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ABSTRACT

A tubular structure of coupled non-linear oscillators provides a
natural extension of hypothesized models for the electrical slow-wave
activity of the mammalian intestines. 1In this paper fifth-power van der
Pol dynamics are used for the oscillator units providing a zero stable
state, which may be important in terms of the human large-intestine
where periods of electrical silence may occur. The matrix Krylov-—
Bogolioubov linearisation method is used to provide mode analysis of this
structure. Although more extended than for the conventional third-power
case the theoretical analysis reveals a rich mode behaviogr. After
development of the mxn general cases, two particular examples of 3x4
and 4x4 structures are given. The theoretical results for the 3x4 case
compare favourably with an experimental investigation using electronic

implementation of van der Pol type oscillators.
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1. Introduction

Coupled non-linear oscillaéors are being investigated increasingly
both from a theoretical stand-point and for applicative modelling purposes.

In the analysis presented in this paper the motivation is the electrical
slow-wave activity of the mammalian gastro-intestinal tract. Since the
initial conception of a mutually coupled non-linear oscillator model for
slow-wave rhythms suggested by Nelsen and Becker in 1968 a number of
modelling studies have been performed. Thus, a l1-dimensional chain of
coupled van der Pol oscillators has been investigated for the small-
intestine (Sarna et al, 1971), anﬁ a 2-<dimensional array proposed for a
gastric model (Sarna et al, 1972). For the human large-intestine, periods
of electrical silence have prompted the hypothesis of an oscillator unit
dynamic based on a fifth-power van der Pol equation (Linkens et al, 1976).
In a recent paper a tubular structure for small—intestinal modelling, was
analysed (Alian and Linkens, 1982), while the equivalent fifth-power tubular
structure is studied in this paper.

On the theoretical side,the mode analysis of mutually coupled oscillators
has also been steédily advancing. Of particular interest are computer-aided
harmonic balancing methods and a matrix Krylov-Bovolioubov linearisation
technique. The former method has been used on third-power chains and arrays.
The latter method has been used with fifth-power dynamics for the two-
oscillator case (Datardina and Linkens, 1978) and for a l-dimensional chain
(Endo and Ohta, . ). It is this matrix Krylov-Bogolioubov method which is
used in this paper to extend mode analysis to a tubular structure of fifth-
power oscillators with reference to human large-intestinal electrical behaviour.

In Section 2 the fundamental mode equations are developed using the matrix
decoupling and linearisation approach. In Section 3 the method of averaging
is used to calculate the stationary amplitude values. Mode stability is

then investigated in Section 4 for three cases viz., zero state, single modes,
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double nonresonant modes. Two particular examples are considered in
Section 5, one of which is experimentally investigated via electronic
implementaion in Section 6.

2. Derivation of the Fundamental Mode Equation

The proposed structure is a cylindrical structure shown in Fig. 1 where
the unit oscillator has a fifth power nonlinear characteristic which is

described by

3 5
§ T 8BqV55 * B5Yy

Iij (Vij) =8, V:
(g;> g4 and g, > 0) - (1)
where i represents the location of the oscillator in each ring
j represents the location of the ring in the structuwme
1= 1,2y wwes B3 =125 seuy n
i,e..m is the number of oscillators in each ring and n is the number of
rings in the whole structure.

Following the same procedures as in a previous paper (Alian and

Linkens, 1982), the system equation can be written as

4 2
dav, . 2 dv, . dv, , d7v. .
81 1] 3g3 Vij i] + 5g5 Vij ij # € ij % 1 Vij
dt dt dt 2 L
(i & ol
= 1 V.. Pl Y T V., o5 =V ) B Ve W0, ]
i ( (i-1)j 13) o ( i(j+1) 11) i ¢ ij (i+1)3)
c c c
-1 View = Vi ..
T ¢ ij 1(3"1))
c
Wh%ch can be arranged to be
qgvij 2 4 dvi' 1 4
C—==+ (g, - 3g,V;. +5g.V..) =2l + (= +2 y.y. .
dt2 1 3°ij 5713 ¢ L LC) ij




1 1 1 1
-= V,. o == 3, o -=V,. L ==V, .,
Lc (i-1)j LC i(j+L) Lc (i+1)] Lc i(j-1)

Dividing the above equation by the value of the capacitor C and

rearranging gives

d7v,. g 3g 5g dv, .
—51+ o L= madh ij + 5 vij Jooomdd . w2 L

dt C 8, 8, dt . CL CLC

1 1 1 1

— = Vi iy = — V.= =V, = = Y, = 0 (2)

er,  -1)J o, Citl)] o, 1G-D o, 10+

(6 C C C
Substituting
. i "
Vij 4f 2L xij (3)

5g5

where X, . is the normalised voltage in the structure,and its boundary values

which represent the tube structure are given by
oj ~Mmi P Fj T Fme)j | (4)
(5)

io ~ *i1 * Fin T )

So, equation (2) becomes

2
d. =, g dx...
—~—i% ¥ L1 -pxt, + x%.) el & X (4-1)3
dt c 1] 1] dt cL_ =]
+ ( e g ) x.. - e X(.+1). - B X'('—l) +( LTS faues )
2CL CL 1 CL LAl L.+ 201, CL
c C c Cc
1
- — b SR =0 6
T R (6)
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where ﬁ is a function given by the parameters of the nonlinear

characteristic of each oscillator as

o8 (7a)

Vv 5885

Then, substituting

e e i

T = 1 1 7 (7b)

— R t

_ ,J 2CL CT..C

into (6) gives

dx g, /C da, -
2 4 1
g+ : (lfxis ¥ %) —p— = —3 £E-1)j
dr 1 1 J J 1+ ¢
2CL CL 2L
1 . 2
s T
Py 2CL CLC 1 . 1
1 L i L, T(i+D)j L “i(i~1)
2CL CLC 1+ Ui i 5T
Loy 2
2EL CLc 1 -
S e R g %
F s
2CL CLC 1 5T
which can be written as
dzxij 2 4 dxi.
dTZ + & (1-B xij + Xij) e X(i 1) + (1+a)x a x(i+l)j
T OX; ) + (1+8t)x R e 0 9
where i = 1,2, ..., m ;3 j = 1,2, g T
g
R 7 . L
R 2 B
Cc —_— e —
2L L
.

The above equation (9) can be expressed in matrix form by defining




three matrices X, XE and X

£

X = [xij ] (10a)
s [

X = [xij ] (10b)
5

Xf = [Xij ] (10¢)

where each matrix is of order mxn.
Thus, (9) can be written in the matrix differential equation
wie : 1 . 1 .
- = - - = =
X" + BX + XD (EX 3 gBXc + 5 £ Xf) | (11)

where B and D are two matrices given by

r ] j
[+e —ot - ot I —eL
—oL 4ol -at ~otl+ol ~el
B = ~ % ~ . D = ~ %, ~
N ~ -~ S a -
- +d ~-ak ~
= gl e ek | el
L = ot i CJ —ol 1 J
Applying the orthogonal transformation
X=PYQ
into the matrix differential equation (11), it becomes
PY'*Q" + BPYQ® + PYQ™D = - (£ PY'QT _% BE X7+ -;—g X;) (12)

and then multiplying by pt from the left hand side and by Q from the right

hand, we have

.o T T . T_ . i -
YUH(RTBR)YHY(QDQ) = -(EY'-BEP X Q+ LE P X:Q) (13)

5

which is the fundamental equation. To solve it, we have first to solve the
unperturbed differential equation in the same way as described in a previous
paper (Alian & Linkens, 1982). Therefore, the elements of the two orthogonai
matrices P and Q are given by (lq) awnd (25) i~ Alian Liv\kews(lclSZ).
The mode Yij is then given by

v ™ B 81 P L S OO, . i
ylj 1351n (mle ¢1J) : ¢iJ is arbitrary (14)

where the frequency mij is given by




Wy = u/'?_{1+c¢[El—cosg-(i‘;t]‘)'!T -cos gjgl)ﬂ]} (15)

To linearise the nonlinear terms of (13) using the equivalent linearization
technique developed by Kryloff and Bogoliuboff, the whole equation should
firstly be transferred into the Y-space. So, the elements of the nonlinear
terms PTXCQ and PTX%Q must be written in the form of linear combinations of
i o y : 3 >
yij by linearising the higher nonlinear terms X 4 and Xy oo

The element hij of the matrix (H=PTXCQ) is expressed as a linear

combination of the element yij such that

m n 3
hij i ail bzl Pai qu xaﬂ
m n
= kil 151 nij(k,n Vi1 (16)

The same procedures are used to linearise the fifth power nonlinear

element which is

T
z=P X Q = [ 1j] - (17)
Therefore, the element ziﬁ can be expressed from (10c) and“(17) as
m n 5
Z., = o3 z oy fg..) x (18)
1] asl  Hwd (pal qu ab
The element be can be linearised as in Appendix I.
Therefore, the element zij from the matrix Z can be written as
m n
Zez ™ - F Zooz,., (k,1) y (19)
o k=1 1= M —

where cij(k,l) is given by the elements of the orthogonal matrices P and Q as

m n

Cij(k,l) = z X P.-

a=] b=l @l b b o
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where L,,(k,1) is calculated also from the elements of the orthogonal matrices
5
P and Q ind by using the values of the stationary amplitudes of modes, i.e.
suﬂétituting (1-5) into (19), the value of the parameter ;ij(k,l) is given.
Now, substituting the element hij of the matrix (H=PTXCQ) and the
element zij of the matrix (Z=PTXEQ) into the fundamental equation (13), then

the equivalent linearised equation can be obtained as

1 m n
T e Vo, =={Eyi. - EB I E h;.(k;1)
yl] + le Y1J EYIJ 3 Cor i3
1 m n
-= z ¥oowr. (kL) § (21)
37 k=1 1= M .

substituting (14) and (I-5) into (20) gives

1 m n
i . =~{Eyl.-ZERL I mu,,.(k1)y,
Yi3 + mij yiJ te ylj 37 pe1 1=1 i ? kl
1 m n o
+=£ I T OE, W (kD) v, }
5 h | i] kl

Supposing that the left hand side of the above equation has a
resonance centred'around mij s 80 that the mode frequencieés which are not
equal to wij have little effect upon the solution provided that each mode
frequency is separated enough, or that the Q-value of the resonance is fairly

high, we can ignore all the Y, terms of the right hand side except Y,

J
Therefore, the terms hij(k’l) and zij(k,l) in (22) can be replaced by

hij(i,j) and zij(i,j) respectively, i.e. ( 22) becomes
oo 2

IR N W e O
=l -3 T 23
¥ij * ey vy = =lEviy - 388 b (L5 + soEsl (4, 5)] a)

where hij(i’j) and zij(i,j) are given by (16) and (24) respectively.
The elements hij(i,j) and Zij(i’j) can be replaced for simplicity by hij and

zij respectively, and nij(l,J) and cij(l,J) can be replaced by nij and Cij'
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Thus the equivalent linearised equation (23) of the mode yij can be
written as

% 2
Yij T Y a5 Vi

® 1 e l ®

where ”ij is given by

3 O s . 2 3 PR -
nij = —2" kil Lei wmn(lstksl) Akl - Z'Iwb mﬂ(ls.is:'l-a..l) Ai_‘] ( J

and Cij is given by substituting the value L,j in (I-5) into (20) to be
: i

5% s 2 1§ ™oom o4 2
Eij =g Vo (1rd5153) Uij = kil 121 Vo (B535Kk,1) Uq
BV aLL, U
4 k=1 1=1] ™™ i k1
N T U . U
s U] 1,J,K,1L,T,8 ' )
4 k=l 1=1 r=l eop WO k1 “rs
where (k,1) # (r,s) # (i,j) - (26)

The valueIPmn (1,3,k,1) is exactly the same as that obtained in a

#
previous paper (Alian & Linkens, 1982) while the value (i,j,k,1) is given by
Y mn

m I

X g, .9 4 4
Voo (1,3,k,1) = r I .0q. ) ¢(
o $12d o b=l(pal qu) Pa? (4 )
m n
2 ., 4 2 4
= Z " R {
o (pai)(pak) bil (q bJ)(q bl) (27)

P
The value 4&n(i,j,k,1,r,s) is given by

K . & & o4 2 2 F ooy
d%n(l,j,k,l,r,s) = ail bil(p LG bj)(p ak)(qbl)(par)(qbs)
m ' I
B Sy B Bon B oo 3
= ail (pai)(pak)(par), bil(qu)(qbl)(qbs) (28)

IIIIIIIIIIlI.I.I...l...ll..ll.ll.lIIIIIIIIlIII;lII---::______————————————
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s : * L k%
To facilitate the calculation of the above two parameters wmn and wmn .
it is better to follow the same procedures as mentioned for the calculation

of the parameter wmn, i.e. (27) can be rewritten in the form

- I i e
U (125K 1) = 9 (1,k) .y (3,1) (29)
where
*(i,K) = ? o P Ak =12 m (30a)
¢m 1, o’ Pas Pak s > s i ssony a

%
which leads to the fact that wm(i,k) is given by the elements of the columns
i and k in the matrix P

and

$.0 ™ 1P wess it (30b)

g

oy o 5 &
.'-Pn(.] 'l) s qu qb]_ 9

b=1

which is given by the elements of the columns j and 1 in the matrix Q.

Hk
Similarly, Yy CAT be written as

ki k% *k

¢mn(1,1,§,1,r,5) = wm (1,kyr). wn (Jslas) h (31)
where

kk o 2

wm (i,k,xr) = azl Pai'pak'par (32a)

which is given by the elements of the columns i,k and r in the matrix P, and

2 2

2
L 93" W17 Ybs (32b)

s
lpn (jslss) =

{1 o =]

b

which is the summation of the products of the squares of the elements in the

matrix ( which are in the columns j, 1 and s.
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3. Evaluation of the Stationary Amplitude Values by Averaging the

Equivalent Linearised Equation

In order to investigate the stability of modes in such tubular
structure with fifth power nonlinearities, it is necessary first to determine
the stationary values of amplitude Aij . Following the same procedures for
the tube structure with third power nonlinearities, then the averaged equations
can be obtained as

Uey == El.{ 1 Yy e } (33)

i] ] 3 PNy T Gij
under the assumption that the amplitudes and phases are a slowly varying
functions of time in quasiharmonic approximation.

The stationary values of amplitudes can be taken by putting all the
first order time derivatives in the averaged equations (33) to zero, i.e.

U.. = 0

1]
for 1= 1,2, seestt ¥ J & 2,2, sans B

Consequently, the values of the parameters ”ij and Cij should be
determined in order that the stationary values of amplitudes can be
evaluated.

From equation (25) nij can be determined using the values of the
parameter wmn . The parameters Cij can be determined by (26) using the

* *%
values of the parameters Y  and y .
mn mn
For the case that the number of oscillators in each ring of the
%
structure m = 3, the values ¢3(i,k) are given by the equation (30a) as
3

% . %
wm(l,k) = w3(1,k) = I
a=1

where i,k = 1,2,3 ; . 1s the ith column in the orthogonal matrix
Pog g

g &
paipak

P and P is the kth column of the same matrix.
*
Using the above equation (35) the values wB (i,k) can be represented

for simplicity in square matrix form of order 3 as




Ol=

(=11

%, . £
'113(1,1() o)

Ol

If the number of oscillaters

—
(*2)

o

v, (LK) =

-
o =

o=

Also, when the number of rings is n=4, then

-
lont Hod

o
(=2 gl

S it
¢4(Jsl) S

#ll=

L
6

11
36

o
6

e 2 o=

=

(35)

o

. & o * L3 . -
in'each ring is m=4, then ¥ (i,k) is given as

o)

e

oof ==

L
(NI R OS]

w
M

1 1

15 8

1

16 9

1 1

16 g .
1 1

16 A

v G,1) is
4

& 3
16 32
4 o» 7
16 2
1 3
16 32
2 g
16 32

4

—

(36)

calculated as

(37)
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If we consider a tube oscillator system which consists of four rings,
each ring comprises three oscillators, i.e. m=3 and n=4, then the corresponding
values of w34(i,j,k,1) are given by Table 1, whiie dga(i,j,kgl) are given from
(29) as

* % #* *
Vo (i D) = by, (G041 = (0. ¥ (5,1)
*

For simplicity, the values %mn are represented in a table similar to

that representing the values %ml. Table 2 gives the values of ¢;4 (L kud )
A ks Qo2 005 s = L, Bk

Similarly, Table 3 gives the values of ¢Z4(i,j,k,l), while Table 4 gives the

values of (i,jsk,1) which corresponds to the case in which the number

*
Vs
of oscillators in each ring m=4 and the number of rings in the structure n=4,

Substituting nij and cij from (25) and (26) respectively into (33)

Uij can be written as

m n '
L] & e i l - 3 —l 3 . o .
Ul_‘] ‘:U!‘_j I:]- 8{2 kz=]_ 1E=‘f1mn(1s.'] ’k’l)uk]. Ilf-’m(ls.] :19J-)Uij }

+ Ll (1,3, 1,005, + 1§ B 1%3_‘1w:n(i,j,k,1)u§1
m n &
¥ %kil lil¢mn(k,1,i,j)UijUki
2 m n m n k% . :
PR Ty P R G L O

which is called the averaged equation of the system.

4, Investigation of the Stability Problem

The stability of every mode of oscillation can be considered by using
the averaged equation (33). The stationary states of those oscillatory modes
are determined by reducing the first-order time derivatives in the averaged

equations to zero. The stability of such stationary states is then determined




=
by linearizing the average equations around the stationary values
to obtain the Jacobian matrix [ Jij(t’u)T of the structure as

d(U'i.)

Jij(t,u) = '—?ﬁ};—]:'l—' (39)

which can be calculated by differentiating (34), therefore for (i,j) = (t,u)

J, -(i,j) R L= B b L vy (i,j,k_,l)U + == b} r 1.1’* (isjsksl)U
| 2 k=1 1=1 Mo kl 8 k=1 1=1 ™ kl
(k,1) # (i,3)
3 m n
= L L el ¢ L (O L B I o S
2 il ] v mn 1 klIlJ
(k,1) # (i,])
3 m n n n ]
e o AR ¢ (i,i,k,1,r,8)U ..U
4 gl 1=l p=1 ‘s=1 DO N s
(k,1) # (r,s) # (i,]) (40a)
but for (i,j) # (t,u)
1 5 Qi
.« (Cy b o a4 b sJsebo s 2 & sJs . e
Jlj( u) E[ zswmn(l it U)UIJ + 4nbmn(1 3 1:,11)U1JUtu
3 % IS/, . B
+ 4lpmn (tsuslsJ)Uij * _2" E E wmn(l’J’t’u’k’l)UklUij]
k=1 1=1
(k,1) # (i,3) # (t,u) (40b)

Then, the stability of a mode is deterpined by examining the
eigenvalues of the corresponding Jacobian matrix which are the roots of the

characteristic equation




o

| ¢ J,. (t,u)} = sI | = 0
1]
where I is a unit matrix of order mnxmn.

4,1 Zero State

For the case of nonoscillation, i.e. the amplitude assumption is

Uij =0 for all 1 =1,2; sees mf J = 1,2, siey 1
therefore‘Jij(t,u) = 0 for (i,j) # (t,u) (42a)
and Jij(i’j) = for (i,j) = (t,u) (42b)

Substituting (42) into (41), then the characteristic equation can

be reduced to

=B
i = 8

1

. [Jij(i,j) -sI] =0 (43)
1 "

13

since the nondiagonal elements of the Jacobian matrix are gll zeros, (43)
becomes y
6+ 0" = 0 (44)
Thus, all the real parts of the eigeﬁ values of the characteristic
equation: are negative, which confirms that the nonoscillation state is

stable in the tube structure with fifth power nonlinearities.

4,2  Single Ordinary Mode

To investigate the stability of single ordinary mode, the restriction

of amplitudes can be

Yato 0 -3 Uij = 0 (45)

for all i and j except (i,j) = (io’jo)
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i.e. the mode (io,jo) is the only one which is supposed to be excited.
The stationary amplitude of the mode (io,jo) can be obtained by

putting U°, - in (33) to zero, which gives
i = e ;

1 1
1=-=8n. . + =7 . . = 0 (46)
3 At 3 1OJo

Substituting the amplitude assumption (45) into (46) using (34), the

stationary amplitude Ui 3 can be derived from the condition
oo

1 e S B
deis Z-men(lo,Jo,lo’JO,)U-

L. % o P X 2
(R +_E»T‘l}tl:lrrl(lo’J'ca’lo’JO)U:'L j =0 (473)
0”0

* 8 A 2 R 5
Dividing the whole equation by (wmn(iO,Jo,lo,Jo)/B) gives

oS et w
) ma (i3s3 ) . Bl iy 5 S
Wiy = 28 b3 g0 S/wmn(lo’JOs%O’JO) il

o e e
0O 0 1 1 o 0
¢mn( O’JO’ O’JO)

which is the ordinary second—-order equation and therefore has the general

roots
R AR A W & arnE e
L € SIS B S I 0 Vn G sd st s3) 32
Poow g t /B N
g 1 * e N R e s G T
oo v mn(lo’Jo’lo’Jo) wmn(lo,Joilo’JO) ] mn(lo’Jo’lo’Jo)

Neglecting the solution with (-ve) sign, because it corresponds to an

unstable limit cylce, the stationary value U. . can be given as
2 150
IR o o
: S, QL O O 2 B (T.s7 g% w3 )
U, ;- m: 02"e” 0i"0 g +/ g8 mg 0’"o ? ? (48)
oo Vo (Egsd st 03) v o sd s1 53)

Applying the orthogonal transformation into the solution (14), the

structure of a single mode (io,jo) becomes
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Wit = Phe s o Wy o - e Q.o b, . ) (49)
] s, 11, 1630 %0 g o'

Substituting the restrictions of amplitudes (45) into the Jacobian matrix

gives its elements as

Jij(t,u) = 0 for (i=j) # (t,u) (50a)

i

B s 1 e b o
Jij(l’J) = E[ 1 Eﬁwmn(l’J’loJO)Uio 5

i e It S 2
* §¢mn(l’3’lo’Jo)Ui j ]

o o0
for (i,j) = (t,u) (50b)

Therefore the characteristic equation of the Jacobian (41) can be

reduced to
m
.
i=1l 3

= =

J..(153) = 8 = 0 51
l[ 15053 = s ] (51)
since the nondiagonal elements Jij(t’u) are all zeros as in (50a)

In order for a single mode (i,j) to be stable
0 4t 0 MRS 59
Jl_](l"]) < (52)
for all i=l,2; .eesim 3 75126 weash
From (50b) and the condition (52), the stability criterion (SC) for
a single mode (io,jo)‘can be obtained by the condition

2

= L 45oL SR A i o
(SC)ij i 4 Zmen(l’J’lo’Jo)Uiojo + 8¢mn(1’3’10’30)U10j0> 0 (53)

Substituting Ui 4 from (48) into (53) (SC) is given by
0”0

w (i ’j ,i )j )
. 1 s w W mn""o0°"0 0 "o 2
(Sc)ij 1 ZBwum(l’J’lO,JO) * . p g [B ¥ B ‘Ri | J
wmn(lo’Jo’lo’Jo) 3k
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2

A N T
Foomn (P00 s 2 2 2

P2 (6,0,0,) ) ——o—o00 B+ 28/ 8" - R, , + 8" - R,

wmn(lO,JD’lo,JO) 00
where
* - . . o )
Ri g 1,)1!111(]"0’30’10’Jo (55)
o~ o

2 g R
v mn(lo’Jo’lo’Jo)
which is a constant value for any specific mode (io,jo) and given the two

%*
dine fixed val i il 0% 1 | d ERT el o
corresponding fixed values wmn(lo,jo,lo,Jo) an wmn (10,30,10,30)

More simply the stability criterion (SC) can be rearranged to be
VY (L5351 53 ) 1 VYon (i sd 51 53 )

oot o s e =
%
l'!)mn(lio"]o’lo"]o) 4 wmn(lo’Jo’lo’Jo)

(8C)... = 1-3
1]

U o e R IR
mn"- 0“0 o "o 2 A 2
Zwmn(ng,lo,Jo) B

* - . . .
men(l,J,lo,Jo) T TR
m 0’30 e’ do

wmn(io’jo’io’jo) wmn(io7jo’io’jo)

%
+2 Bip - (dydsiosd )
* 3otk & . mn 0" "o £ e FIeL A
wmn(lo’Jo’lo’Jo) wmn(lo’JQ’lo’Jo)
w24 (dajydi 3.3 (B /r_sz -~ R (56)
mn 230 te I, v 2|
5 0O 0 :
Defining
Yo (i, 583 53 )
S U IR A A
ij 70’70 : Vo (Esdsied) (57a)
i - ¢mn(10’JD,10’JD) R IRE wmn(lO’JO’lO’JO)
Hij(lo’Jo) T A O tw s 3wmn(1’3’10’30) B o T o Pt
wmn(lo,Jo,lo,Jo) wmn(lo,Jo,lo,Jo)
-2wmn(1,1,10,30) ] ~ (57b)

Then, (SC)ij can be written in a simple form as

. (54)
10_]0
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2 o s 2
= ] i 3] e = By
(50) ;5 = Fy (i3 ) + By (.3 08" + Hyp (L5 )8 /8 i

and should be greater than zero for all i=1,2,...,; j=1,2,...,n (58)
While, the value Ri . 1is fixed and given by (55), the values of

0" o
F.. are given by (57a) and determined by the values of the parameter wmn(i,j,io,jo)

and the value wmn(io,jo,io,jo). P (io,jo,io.jo) i? the value which lies in
the diagonal of the table representing wmn' The values wmn(i,j,io,jo) are
. { i w, madil
all the:other values in the (lo’Joj ~ column. For m=3 and n=4, the
corresponding F.. is calculated by Table 2 and the same for the other structures,
1]

The values Hij(io’jo) are given by (57b), therefore they are
calculated by using the values wmn(i,j,io,jo) and ¢:n(i,j,io,jo). The
values wmn(i,j,io,jo) are given as mentioned above. Similarly, the value
w;n(io,jo,io,jo) is that one which lies in the diagonal of the table w;n and
the values w;n(i,j,io,jo) are the other values in the same (io,jo)th column
of the table,

Thus, for a cylindrical structure consisting of m oscillators
in each ring and n rings, there are (mxn) values of the parameter Fij
corresponding to any mode (io,jo) and another (mxn) values for the parameter
Hij' Consequently, there are (mxn) values for the Stability Criterion (SC)
concerning any specific mode (io,jo) and represented by (SC)ij , where
i=1,2,.00,m and j=1,2,... 00

From equation (58), it is now clear that the mode (io,jo) is stable
if the values of the Stability Criterion (SC) are all positive.

Thus, the investigation of the stability of a single mode (io’jo)

in the proposed tube structure is performed by employing the following

procedures.




o ]_9 e
ai Determination of the orthogonal matrices[ P ] and [:q..I
i ij
for i=1,2,00e5m} J=l,2,...,0
b. Calculation of the parameters v
. : %
e Calculation of the parameters wmn(i,j,k,l) through the two parameters
2 k d e 1
v, (i,k) and ¥ (j,1)

ds, Calculation of the value Ri S

J
_ 0“0
e. Calculation of the values Fij and Hij given by (57) for all

i=1,2,...,m and j=1,2,...,n using the values in the (io,jo)th

%
column of the two tables corresponding to {  and ¥
mn mn.

£, Substution of the values of R . , F,.,. and H,. into the Stability
iojo i3 ij

Criterion (SC) to investigate the stability of the mode (io’jo)'

In the case that all the calues (SC)ij are positive, then the mode

(lo,Ja) is then stable.

4.3 Non resonant double modes

Now we consider the stability of nonresonant double-mocde oscillations.

The restrictions of amplitudes for a nonresonant double-mode consisting of

L RS and U becomes
IS r s
oo oo
Ulj¢o,ur5¥0,uij=o
0" o oo
for all i=1,2,...m ; j=1,2,...,n i (59)
except (133) = (iosjo): (ro’so)’ also (iO’jO) 7‘ (rO’SO)

The structure of the solution of the mode K10 corresponding to
that nonresonant double-mode, is exactly the same as (55).

Following the same procedures used for investigating the stability
of nonresonant double-modes in the tube structure of third-power non-
linearities (Alian and Linkens, 1982), the characteristic equation of the

Jacobian takes the form




m n [
T om J..057) =8
i=1 j=1 H !

J T -
‘ r's ( 0’50) .
oo oo

where i=1,2,...,m; j=1,2,...,05 (i,3) # (i_,3 ), (r_,s)

(i,3) # (x5 (60) .

where Jij (i,j) is given from (40a) using the amplitude conditions (59) as

ik 11
i 2B¢mn(l”‘]’ro’so)ur 8
o~ o ‘ o o

T S _q iR i
Jij(lsJ) 3 g [1 szUm(l,J,losJD)Ui
* 9 * 2
3 © 5o . 3 \on
+8wmn(1:.] ’1D’JD)Ui . Ty mn(l’J’ro’So)Ur g
[ohae} o 0 :

S .. Wl o @
4 9 P mn(ls.] ’lo’Jo’ro’So)Uin

2

Ur " ] (6la)

0o 00

The element Ji
o~ o
conditions (59) as

(ro,so) can be given from 40b using the amplitude

&
pa— P | . L 3 . .
Tp 5 (rgss) == g[-48y (L5058 00, o+, (G Li,r a8 )T, 5 U,
0o o0 [olaye) 00 80
%
. 2

3 7

+4¢i mn(rO,SO’ldJO)UinO ] (61b)

Similarly, J (id jo) can be written as
5

r s

oo
T8y W] kB G saT g U U (8 el g3 0 . B
r s “o*o S m e el e el Eul Ym0’ 0’ 0’0" i ] rs

0o 0 0 0"0 00
* 2
3 5 e g
+310 mn(lo’Jo’ro’So)Uroso J (61c)

From (60) and (61), the stability criterion for the nonresonant

double-~mode can therefore be written as

a. Ji : (10,30) + Jr 5 (ro,so)< 0 (62a)
: oo oo

: Y. . (E 3 -
o i 9 (10’30) Jr 5 (ro’so) Jl

0o~ 0 o0 0" 0 o 0

G Jij (i,3)< 0 (62c)
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The structure of the nonresonant.double mOde(io’jo) and (ro,so) is

given b Y

®iw B P A 5 U, einCo.. ¢ T s D: q.
ij i1 "33, i, W s 1030) +. Fipg JS?
/U, o Sln(wr N S (63)
o o oo 0 o

Thus, the stability criterion of the nonresonant déuble'mode produced
by a cylindrical oscillator system with fifth-power nonlinear characteristic

is given by (62) and its structural solution is given by (63).

5., Solved Examples of Cylindrical structures with Fifth Power

Nonlinear Characteristic

5.1 3 x 4 structure

Consider the number of oscillators in each ring m = 3, and the
number of rings in the structure n = 4.

Using the condition (44), it is clear that ﬁhe non-oscillation
state is stable.

To investigate the stability of modes, the Stability Criterion (SC)ij
of (19) should be positive for all values i = 1,2,3 and j = 1,2,3,4.

Mode (1,1) is stable for 82>8

Mode (1,2) is stable for 8.8889<g><16

Mode (1,3) is stable for 82>8

Mode (1,4) is stable for 8.8889<32<16

Mode (2;1) is unstable for any value of B

Mode (2,2) is unstable for any value of B

Mode (2,3) is unstable for any value of B

Mode (2,4) is unstable for any value of g

Mode (3.1) is stable for 52> 8

Mode (3,2) is stable for 8.8889<82<16
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Mode (3.3) is stable for 52>8

Mode (3.4) is stable for 8.8889<82<16

Thus, the tube structure with three oscillators in each ring
and four rings reproduces four stable modes for

8<82( 8.8889
But for the range of B such that

8.8889<a%<16
the structure can reproduce twice as many stable modes, i.e. we can ohbtain
eight stable modes, and it again reproduces four stable modes for

8%>16
For the stability of the nonresonant double modes, the condition (62) must
be satisfied. In sucﬁ a case the stationary amplifudes cannot be calculated
analytically, and a computer is used to solve the equations produced by
equating the corresponding equations (29) to zero.

The stationary amplitudes of the stable modes can be calculated

using equation (48), i.e.

Upy = Uy = 12 L8 % /(6% - 8) )

Up =0, = 1a2 {8 + (8° - 8.8889) )
Uy = Uy =8 {8+ /(8 = 8))

Uy = Uy = 4,8 { g + JYGZ - 8.8889) }

Substituting the elements of the corresponding matrices P and Q,
the stationary amplitudes Uij , and the angular frequencies Wg 5 into

equation (43), the structure of the stable mode (i.l) is given as

= -

- 1 - 1 - 1
2/3 2/3 2/3

N 1 il - o & v 12@+/B2—8)sin

S
2V3
e
2v3 2V3 2v3 2v3
. 5
2/3

Exij] i
5 1 _ 1 _ 1 (2w.2300t+¢11)
2/3 2vV3 2v3
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1 -1 -1 1 e BRI
= 1 -1 -1 1 ' v/é #* »432-83]5 in
1 -1 -1 1 (2m.2300t+ ¢,,)

where ¢11 is an arbitrary phase.

The structure of other modes can be obtained in a similar way as
for mode (1,1).

The amplitudes of the stable modes against the parameter B can be
seen in Fig. 2 and Fig. 3. Also, for the different values of B , Fig. 4
shows the number of stable modes excited by the above oscillator system.

572 4x4 Structure

If the number of oscillators in each ring of the previous structure
is increased by one oscillator of the same type, i.e. the tube consists of
four rings and each ring contains four oscillators.

It can be shown that:

The nonoscillation state is stable for any value of the nonlinearity
factor £ .

Using the stable Stability Criterion (58), the values of ¢44 in
Table 3, and the values of wza in Table 4, the stability of various modes
(which is dependent on the parameter £ ) are obtained as follow:

Mode (1,1) is stable for 82>8

Mode (1,2) is stable for 8.8889<82<16

Mode (1,3) is stable for 62>8

Mode (1,4) is stable for 8.8889<82<16

Mode (2,1) is stable for 62>8

Mode (2,2) is stable for 8.8889<82<16

Mode (2,3) is stable for 82>8
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Mode (2,4) is stable for 8.8889<g’<16

Mode (3,1) is stable for 82>8

Mode (3,2) is stable for 8.8889<52<16

Mode (3,3) is stable for 52>8

Mode (3,4) is stable for 8.8889<p2<16

Mode (4,1) is stable for 62>8

Mode (4,2) is stable for 8.8889<52<16

Mode (4,3) is stable for 62>8

Mode (4,4) is stable for 8.8889<p”<16

Thus, it is clear that the oscillator system can produce eight
stable modes for any value of ﬁ such that

8<g”<8.8889
and sixteen stable modes for

8.8889<82<16
and the system is again capable of reproducing only eight stable modes for

16<g>

It is valuable to notice that when the number of oscillators in each
ring (m) has been increased by one oscillator to be m = 4 (which is an even
number), the number of stable modes has been increased by a factor of
two  for the same value of B.

The stationary amplitudes of the stable modes can be calculated in

a similar way as illustrated in the previous example as

2
g o M Wy =T = 16 {g+ V(p"~ 8)}
= = = = 2---
Uy ™ Uy =il ™ Uy, = 86 18 + v ( B°-8.8889) }
- p, = = 2_
Uy = Ugg =0y =T3=818 4/l6°-8)}
Uo = U, =U,. =10, =4.8{8+* ¢[g*=8.8889)]

22 24 42 44

Substituting the elements of the corresponding matrices P and Q,

the stationary amplitudes Uij , and the angular frequencies wij into equation
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(45), the structure of the stable modes can then be obtained in a similar
way as shown in the previous example.

The number of stable modes in the above tube oscillator system
against the important parameter B is shown in 5.

6. Experimental Investigation for Tube Oscillator System with Fifth-

power Nonlinear Characteristic

In this section we report some preliminary observations on a 12-
cell tube oscillator which comprises four ringg with three oscillators in
each ring.

Experimental results for the same structure have been discussed
in (Alian & Linkens, 1982) when each unit oscillator has cubic nonlinear
characteristic. In the following, the two diodes in the electronic
circuit of eéch oscillator are connected in the circuit diagram as shown
in Fig. 6. The fifth-power nonlinear characteristic which is produced
by any unit oscillator in the structure is similar to that of Fig. 7.

The twelve oscillators are connected in a eylindrical oscillator

structure. The oscillators in the structure are mutually coupled by
inductances. This inductive coupling is obtained by switching on all the
switches of coupling inductors in the two directions. One direction

represents the mutual coupling between oscillators in the same ring, the

other represents the coupling between oscillators in different rings.

The nonoscillation state has been observed on an oscilloscope.
The nonoscillation state has never been observed in the case of tube
oscillator system with the third power nonlinear characteristic. But the
other types of modes and multimodes have been observed in both oscillator
systems.

The mode frequencies are nearly the same as for the tube system

with third power nonlinearity. This agrees with the theoretical analysis
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which has already been discussed in this paper. The number of stable

modes produced by the oscillator system is varied by changing the parameter

B8 , which characterises the nonlinearity of oscillators.

For the amplitudes of the excited modes, their values agree well

with the theoretical ones which have been calculated in the solved example

and given by Fig. 2 and Fig. 3.
The theoretical amplitude of the mode (1,1) is a function of the

parameter B . Fig. 2 shows the different values of the amplitude All

the parameter and gives an indication that the real amplitude value must

be greater than (All)min which is given as

(Arll)min " Pkl ql1 (All)min 'kv

I

5:8259/2 /3 . .k
kv is the voltage scale factor (it has been measured to be 4.5).

Thus (A ) . is calculated as
r,, min

]

(R ) 7.568 V

1’.'11 min

2 The above amplitude value corresponds to the value B = 2.828,
at which the mode (1,1) is just capable of being excited as a stable one.
When increasing the value of the parameter g, the resultant amplitude

also increases, e.g., if B = 4, the corresponding value of All is given

from Fig. 3 as

All = 9.052
therefore, the real value of amplitude A is given as
11
A = 1.759 V
r

11

against
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For the rest of the modes which are reproduced by the electronic model
under investigation , it has been shown that the experimental results of
the mode frequencies and amplitudes agree well with the theoretical results.
7. Conclusions

It has been shown that the complex model of a tubular structure of -«
intercoupled fifth-power non-linear oscillators is amenable to the theoretical
mode anlaysis.  The manipulations are more extensive than for the third-
power case, but reveal a rich modal behaviour. As expected, the zero state
is proved to be a stable condition for such a model. The stability criteria
for the modes turn out to be more complex than for the third-power case, and
since they are not in directly calculable form, some computer assistance is
required in the investigation of particular cases. The non-linear parameter
B plays an important part in determining the number of stable modes, which
a particular case can support. Thus for the 3 x 4 case considered theoretically
and experimentally 0,4 or 8 modes are stable depending on the particular
value of B .

The paper has concentrated on the single mode behavour and pointed
to the approach for double mode investigation. The stability of degenerate
and non-degenerate modes requires further study and extensive manipulation,
but could form the basis of further work on this structure. The invest—
igation of particular cases based on the general development for single mode
stability would benefit from a computer—aided approach, which is also an area
of extension for this work.

From the analysis presented it is clear that the introduction of a
fifth-power term into the unit oscillator dynamic increases the mode
repertoire. In terms of large-intestinal modelling this may be of
considerable importance since confusion exists regarding the basic behaviour
patterns which can be observed in the mammalian large-intestine.  Thus,

considerable debate continues as to the presence of periods of electrical

s s AL ARSI i - i i S T A
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silence, and the range of frequencies which can be recorded from the colomn.
1f a fifth-power tubular structure is a necessary model structure then such
confusion is very likely to continue, since the number of possible stable
modes would almost inevitably make the recorded situation illustrate a
very complicated pattern of switching between modes for such a structure.
Such mode switching complexity would almost certainly-occur in the presence
of noise which is endemic in biological systems. Finally, it should be
noted that although the algebraic manipulation involved in this theoretical
analysis is extensive, an equivalent investigation of mode stability via

simulation would be almost impossible.
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APPENDIX I

. Linearisation of the term xg
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Since it is assumed

the modes,

(v,w) #(g,h) (1-2)

that there is no resonant interaction between

the e Fos T Voo ygh terms can be ignored, but all the

other terms cannot be ignored.

Expanding these terms and neglecting the higher harmonics in

quasiharmonic analysis:
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Substituting the above terms into (18) xzb becomes
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For simplicity X p can be written in the form of a linear
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FIGURE CAPTIONS

Tube structure for large—intestinal model, using fifth-power
non-linear characteristic.

Mode amplitudes in a 3x4 system versus non-linear parameter .
Mode aplitudes in a 3x4 system versus non-linear parameter .
Number of stably excited modes in a 3x4 system versus non-
linear parameter .

Number of stably excited modes in a 4#4 system versus non-—
linear paramter .

Oscillator circuit with fifth power non-linear chafacteristic.
Fifth-power type characteristic of non-linear conductance for

an electronic oscillator.
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