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Abstract

The rapid development in VLSI technology makes it possible to
implement highly complicated and time consuming algorithms to
suit real-time applications. Parallel processing techniques can
now be used to reduce the computational time for models of a
highly mathematical nature such as the kinematical description of
robot manipulators. The development system used to implement
the algorithms consists of an INMOS TRANSPUTER (a VLSI
single chip computer) running the OCCAM concurrent program-
ming language. This system is used to construct and evaluate the
performance and cost effectiveness of several proposed methods
to solve for the JACOBIAN and INVERSE JACOBIAN prob-
lems with special attention to the case of the robot operating in
the neighbourhood of singular points. Detailed analysis is per-
formed and successful results are obtained for a 6 dof robot arm
(PUMA 560). Execution time comparisons between Von Neu-
mann (uniprocessing) and parallel processing architectures are
also included to show the superiority of the latter approaches.
Keywords : Robot manipulators, robotics, robot arms, VLSI ar-
chitectures, distributed systems, occam, transputer, jacobian, in-
verse jacobian, parallel processing.
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1 Introduction

The last few years have seen remarkable achievements in the field of robotics
and related technology. The control of most existing robot manipulators is
relatively simple and well defined, based on a servo mechanism at each joint.
However, sophisticated control algorithms are needed to improve the speed
and precision of active interaction of the robot with its environment. Hence,
several schemes had been proposed by past researchers (Fu, Gonzales, and
Lee 1987).

The position of the robot arm is most naturally expressed in joint coordi-
nates whereas the usual point of interest is the position of the end-effector ex-
pressed in cartesian coordinates. Therefore, the transformation from joint to
cartesian coordinates and visa versa is very important. This transformation
is accomplished by using the Jacobian and Inverse Jacobian formulations
which play a major role in many problems such as the control techniques
(Whitney 1969, 1972, 1987; Luh, Walker, and Paul 1980; Wu and Paul 1982),
the inverse kinematics (Tsai and Orin 1987; Angeles 1985; Ang and Torras-
sis 1987), and assisting in the general description of the kinematic behaviour
and static forces equilbration of robot manipulators (Paul 1981; Craig 1986;
Wolovich 1987). Different techniques have been proposed to solve for the
jacobian and its inverse (Renaud 1981; Paul 1981; Warldon 1982; Feather-
stone 1983a, 1983b; Elgazzar 1984, 1985a, 1985b; Lenarcic 1984; Mitra and
Mohalanabis 1984; Orin and Schrader 1984; Paul and Zhang 1986; Leahy,
Nugent, Saridis, and Perreira 1987). However, only a few attempts have
been made to incorporate parallelism to speed up the computations and
achieve satisfactory real time standards and efficient performance (Orin,
Chao, Olson, and Schrader 1985), unlike the area of robot dynamics which
gained a lot of attention and good algorithms were developed (Luh and Lin
1982; Lathrop 1985; Lee and Chang 1986, 1988; Vukobratovic, Kircanski,
and Li 1988). The purpose of this paper is to introduce new computational
techniques for real time control implementations embodying Jacobian and
Inverse Jacobian calculations within acceptable sampling rates of no less
than 60 Hz.

The problem is solved for a 6 dof PUMA 560 robot arm. The results
and discussions are presented in the following order; Section (2) presents the
computer architecture used to implement this work. Section (3) highlights
the problems of the Jacobian and Inverse Jacobian calculations from pub-
lished literature. Parallelism is introduced to solve the problem in sections
(5) and (6). Conclusions and further comments are given in section (7).
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2 The TRANSPUTER and OCCAM

Recent years have witnessed rapid development in VLSI technology which is
weighting the arguments in favour of parallel processing techniques (Kung
1982; Zakharov 1984; Hwang and Briggs 1985). This is achieved by dis-
tributing the task over a number of processors, ideally in such a way that
all the processors used are fully utilised. To accomplish that, general pur-
pose systems which employ parallel architectures have evolved to meet the
increasing demand for more computing power and higher processing speed.

The INMOS TRANSPUTER is a pioneering device that fills this
gap, and it can be considered to be the ideal component for fifth generation
computers. The T414 transputer in (Fig.1) which is used in this work is
a 32 bit microcomputer with 2 Kbytes on chip RAM (50 ns static RAM)
for high speed processing, a configurable memory interface, 4 bidirectional
communication links, and a timer. It provides high performance arithe-
matic and micro code support for floating point operations and achieves an
instruction rate of 10 MIPS (millions of instructions per second) by running
at a speed of 20 MHz. This makes the transputer one of the first designs
that incorporate several hardware features to support parallel processing.
This allows for any number of transputers to be arranged together to con-
struct a parallel processing system, and permits massive concurrency to be
used without further complexity. To provide maximum speed with minimal
wiring, the transputer uses point to point serial communication links for
direct connection to other transputers.

OCCAM is a high level language developed by INMOS to run on the
transputer (INMOS 1984, 1985, 1986; IEE Workshop 1987, 1988; Kerridge
1987), and is as important as the assembly language is for the ordinary
microprocessor, because transputer features are best exploited by using Oc-
cam. It is simple, block structured, and supports both sequential (SEQ)
and parallel (PAR) features on one or more transputers which can be used
to facilitate the simulation, modelling and control of complicated physical
systems (Jones 1985; Hamblen 1987).

3 Jacobian and Inverse Jacobian

8.1 The Jacobian

The Jacobian (J) relates changes in joint space to changes in cartesian space.
Hence, (J) is necessary in any cartesian based control scheme




éx = J(6)56 (1)

where

x is the cartesian coordinates vector, and

@ is the position vector of joint angles

Orin and Schrader (1984) reviewed some of the methods used to compute
(J) and some other techniques were proposed by (Lenaric 1984; Mitra and
Mahalanabis 1984; Leahy, Nugent, Saridis, and Valavanis 1987). In this
paper the adapted method is the one first outlined by Whitney (1972) and
later refined by Paul (1981) because of its simple and algorithmic nature.

3.1.1 Nomenclature

The well known conventions first proposed by Denavit and Hartenberg
(1955) are used throughout this paper. The main idea is to assign a co-
ordinate frame to each link with the z-axis along the joint axis. This gives
rise to four transformations; the rotation angle (;) which rotates about
the z;_;, translation of distance d; along the z,_; (offset distance), a; the
shortest distance between z;_; and z; (link length), and rotation angle (o;)
about the z; (twist angle). From these parameters a 4 X 4 homogeneous
transformation matrix is produced

cosf; —sinb;cosa; sinf;sino; a;coséd;

A = sinf; cos#;cosa; —cosb;sina; a;siné; )
d 0 sin o4 cos @; d;
0 0 0 1

For a revolute joint, #; changes while d;, a;, and o; remain constant. For
a translational joint d; is changing and a; = 0. To achieve transformation
between different coordinate frames a matrix Tp is defined such that

Tn = A1A2A3A4A5A¢

=1 : i=1
_ (R,-= (gf‘ams) Pi ) 3)

where




R{™'is a3 x 3 matrix that describes the orientation and rotation between
successive coordinate frames.

P§'1 is a 3 x 1 vector which denotes pure translation .

Using these matrices the derivation of (J) for a 6 dof robot arm, as given by
Paul (1981) , is as follows

TO = A1A2A3A,AsAg (4)
T: = AzA3A4A5A¢ (5)
T2 = AzA4AsA¢ (6)

T3 = AAsAg (7)

T§ = AsAg (8)

mea= (55487) ®

Accordingly, for a revolute joint (i), each column of (J) is of the form

P = D)
4P =y
a —a
J; = szn'_ =Py (10)
2
0,
a

For a translational joint (i) ;

“n- i N°‘ = N:' .

J; = (11)

oo o

3.2 The Inverse Jacobian

To determine the changes in joint variables (66) to achieve a specified dis-
placement (6z), it is necessary to invert the (J), i.e.

86 = J-16x (12)




Melouah and Andre (1982) reduced the inverse computation of the (6x6)
(J) to two (3 x 3) submatrices inversions. Although this technique easily
identifies the singularities, it restricts the two submatrices to have an inverse
which is not always valid in real time situations. Leahy, Nugent, Saridis,
and Valavanis (1987) employed symbolic inversion. This is very difficult
to solve owing to the complexity of (J) elements, unless this difficulty is
minimised by taking into account the architecture of the manipulator and
other simplifying factors, which is not an easy task that can be relied on.

For different degrees of freedom (N), eq.(12) is altered and the evaluation
of J-! requires the use of pseudo and generalised inverses (Ben-Israel and
Greville 1974; Lawson and Hanson 1974), where

60 = (ITI)*3Té6x,N < 6 (13)
66 = JT(IT3)26x,N > 6 (14)

Tucker and Perreira (1987) reviewed this problem and proposed a technique
to solve the problem in case of singularities but without considering real-
time situations. In this work, the case of (N=6) is studied but no restriction
is imposed on other cases.

4 Parallelism in the Jacobian Formulation

Parallel processing can be divided into four levels (Hwang and Briggs 1985)
e Job or program level.
e Task or procedure level.
o Interinstruction level.
e Intrainstruction level.

In this section the first and the second levels are used and addressed. The
first level depends upon developing parallel processable algorithms where
multiple programs are used to solve a large problem. The second level is
achieved among procedures or tasks within the same program which involves
the decomposition of a program (algorithm) into multiple tasks.

To show how parallel processing can be used to compute (J), three meth-
ods for dividing the task are described to achieve an optimal configuration.
The main difference between the three methods is how the algorithm is
divided, that is, the amount of work carried out by each processor and
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the overhead caused by the communication between the processors in the
network. Real-time results are included to compare uniprocessing and mul-
tiprocessing architectures.

4.1 Method 1

For this method a tree structured network is used (Fig.2) were (Pg) is the
master processor (controller) and the other three processors Py, Py, and
P; are slave processors (the names processor and transputer are used inter-
changably).

The master processor is connected to a personal computer (PC) which
works as a link between the user and the network. Pg sends the position
variables (6;) and receives the columns of (J) from the slave processors in
the network. The main role of Py is to supervise the network and to check
for any faulty event.

The job of calculating the different columns of (J) is divided as shown

e P; : compute the fourth, fifth, and sixth columns of (J) using eq.(7-9)
respectively.

e P, : compute the second and third columns of (J) using eq.(5,6) re-
spectively.

e P3: compute the first column of (J) using eq.(4) .
The whole procedure will work as follows

1. Pg sends 64,0 to P3, 03,604 to P2, and 65,0 to Py, and this is per-
formed in parallel. Then, Pg will start receiving (J) columns from the
different processors, i.e.

SEQ
PAR
...5end #; and 6, to P3

...Send #3 and 84 to P,
...5end 95 and 96 to P1
PAR

..Receive J; from Pj

..Receive J; and Js from P,

.. Receive J4, J5, and Jg from P,




2. This stage is divided into 3 substages working in parallel together,
but each substage is running sequentially (i.e instruction execution is

sequential)

(a) Processor Py

SEQ

...Form A and Ag
... Multiply As by Ag to form T§
...Send T§ to P, and P3 and receive A4 from P,
...Multiply A4 by T8
...Form J,; from (A4*T§)
..Form Js from T}
...Form Jg from Ag
..Send J4, J5, and Js to Po

(b) Processor Py

SEQ

...Form Az and A4
.. Multiply As by A4 and store in Ty
..Send T; and A4 to P3 and P; respectively,

and receive (As*Ag) from P; and A; from P3

.. Multiply the matrices to form T% and T}
..Form J, from T}
..Form J3 from Tg

..Send Jg, J3 to PO

(c) Processor Pj

SEQ

...Form A; and A,
...Multiply A; by A; and store in Ty
..Send A3 to P2 and receive (Aa*A4)

and (As*Ag) from P2 and Py respectively

.. Multiply the matrices to form T
...Form J; from TQ
..Send J; to Pg

In the previous method four processors were used to solve the problem,
one as controller and the other three carrying out operations. Each proces-
sor is considered as a seperate unit executing its operation sequentially but
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at the same time the other processors are doing the same thing. Hence, the
whole network is running in parallel. Any number of methods could be used
to divide the problem but the best allocation would be, of course, to solve
the problem as fast as possible. To do so, each processor should be kept
busy performing useful computations. If a large amount of data must be
transferred between the processors, a potential communication bottleneck
may occur which would slow down the network. To avoid that, only the
first 3 rows of the (4 x 4) transformation matrices are transferred between
different processors. Another restriction is the matrix by matrix multiplica-
tion. In this case the operation is performed in a way which avoids useless
multiplications and additions, i.e.

i i Rt pil Ri,, P!
T‘._l 1 - 1+1 i+1
Pl ( of 1 ) ( of 1 )

= R{7'Ri,; R{'Pi,+Pi
(1] 1

(15)

4.2 Method 2

This method is used with the same network configuration (Fig.2) as that
used in method 1. The main difference is a reduction in the communication
between the slave processors by redistributing the job to increase the inde-
pendence of each processor. Therefore, each processor is spending its time
doing useful computations instead of waitting to receive data from other
processors. The following job schedule is used

e P; : compute the fifth and the sixth columns of (J) using eq.(8,9)
respectively.

e Py : compute the third and the fourth columns of (J) using eq.(6,7)
respectively.

e P3 : compute the first and the second columns of (J) using eq.(4,5)
respectively.

The algorithm will proceed as follows

1. Pg sends 91,82 to P3, 33,94 to Pz, and 35,06 to Pl, and this is per-
formed in parallel. Then, Pg will start receiving (J) columns from the
different processors, i.e.




SEQ
PAR

...Send 6, and 63 to P3
..Send 63 and 84 to P,
...Send 65 and fg to P,
PAR
..Receive J; and J; from P3
..Receive J3 and J4 from P,
..Receive J5 and Jg from P,

2. This stage is divided into 3 substages working in parallel together, but
each substage is running sequentially

(a) Processor P;

SEQ
...Form As and Ag
...Multiply As by Ag to form T4
...Send T§ to Py and P3
...Form Js by using T§
...Form Jg by using Ag
. .Send J5 and Js to Po

(b) Processor P,

SEQ
...Form A3z and A4
..Multiply A3 by A4 and store in Ty
...Send T; to P3 and receive T§ from P;
... Multiply the A4 by T@
...Multiply the T; by T3
...Form J; from (T1%T§)
...Form J4 from (A4+T§)
..Send J3; and J4 to Py




(c¢) Processor Pj

SEQ
...Form A] and Az .
...Multiply A; by A, and store in T,
...Receive (A3*A4) and (As*Ag) from P, and Py respectively
... Multiply (Aa*Ay4) by (As*Ag) and store in T,
... Multiply T2 by A,
...Multiply T2 by T; to form Tg
..Form J; by using T3
..Form J; from (A2+T5)
..Send J; and J; to Py

It is important to note that, the sending and receiving of matrices and data
is performed in parallel. For example, if matrices T; and T3 are sent from P,
to Py and P3 respectively and T3 is received by Py from Pj3, this operation
is coded as follows :

SEQi=1FOR3

SEQ j=1FOR 3
PAR

C1.2 ! Ty[ill]

C1.3 ! Ty[i][j]

C3.1 7 Tsfi][j]

where C1.2, C1.3, and C3.1 are communication channels implemented by
OCCAM and correspond to actual hardware communication links connect-
ing the different transputers.

4.3 Method 3

A different network (Fig.3) is used for this method to give more independence
to each processor and eliminate communication between slave processors, so
that the communication bottleneck is minimised.

In this configuration the first level of the network is a simple tree struc-
ture, but each slave processor in level 1 is a master for another slave processor
in level 2. Equations (4) to (9) are distributed on the six processors such
that each processor works on computing one column of J, i.e. there is one
processor per link.

In this case the structure of the OCCAM program is the same for the six
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processors except for a slight difference in the data flow path, that is, level 1
slave processors communicate directly with the controller Py but slave pro-
cessors in level 2 talk to Po through their master processor (i.e. Pg talks to
Py through P3). This difference appears where position variables (6;) are
sent from Pg to the network and Jacobian columns (J;) are received from
different processors.

Now three types of procedures are given to illustrate the kind of code written
to run on each processor

1. Processor Py

SEQ
PAR
...Send 6,4, 6s,..., Bsto P3
...Send 6s,..., 6 to P,
...Send 35,..., 95 to P1
PAR

.. Receive J; and J; from P3
.. Receive J3 and J4 from P,
...Receive J5 and Jg from P,

2. Processor P; (example of a processor in level 1)

SEQ

...Receive 05,...,06 from Py

...Send 6y,..., b to Ps

...Form Aj,...,A¢
.. Multiply the chain of matrices (Asz*xAq4*...Ag)
..Form J;

...Receive J4 from Py

...Send J; and J4 to Py

11




3. Processor Ps (example of a processor in level 2)

SEQ
... Receive 04,..- 06 from P2
...Form Ag,.-- JAe
... Maultiply the chain of matrices (AgxAs*. .. Ag)
...Form J4
...Send J4q to P

The whole procedure is shown in a block diagram (Fig4.)

Its important to note that in writing OCCAM code, efficiency is the main
aim if real-time implementations are sought. Hence, 10 redundant calcu-
lations are performed and the (DH) parameters reside on each transputer
(processor) in the network to minimise the communication overhead. Also,

the calculation of the direct kinematics problem 18 solved implicitly without
the need for extra processing time.

4.4 Results

The previous three algorithms are jmplemented using OCCAM to show their
suitability for real time applications. The results are compared with a se-
quential version written using FORTRAN and executed on a SUN worksta-
tion (SUN Inc. 1984) with additional floating point hardware. The results
are given in Table 1.

Table 1.
l Exectution time (msec) l
Sequential 15.0 '
MMethod 1 | 384
Method 2 4.67 B
[ Method 3 0.256

It can be noticed from Table 1. that the methods 1, 2, and 3 are adequate
for real time applications, and this shows the superiority of parallel process-
ing techniques. Method 3 is 58 times faster than the sequential approach.
The choice between the three methods will be made according to the speed
requirements needed.
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5 Parallelism in the Inverse Jacobian

In this section the problem of the Inverse Jacobian is solved using two clas-
sical techniques for solving linear systems of equations; the Gaussian Elim-
ination (GE) and the Gauss Jordan (GJ). Parallelism is introduced to both
techniques to reduce the complexity of the computations. Quantification of
speed up and utilisation, with real-time implementation results are included.

5.1 The Gaussian Elimination and Gauss Jordan

The GE and GJ were chosen in this study for the following reasons

1. There is straight forward, understandable, and well established litera-
ture covering the different aspects of both techniques (Press, Flannery,
Teukolsky, and Vetterling 1986).

2. Parallelism can be easily introduced because it flows naturally from
the structure of the sequential algorithms.

3. The use of direct methods reduces the effects of rounding errors, espe-
cially if pivoting and equilibration stratgies are used (Burden, Faires,
and Reynolds 1981).

4. Divergence problems are not encountered in direct techniques, unlike
iterative ones.

5. The inverse of the system matrix is solved implicitly which is the case
in the Inverse Jacobian formulation.

The (GE) algorithm is distributed on the network shown in (Fig.5). The
configuration used evolves from the basic structure of the algorithm of (GE)
with simple row interchange. The network is divided into 4 main levels
which work in the following manner

LEVEL 1 e The processor (T) prepares the (J) by augmenting it with
the world coordinates vector (WCV).

o A check is performed to avoid a zero pivoting element, and a row
interchange might be performed to satisfy this requirement.

e Normalisation of the row is performed by dividing the whole row
by the first entry in that row (i.e. j;; for first row).
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e The remaining five rows are sent to the array of processing ele-
ments in level 2 .

e If the number of rows exceeds the number of processing elements
in level 2, (T) will schedule the operation by sending only (M)
rows to the (M) processors and the rest will be stored in the local
memory (LM) from where they can be restored and sent to any
free processor.

LEVEL 2 This array of processors is operating in parallel .

e Each processor is loaded with a row of the system matrix from
(T)in level 1.

e The role of these processors is to make the first element in each
loaded row equal to zero. This is accomplished by employing the
following formula

Jr = Jp — My % J; (16)
where
My; = Jki/Jii, Ik is the processed row, J; is the first row which
is used in common with the array of processors.

e The processed rows are sent to level 3 and the array is ready now
to receive some more rows (if there are any).

LEVEL 3 e This processor (T) will receive the processed rows from
level 2 and store them in its (LM) and checks if all the rows are
received. Then all the rows will be recovered and a new matrix
constructed and sent back to processor (T) in level 1 to repeat
the whole procedure again.

e (T) will also check whether the operation is completed success-
fully. If not, the fault is located and corrected as fast as possible.

LEVEL 4 e Back substitution is performed on the resulting matrix.
Then the value of the joint variables is sent to the output unit.

The whole procedure is repeated if a new (J) is received.

The same analysis is performed again for the case of (GJ). The network
used is shown in (Fig.6.), and again the configuration evolved from the basic
structure of the algorithm of (GJ) with simple row interchange.

This network is divided only into 3 levels, as follows :

14
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LEVEL 1 e This level plays the same role as level 1 in the previous
network of (GE).

LEVEL 2 e These M processors work in parallel and each processor is
loaded with a row of the system matrix (JJWCV) from processor
(T) in level 1.

e The processors will perform an elimination process which sets
each k" element in each loaded row equal to zero. This is achieved
by using the k** row in common with all the parallel processors

o The processed rows are sent to the processor (T) in level 3.

e The array of processors is ready to receive other rows (if any).

LEVEL 3 e This processor will receive the processed rows sent from
level 2 and will form a new system matrix, which is checked if
further processing is needed. If so, it will be sent back to level 1
again and the previous operation repeated. If not, the values of
the unknowns are calculated and sent to the output unit.

The whole procedure is repeated if a new (J) is received. An analysis was
performed to check the cost effectiveness and efficiency of (Level 2) in both
networks. Level 2 can be implemented by multiple processors, but in this
work only the options of one, two and three processors have been studied
to minimise the cost and complexity of the network. The criteria used to
quantify the suitability of each option were processor utilisation and system
throughput . Utilisation is defined to be the ratio of the processing time of
each processor to the total processing time of the array. System throughput
is the number of basic computations (multiplications/additions) processed
per unit time. The analysis starts first by assuming that there is only one
processor in Level 2, then two processors, finishing with three processors.
The results are shown in table 2, 3, and 4.

Real time implementation for a 6 dof arm is also included and the results
agree with the analysis. The results show that when three processors are
used in level 2, the system throughput and total time in case of (GE) are
better than (GJ).

In table 3, a better utilisation is achieved using (GJ), but it can be seen
from table 4 that a better processing time is approached by using (GE). To
reach a compromise, the (GE) is selected because the main interest is to get
good real time results. In table 5, real time results are given for the two
techniques and comparisons are made with sequential implementations.
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Graphical illustrations are also given to show the results more clearly.(See
Fig. 7, 8,9, 10)

Table 2.
GE 1l GJ
Number of Processors
1 2 3 1 2 3
Total Time 312 | 184 | 146 375 | 225 | 150
(time units)
Throughput 1.6312.77| 3.64 1.44} 2.4 13.6
(operation\time) -
Table 3.
i GE " GJ
Number of | Utilisation (%)
Processors il 2z 3 1 2 3
1 100 100
2 100 69.9 100 66.7
3 100 76.1 | 47.1 100 100 |50
Table 4.
, GE I es
Number of Processing time (time units)
Processors 1 2 3 1 2 3
=
1 312.5 375
2 184 128.5 225 150
3 140 106.5 | 66 150 150 | 75
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Table 5.
| Algorithm | Exectution time (msec) ||

Sequential *22 **30
Parallel *4,48 **5.38
* GE
*xx GJ

5.2 Inverse Jacobian near Singularity Points

At singular configurations, the manipulator loses one or more degrees of
freedom and the determinant of (J) approaches zero. Even more important
sometimes is the fact that in the vicinity of singular points, unpractically
high joint velocities are required to move the arm with a reasonable speed.

The problem of degeneracy and robustness of the (J~1) is a very inter-
esting and important issue which must be treated carefully (Uchiyama 1979;
Lai and Yang 1986; Aboaf and Paul 1987; Rivin 1988). Several solutions
have been proposed to solve for the problem, such as redesigning the work
space in a way to avoid degenerative situations, and the manufacturing of
singularity-proof robot wrists.

In mathematical terms, singularity affects the rank of (J). If this value
is less than 6 (in case of 6 dof), then no unique solution exists; one or more
of the rows is redundant, depending on the right hand side vector (WCV).
To determine the rank, triangularisation by (GE) can be applied and , if
no zeros show up on the diagonal of the final triangularised (J), the rank is
equal to 6 (full rank) and a unique solution exists. If, in spite of pivoting,
one or more zeros occur on the the final diagonal, there is no unique solution.

Tucker and Perreria (1987) used generalised inverses techniques (Moore-
Penrose inverse) to obtain the solution for robots with less than, equal to,
or greater than 6 dof. Singularities were also investigated using the same
technique which employs the Singular Value Decomposition (SVD) at some
stage.

The (SVD) is used to solve for very ill conditioned matrices and it requires
solving for the eigenvalues and eigenvectors. This involves heavy compu-
tations that make the real-time implementation a difficult task to accom-
plish (Press, Flannery, Teukolsky, and Vetterling 1986). In the previous
discussion, the suitability of the (GE) was proved, and in this section the
robustness of (GE) is improved by using pivoting strategies and distributing
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the job on the network given in (Fig.5). The analysis is supported by two
examples and a (PUMA 560) arm is used as a case study.

Example 1 For 6; = (90,0,90,0,90,-90), the Jacobian is;

-0.865 0.0 0.0 -0.05 0.0 0.0
0.149 0.036 0.036 0.0 0.056 0.0
0.0 0.865 0.433 0.0 0.0 0.0
-1.0 00 0.0 0.0 0.0 1.0
0.0 0.0 0.0 -1.0 0.0 0.0
0.0 -1.0 -1.0 0.0 -1.0 0.0

the determinant of J= 0.0075, and with such a small value the use of (GE)
with simple row interchange might not be the right choice in terms of effi-
ciency and accuracy. So, a row equilibration technique (Forsysth and Moler
1967; Burden, Faires, and Reynolds 1981) is used. The solution of eq.(12)
is changed to the solution of the following equation,

D~ 1Jéx = D160 (17)

where
D is a diagonal matriz whose " entry is (e;),

&= Juag, [ Jik |
where i = 1,...,6 and the row interchange is performed in such a way that
the pivoting element is selected to be the largest absolute value in the same
column that is below the diagonal, i.e.

k1 k
| Jpk 1= o | Iik |
which is purely a row interchange.
This technique is known as GE with Scaled Column Pivoting (GESCP) and

it managed to find the solution for J=! within real-time constraints. (See
table 6)

18




Example 2 In this case a less robust situation is addressed.
For 8; = (90,90,0,0,0.001,90), the Jacobian is;

0.489 0.0 0.0 0.0 0.0 0.0
0.0 -0.49 -0.489 0.0 -0.056 0.0
-0.149 -0.411 0.021 0.0 0.0 0.0
-0.001 0.0 0.0 1.0 0.0 1.0
1.0 0.0 0.0 0.001 0.0 0.0
0.0 1.0 1.0 0.0 1.0 0.0

the determinant of J= 9 x 1075, and with a value that is nearly approaching
zero, a very well conditioned technigque should be used. So a total pivoting
approach, the GE with Mazimal Pivoting (GEMP) which incorporate row
and column interchanges, is used to guarantee an accurate solution.

The pivoting element is selected to be

.k = k
| ok 1= o | 35 |

which is accomplished by both row and column interchanges. A row and a
column equilibration is used to assure the convergance of the solution. A
diagonal matriz B is assumed to have an " entry f;, where

where i = 1,...,6. The system of equations which is solved is
D 1JBéx=D"160 (18)

The results obtained show the possibility of applying (GEMP) and still sat-
isfying real time-conditions. (See table 6)

Table 6.

[~ Algorithm | GESCP | GEMP |

Sequential (msec) | 60.0 120.0
Parallel (msec 5.7 7.74
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6 Conclusions

The Kinematical description of a typical robot manipulator such as the
PUMA 560 is systematic and simple in concept but complicated in respect
of the computational burden inherent in real-time control applications. A
major cause of this complication is the computation of the Jacobian and
Inverse Jacobian, and it is this difficulty which the work described in this
paper has addressed.

A suitable algorithm for computing the Jacobian has previously been
presented by Paul (1981). Three alternative ways of distributing the compu-
tation of this algorithm on a general purpose distributed computing system
have been suggested in this paper. The computational efficiency of these
methods has been compared with that for an equivalent sequential imple-
mentation. This comparison has demonstrated the efficiency of all three
methods and shown the feasibility of using them in real-time applications.

Two classical techniques for computing the Inverse Jacobian; Gaussian
Elimination and a Gauss Jordan method have been investigated . Paral-
lelism at both job and task levels was introduced into these to reduce the
computational burden. Simulation of their real-time performance has shown
that the Gaussian Elimination technique is superior. The case of the robot
arm operating near singular points has also been considered. Two different
pivoting techniques were used which allow the real-time constraints to be
met whilst still guaranteeing the robustness and stability of the Gaussian
Elimination.

The work described has demonstrated how the recent advances in com-
puter technology, particularly in new VLSI architectures, can be utilised
beneficially in the implementaion of Jacobian based control schemes. Suit-
able foundations have been set for the development of a wide range of control
algorithms, unhindered by computational restrictions.
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Figure 1. The INMOS T414 TRANSPUTER.




INPUT / OUTPUT
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Figure 2. Simple Tree Structured Network used for Method 1
and Method 2.
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Figure 3. A Two Levels Network used for Method 3.
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Figure 5. A Four Levels Network Scheduling the Gaussian Elim-
ination Algorithm.
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Figure 6. A Three Levels Network Scheduling the Gauss Jordan
Algorithm.
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