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Abstract 
We explore the notion that variations in cone spectral 

sensitivities could cause variations in color-name boundaries 

between individuals. Fifteen observers made color matches to a 

test stimulus (580 nm) with three primary lights in a visual 

colorimeter. The same observers took part in two psychophysical 

experiments to determine the color-naming boundary between two 

focal colors (yellow and green). In one experiment observers used 

a slider bar to indicate the boundary; in the other they were 

presented with a color stimulus and asked to state whether it was 

yellow or green in a 2afc design. In the case of the 2afc experiment 

the results indicate some evidence to suggest a correlation in the 

position of the name boundary and the ratio of red and green lights 

used in visual color matches.  

Introduction  
 

The ability to associate labels to colors is very natural for 

humans [1]. Several attempts have been made to assign names to 

different parts of the CIE chromaticity diagram (and some other 

color spaces). For example the boundaries depicted in Figure 1 

were adapted from a study by Kelly and Judd [2].  

 

 

Figure 1: Typical categorization of the CIE chromaticity 

diagram into different color names. 

 

Boynton and Olsen asked seven subjects to name 424 colors 

uniformly sampled from the OSA space [3]. Colors that were 

named according to one of the 11 basic color terms [4] were named 

faster than non-basic color terms. Sturges and Whitfield then 

replicated these experiments in Munsell space though including 

more chromatic colors and more observers [5].    

Attempts have also been made to model color-naming studies. 

For example, Lin et al., [6] derived a color-naming model to 

categorize all color coordinates in CIELAB color space into 11 

basic color names. Later, Menegaz et al. [1] used a three-

dimensional Delaunay triangulation of the CIELAB space to 

construct a model for color naming for the 11 basic color names. 

Another approach was to use a parametric model for automatic 

color naming where each color category was modeled as a fuzzy 

set [7].  

There has been a long debate about the universality of color 

perception and the existence of cross-linguistic universals in color 

naming is still contested [4]. In 1969 Berlin and Kay [4] advanced 

the hypothesis that �a total universal of inventory of exactly 11 

basic color categories exists from which the 11 or fewer basic 

color terms of any given language are always drawn.� The Berlin 

and Kay findings are contested and proponents of Whorfianism 

(who maintain that the structure of a language affects the way in 

which its speakers conceptualize the world � the so-called Sapir-

Whorf hypothesis) point to weaknesses in the study; other 

researchers do not believe that the study supports universality at all 

[8]. Intriguingly, it has recently been suggested that language does 

affect color perception but primarily only in the right visual field 

via activation of language regions of the left hemisphere [9]. The 

recent literature on color naming has been dominated by these two 

major, but opposing views: that color categories are organized 

around universal foci and that color categories are determined at 

their boundaries by linguistic convention [10]. Philipona and 

O�Regan [9] have recently hypothesized that rather than being 

caused by neuronal representations of color or cultural/linguistic 

experiences, color categories could be explained by a third 

(biological) approach that takes in account only spectral properties 

of reflected light and the photo-pigments of the observer [11]. 

In this work we explore the notion that variations in cone 

spectral sensitivities could cause variations in color-name 

boundaries between individuals.  

 

Experimental  
 

Rather than measure the complete color-matching functions 

explicitly, the amounts of three primary lights (red, green and blue) 

used to match a test stimulus (at 580 nm) were recorded using a 

Tarrant visual colorimeter for 15 observers. The 580-nm test light 

was selected so that the matches would be sensitive to the relative 

numbers of L- and M-cone cells in an individual. So, for example, 

observers with more L cones than average might be described as 

�red-sensitive� and would be expected to use less of the red 

primary light than the average person to match the 580-nm test 

light; conversely observers with fewer  L cones might be described 

as �green-sensitive� and would be expected to use more of the red 
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primary light. Therefore, we can use the ratio of the intensities of 

the red and green lights used in the visual match to tell us 

something about the relative statistics of each observer�s L and M 

cone populations. Similar information could be obtained by 

recording the full color-matching functions; however, such an 

approach would be tedious and participants could become bored 

(and hence generate unreliable data) and is not necessary in this 

work. 

 Figure 2 shows the cone fundamentals of the average 

observer [12] and the wavelength of the test stimulus that we used. 

It is evident that the test stimulus strongly activates both the L and 

M cones.  

 

Figure 2: The Stockman and Sharpe cone fundamentals of the 

short-, medium- and long-wavelength sensitive cones in energy 

units normalized to 1.  The wavelength of the test stimulus (580 

nm) is highlighted and can be seen to strongly activate the L and 

M cones. 

 
Figure 3 shows spectroradiometric measurements of the 

primaries that were used in the visual colorimeter (upper pane), the 

test light that was used for matching (middle pane), and radiances 

of the RGB primaries in a display that we used for psychophysical 

experiments (lower pane).  

Two psychophysical experiments were conducted to explore 

the boundaries between focal colors.  

In Exp. 1 observers were presented with a strip of 20 colors 

on an LCD display. The colors at each end represented two of the 

focal colors used in the study and the 18 colors between the two 

ends showed a gradual transition from one focal color to the other. 

The first color of the strip at the left was repeated as the first small 

square. Observers were asked to denote the boundary between the 

two focal colors by selecting the right-most color on the strip that 

was still named with the same name as the focal color on the left 

(Figure 4). In Figure 4, the color that is shown above the strip of 

colors is the one that is currently selected by the position of the 

slider bar.    

In Exp. 2 observers were presented with a single color patch 

and asked to indicate which of two colors names better described 

the patch in a 2-alternate forced-choice (2afc) design. The color of 

the patch was modified after each trial according to the observer 

response so that the majority of stimuli were close to the color 

boundary (Figure 5). A psychophysical plot was derived and the 

point corresponding to a probability of 50% of selecting the color 

name as green/yellow was determined.   

 

 

Figure 3: Spectroradiometric measurements of the display 

used for the psychophysical experiment (top), the primaries of the 

Tarrant visual colorimeter (middle), and the test colors that were 

matched in the visual colorimeter (bottom). 

 

The lower panel of Figure 3 shows the spectral radiance of the 

RGB primaries that were used in the display (HP DreamColor 

LP2480zx 30-bit display). Table 1 shows the RGB values of the 

focal colors that were explored.   

Exp. 1 was carried out with high and low intensity stimuli 

whereas Exp. 2 was carried out only with the high intensity 

stimuli. In both experiments the point between the focal colors that 

denoted the boundary between green and yellow was determined. 

Out hypothesis is that there would be a relationship between the 

ratio R/G of primary lights used in the visual colorimeter and the 

position (between yellow and green focal colors) that denotes the 

color-name boundary for each observer. So, for example, a score 

of 0.5 would indicate that the boundary between the focal colors is 

exactly at the midway points between the two colors in the RGB 

space of the display.  
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Figure 4: Screen-shot for Exp. 1. Observers used a slider bar to 

indicate the boundary between two colors. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Screen-shot for Exp. 2. Observers indicated whether the 

displayed color was one focal color (green) or another (yellow) in 

a 2-alternate forced-choice design. 

 

 

Results  
 

Figure 6 show the mean results (pooled over all observers) for 

each experiment and the error bars show +/- the standard 

deviations. For the colorimeter experiment, the mean value is the 

ratio between the red and green primary light intensities (R/G) 

from the color matching of the 580-nm test light. For the other 

three experiments (Exp. 1 at two intensity levels and Exp. 2) the 

mean value is what proportion of the way between yellow and 

green was denoted as the color-naming boundary. Note that the 

variability in the color-matching experiment is relatively large 

which might indicate a significant variability of the observers� 

physiology. 

 

 

Table 1: In the psychophysical experiments the participants 

were shown pairs of focal colors (green and yellow). The table 

shows the display RGB values (in the range 0-1) for of the focal 

colors at two intensity levels referred to in the text as high intensity 

(first row) and low intensity (second row). 

 

 

 Green Yellow 

 R G B R G B 

high 

intensity 
0 0.9 0 0.9 0.9 0 

low 

intensity 
0 0.5 0 0.5 0.5 0 

 

 

Figure 7 presents the results from our three experiments with 

15 observers by presenting the relative positions of the Green-

Yellow boundary determined by the experiments as a function of 

the R/G ratios from the colorimeter test at 580 nm.  

In this work we explore the notion that variations in cone 

spectral sensitivities could cause variations in color-name 

boundaries between individuals. The results from Exp. 2 give some 

evidence that variations on the cone sensitivities represented by the 

R/G ratios could affect the green-yellow color-naming boundary of 

the observers. However, note that in Exp. 1 there was no evidence 

of a correlation between the positions of the color-name 

boundaries and the R/G ratios. Table 2 summaries the correlations 

that were found. It also shows the standard deviations of the results 

from the fifteen observers. The standard deviations have two main 

sources; the actual variability between observers and random 

noise.  

Figure 6: The mean scores for each of the experiments. For 

the colorimeter (color-matching) experiment the score is ratio R/G 

of red to green lights used in the match; for the other experiments 

the mean scores indicates a position between the two focal colors. 

The error bars are standard deviations for the data. 

 

Since the inherent variability of the observers could 

reasonably be expected to be the same for all three tasks (Table 2), 

differences in the standard deviations are likely the result of 

differences in the amount of noise (or, the precision of the 

experiment). Note that in Table 3 it is evident that the correlation 

between the naming experiment and the color-matching 

experiment decreases as the standard deviation increases. The 
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results suggest that a 2afc experiment is more appropriate to 

determine color-name boundaries. 

 

 

Figure 7: Scatter plots to show the scores from the three 

experiments against the corresponding ratios R/G of red/green 

lights used to match the stimulus at 580 nm for each observer. 

 

Table 2: A summary of the correlation between the boundary 

experiments and the color-matching experiments. In the right-hand 

column, the inter-observer error is reported (as shown in Figure 

6).   

 

Experiment Pearson 

Correlation 

Standard 

deviation of 

data 

Exp. 1 

low intensity 
0.14 0.21 

Exp. 1 

high intensity 
0.36 0.15 

Exp. 2 

high intensity 
0.58 0.11 

 

 

Conclusions  
 

In this work we explore the notion that variations in cone 

spectral sensitivities could cause variations in color-name 

boundaries between individuals. In one experiment there is some 

evidence that such a correlation exists. Observers who use more 

red in their match of a test stimulus at 580 nm place the color-

name boundary between green and yellow closer to the yellow 

focal color. However, in the other experiment (carried out at two 

intensity levels) no such correlation is evident in the data. 

However, the higher standard deviations of observers� data in this 

experiment could indicate that there was a higher amount of 

random noise in the data. 

The work may contribute to the debate about whether color 

categories are organized around universal foci or determined at 

their boundaries by linguistic convention. The data (from one 

experiment, at least) are consistent with universality and with the 

additional idea that color categories could be explained by an 

approach that takes in account only spectral properties of reflected 

light and the photo-pigments of the observer [11]. 
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