-line fit of y on DH(y). This is here termed the
orthogonal regression fit, as opposed to the usual regression fit of DH(y) on y. It is
found to provide better overall estimates j, of position y, than either the usual
regression line or that based on a Taylor expansion about the H(y) turning point. The
latter improves considerably as the range of exploration is reduced.

Further, improvements in position prediction have been demonstrated using
oversampling within a given observation-window size. The improvements are
noticeable although not so significant as the benefits of oversampling in the white noise
situation (3).

As a rough rule of thumb, this study indicates that, over a range of around
4<y<17, within a conductor spacing of 20, then position estimates accurate to better
than £10% of the range-width are feasible across the whole range. This is using a
minimal order polynomial approximation : i.e. setting n-1=number of turning points in
the range. It has been reasoned that any increase in polynomial order will spoil the
position-predicting accuracy in fields of this general type.
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As with the noisy immunity studies, increasing the window of observation
results in improved positional prediction accuracy. Clearly there exists scope for
optimisation of predictors of this type.

7. References

(1) J. B. Edwards and R. Igbal: Tracking the features of a spatially distributed
continuous field - The idealised 2D, deterministic case, AC&SE research report No.
492, The University of Sheffield UK, Dec. 1993

(2) R. Igbal and J. B. Edwards: Noise analysis in tracking the features of a spatially
distributed field, AC&SE research report No. 501, The University of Sheffield UK,
Jan. 1994

(3) R. Igbal and J. B. Edwards: On improving the robustness of the single scan
polynomial tracking method, AC&SE research report No. 504, The University of
Sheffield UK, Feb. 1994

(4) R. Igbal: Machine guidance through a semi-structured physical field, AC&SE
Ph.D. thesis, The University of Sheffield UK, July 1994




