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ABSTRACT

The RNase E family is renowned for being central to
the processing and decay of all types of RNA in
many species of bacteria, as well as providing the
first examples of endonucleases that can recognize
50-monophosphorylated ends thereby increasing
the efficiency of cleavage. However, there is
increasing evidence that some transcripts can be
cleaved efficiently by Escherichia coli RNase E via
direct entry, i.e. in the absence of the recognition of
a 50-monophosphorylated end. Here, we provide
biochemical evidence that direct entry is central to
the processing of transfer RNA (tRNA) in E. coli, one
of the core functions of RNase E, and show that it is
mediated by specific unpaired regions that are
adjacent, but not contiguous to segments cleaved
by RNase E. In addition, we find that direct entry at a
site on the 50 side of a tRNA precursor triggers a
series of 50-monophosphate-dependent cleavages.
Consistent with a major role for direct entry
in tRNA processing, we provide additional evi-
dence that a 50-monophosphate is not required to
activate the catalysis step in cleavage. Other
examples of tRNA precursors processed via direct
entry are also provided. Thus, it appears increas-
ingly that direct entry by RNase E has a major role
in bacterial RNA metabolism.

INTRODUCTION

In Escherichia coli, the rapid degradation of many, if not
most transcripts, including messenger RNAs (mRNAs)
targeted by antisense RNAs, is dependent on RNase E
[for recent reviews, see (1,2)], a single strand-specific endo-
nuclease that also has a key role in the processing of pre-
cursors of ribosomal RNA (3–5) and transfer RNA

(tRNA) (6,7), as well as several small non–protein-
coding RNAs (8,9). Reflecting its central role in RNA
processing and degradation, RNase E is essential for
E. coli viability (8–11). Its contribution to RNA metabol-
ism has been studied extensively using two temperature-
sensitive rne mutations (10,11) that have been mapped to
the catalytic domain (12,13). Homologues of RNase E are
found in most subdivisions of bacteria and within plant
plastids (14,15). E. coli contains a paralogue, RNase G,
that cooperates with RNase E in the maturation of 16S
ribosomal RNA (16,17) and has been shown to be
required for the normal degradation of several mRNAs
(18), some of which have been characterized (19–21).
Escherichia coli RNase E is integral to the RNA

degradosome, a macromolecular complex located on the
inner surface of the cytoplasmic membrane [for reviews,
see (1,2,22)]. The other ribonuclease within this complex is
polynucleotide phosphorylase, a 30–50 exonuclease [for
review, see (23)]. The endonucleolytic activity of RNase
E is conferred by its N-terminal half (NTH) (13,24), which
self-associates to form a tetramer (25) via the dimerization
of a dimer: each dimeric unit forms two symmetrical active
sites set within single-stranded-RNA-binding channels
(26). The sites of interaction with the other main compo-
nents of the degradosome, along with ancillary RNA-
binding sites, are contained within the C-terminal half of
RNase E (13,27,28), which although required for efficient
growth is not essential for cell viability (29,30).
Located adjacent to each of the four equivalent

active sites in RNase E is a pocket that can bind a
50-monophosphorylated end, i.e. contacts are made with
the first few nucleotides and the actual 50-monophosphate
group (26). Moreover, RNase E has been shown in vitro to
cleave more efficiently the 50-monophosphorylated
versions of certain oligonucleotide substrates and tran-
scripts relative to counterparts with a hydroxyl or triphos-
phate, respectively, at their 50 end (21,24,31–34). Thus, a
50-monophosphate can ‘tag’ some RNAs for efficient
cleavage by RNase E. Furthermore, as RNase E generates
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downstream products with a 50 monophosphate (5), it
has been proposed that these products may be cleaved
preferentially, triggering a cascade of cleavages in the
50–30 direction (34).
Recently, E. coli and other bacteria have been found to

contain a 50 pyrophosphatase (now called RppH) that
converts the 50 group of primary transcripts from a tri-
to monophosphate (35). RppH is not essential; however,
its genetic inactivation results in the stabilization of a sig-
nificant proportion of E. coli mRNAs (36). Thus, pyro-
phosphate removal by RppH appears to accelerate the
degradation of many transcripts (37). Stem-loops (or
paired nucleotides) at the 50 end of transcripts reduce the
efficiency of pyrophosphate removal by RppH (36) and
50-end sensing by RNase E (34), thereby protecting some
transcripts against rapid degradation in vivo (38–42). An
important role for events at the 50 end in controlling RNA
degradation is further supported by the finding that
circularization of an mRNA increased its half-life
in vivo (43).
Initially it was thought that 50-monophosphoryated

ends might stimulate cleavage by E. coli RNase E and
RNase G by enhancing primarily the turnover number
(44), perhaps by triggering an allosteric switch in enzyme
conformation (26,45). However, it was subsequently
shown that RNase G has a much higher affinity for
50-monophosphorylated oligonucleotide substrates (21),
and that RNase E could cleave 50-hydroxylated oligo-
nucleotides as efficiently as 50-monophosphorylated sub-
strates provided the former were bonded to present a
substrate with multiple single-stranded regions (46).
Thus, the absence of 50-monophosphate binding might
not present an intrinsic barrier to catalysis, provided the
substrate can be bound with sufficient affinity. Moreover,
the tetrameric structure of RNase E means that it has the
capacity to achieve the latter by contacting simultaneously
single-stranded segments in addition to the one in which
cleavage occurs. The apparent simplicity of these require-
ments for 50-monophosphate-independent cleavage raises
the possibility, which remains to be adequately explored,
that this mode of cleavage is used widely to accelerate
mRNA degradation. Direct entry could explain at least
in part why the normal rapid degradation of only a pro-
portion of the mRNAs in E. coli is highly dependent on
50 pyrophosphate removal by RppH (46).
Central to more recent studies of the RNase E family

is the mutation of residues that contact
50-monophosphorylated ends (21,31,32,46); Arg 169 and
Thr 170, which provide a horseshoe of hydrogen bond
donors that engage the monophosphate group, and
Val 128, which provides a hydrophobic side chain that
interacts with the aromatic ring of the terminal base
(26). Here, we used the T170V mutation of E. coli
RNase E, which reduces the efficiency of cleavage
of 50-monophosphorylated oligonucleotides (46), to
examine the substrate requirements for tRNA processing
(47). We were drawn to study these substrates not only
because their processing represents one of the main
activities of RNase E (6,7) in E. coli and other bacteria
(48), but because the localized folding that produces
tRNAs limits the formation of alternative secondary

structures within the precursor (and derivatives) that can
complicate the analysis of RNA: protein interactions. We
focused on the processing of the polycistronic argX-hisR-
leuT-proM precursor, as it has been the subject of in vivo
studies by others (6,7), including a recent study that
concluded its processing was not dependent on the
50 sensor of RNase E (49). Our study confirms that
direct entry is central to the processing of tRNA in
E. coli and provides the first biochemical evidence for
natural transcripts that direct entry is mediated by
specific unpaired regions that are adjacent to, but not con-
tiguous with, segments cleaved by RNase E. In addition,
we find evidence that direct entry at a site on the 50 side of
the precursor triggers a series of 50-monophosphate-
dependent cleavages. Consistent with a major role for
direct entry in tRNA processing, we show also that,
contrary to a report by others (32), a 50-monophosphate
is not required to ‘activate’ the catalytic step (44).

MATERIALS AND METHODS

Synthesis of RNA transcripts

Transcripts were synthesized in vitro using T7 RNA poly-
merase and polymerase chain reaction-generated tem-
plates and purified as described previously (46,50). The
sequences of the primers used to generate templates are
given in Table 1.

To generate transcripts with 50-monophosphorylated
ends, the RNA was incubated with tobacco acid
pyrophosphatase (TAP; Epicentre� Biotechnologies) in a
ratio of 25 U TAP: 8 mg RNA in a 50 ml reaction using
buffer provided by the vendor at 37�C for 2 h. The
RNA was extracted with phenol-chloroform and
precipitated with ethanol as described previously (50).
The 50-phosphorylation status of transcripts was
determined using a 50–30 exonuclease specific for
50-monophosphorylated RNA. The reaction (20 ml) con-
tained 300 ng RNA and 0.1 U TerminatorTM exonuclease
(TEX; Epicentre� Biotechnologies) in buffer B provided
by the vendor. After incubation for 30min at 42�C the
RNA was extracted with phenol-chloroform and
precipitated with ethanol and analysed by denaturing
polyacrylamide gel electrophoresis.

Annealing of complementary DNA oligonucleotides to
in vitro transcribed RNA

The sequences of oligonucleotide primers used to anneal
to RNA transcripts are given in Table 2.

To anneal, the RNA in water was heated to 95�C for
3min. Following addition of complementary oligonucleo-
tide, the reaction was incubated at 65�C for 5min, 35�C
for 5min and then placed on ice. Specific oligonucleotide
binding was confirmed by treatment with RNase H, which
specifically cleaves the RNA in RNA–DNA hybrids.
RNA-oligonucleotide (2 pmol) was incubated at 37�C
for 1 h with 2.5 U RNase H in buffer provided by the
vendor (Fermentas Life Sciences). The reaction prod-
ucts were analysed by denaturing polyacrylamide gel
electrophoresis.
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Purification of NTH-RNase E and discontinuous
cleavage assays

Recombinant N-terminal histidine-tagged polypeptides
corresponding to the NTH of RNase E (residues 1–529)
with wild-type or mutant sequences were purified as
described previously (46). The cleavage assays were per-
formed also as described previously (46). The LU13 oligo-
nucleotide substrates labelled with fluorescein at the 30-end
were synthesized and purified by Eurogentec (UK).
The sequence of LU13 was 50-GAGACAGU#AUUUG
(arrow indicates site of cleavage). To estimate kcat and
KM values of the cleavage of 50-hydroxylated LU13,
initial rates were calculated from time points within the
linear phase of the reaction. These rates were then fitted to
the Michaelis–Menten function as shown in Equation (1),

v

½E�
¼

kcat½S�

KM+½S�
ð1Þ

Where v is the initial rate normalized for [E] (the total
enzyme concentration), [S] is the initial substrate concen-
tration, kcat is the enzyme turnover number and KM is the
Michaelis constant.

RESULTS

A major role for direct entry

The starting point for our analysis of tRNA processing
was the cleavage of a 50-monophosphorylated form of the
argX-hisR-leuT-proM precursor by NTH-RNase E. This
was then compared against the cleavage of the same sub-
strate by the T170V mutant and a 50-triphosphorylated
form by NTH-RNase E to assess the contribution of
direct entry (Figure 1, panel A). Reaction conditions
were used that had been shown previously to facilitate
only limited cleavage of 50-triphosphorylated versions of
well-characterized 50-monophosphate-dependent substra-
tes (46,50). We found that the efficiency of the initial
cleavages, as determined by the reduction in abundance
of full-length precursor, was not decreased substantially
when the substrate was incubated with the T170V mutant,
or when its 50 end was triphosphorylated (Figure 1, panel
A). These results confirmed that direct entry has a sub-
stantial role in the processing of the argX-hisR-leuT-proM
precursor. However, 50-end-dependent cleavage does con-
tribute, as evidenced most clearly by the accumulation of a
shorter product (marked by an asterisk) following incuba-
tion with wild-type NTH-RNase E, but not its T170V
equivalent. Before undertaking the comparisons described
above, we had established that the cleavage products
produced by the NTH of RNase E were the same as
those produced by the RNA degradosome under condi-
tions in which PNPase was not active (data not shown).
Others have also found that NTH of RNase E is sufficient
to direct all of the cleavages produced by the degradosome
(31). We chose to base our analysis of 50 sensing on the
NTH-RNase E rather than the degradosome, as we have
so far been unable to purify degradosome prepar-
ations that incorporate RNase E with mutations in its
50 sensor.

Table 1. The sequences of primers used to generate templates for in vitro transcription

Transcript Primer Primer sequence (50–30)

argX-hisR-leuT-proM precursor FWD ATCCTAATACGACTCACTATAGGGAACGGCGCTAAGCGCCCG
RVS AAAAAACCCCGCCGAAGCGG

50 hisR to 30 FWD ATCCTAATACGACTCACTATAGGGGGTGGCTATAGCTCAGTTGG
RVS AAAAAACCCCGCCGAAGCGG

50 hisR to 30 proM FWD ATCCTAATACGACTCACTATAGGGGGTGGCTATAGCTCAGTTGG
RVS TGGTCGGCGAGAGAGGAT

50 leuT to 30 FWD ATCCTAATACGACTCACTATAGGGGCGAAGGTGGCGGAATTGGT
RVS AAAAAACCCCGCCGAAGCGG

50–30 leuT FWD ATCCTAATACGACTCACTATAGGGAACGGCGCTAAGCGCCCG
RVS TGGTGCGAGGGGGGG

50–30 hisR FWD ATCCTAATACGACTCACTATAGGGAACGGCGCTAAGCGCCCG
RVS TGGGGTGGCTAATGGGATT

50 argX to 30 hisR FWD ATCCTAATACGACTCACTATAGGGGCGCCCGTAGCTCAGCTG
RVS TGGGGTGGCTAATGGGATT

50–30 proM FWD ATCCTAATACGACTCACTATAGGGAACGGCGCTAAGCGCCCG
RVS TGGTCGGCGAGAGAGGAT

metT-leuW-glnUW-metU-glnVX precursor FWD ATCCTAATACGACTCACTATAGGGCGCAACGCCGATAAGGTA
RVS ATTGAATGAACGCAGAAAAGC

glyVXY precursor FWD ATCCTAATACGACTCACTATAGGGCCGTAACGACGCAGAAATG
RVS GCGTCGCTGTGGATATTTTATT

The T7 polymerase promoter encoded in each of the forward primers is underlined.

Table 2. The sequences of primers used for annealing to complemen-

tary regions in RNA transcripts

Primer name Primer sequence (50–30)

Block-E1 CTACAAATCTTGTTACGCGGTATTA
argX-hisR 50 intergenic

region
CAGCTCAAGCGCCGGGACTA

argX-hisR centre
intergenic region

TATTACTACCACCGCAGC

Block-E2 TTGTCACAACTTCTAATAA
Block-E3 TTTTAGTTCAATTCTTTAAAGTCG
Block-E4 AATACTGCTTTTTGAATTTTTAG
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Next, the identity of each of the cleavage products was
determined by tagging the 50 and 30 ends with extended
sequences (Supplementary Figures S1 and S2), and
comparing the electrophoretic mobility of products
against RNA size markers (Supplementary Figure S3),
truncating the substrate, and using complementary oligo-
nucleotides to block RNase E cleavage at sites mapped
previously by others (6). This revealed that the major
sites of direct-entry cleavage by RNase E occurred at
E1, E3 and E5 with additional 50-monophosphate-depend-
ent steps requiring cleavage at E2: cleavage at E4 was also
detected under particular conditions (Figure 1, panel B).
E5 was previously uncharacterized but likely serves to
remove the transcription terminator on the 30 side of
proM (52). RNase E-dependent cleavage was detected
in vivo at E5, as well as E1 to E4, by comparing the

abundance of 50 ends in an rne-1ts strain and its
congenic wild-type partner at the non-permissive tempera-
ture (our unpublished RNA-seq data). Much of the
mapping just outlined earlier in the text is presented
later in the text as part of our analysis of individual sites
of cleavage. E2, E3 and E5 are located within 15 nt of
the 30 end of the corresponding tRNAs, whereas E1 and
E4 are more distal (Figure 1, panel B). All the cleavages
occurred within segments that are single stranded and
rich in A and/or U nucleotides (6,48). These are charac-
teristics typical of sites of RNase E cleavage (53,54).
The sequence of the argX-hisR-leuT-proM precur-
sor annotated to show the precise positions of all the
RNase E sites and the sequences blocked by complemen-
tary oligonucleotides is provided (Supplementary
Figure S4).

A

B

Figure 1. The role of 50 sensing in the cleavage of the polycistronic argX-hisR-leuT-proM precursor by RNase E. (A) The effect of 50 phosphorylation
and sensing on cleavage by the NTH of RNase E. The precursor was generated by in vitro transcription (see ‘Materials and Methods’ section, for
further details). The 50-monophosphorylated version was generated using TAP (51). The reaction conditions and preparations of both wild-type
NTH-RNase E and the T170V mutant were as described previously (46). Products were analysed using denaturing gel electrophoresis (46). An
asterisk indicates a species referred to in the text. The enzyme monomer and initial substrate concentrations at the start of each reaction were 5 and
180 nM, respectively. The RNA was stained using ethidium bromide. Lanes 1–7 contain samples taken 0, 5, 15, 30, 60, 120 and 180min after mixing
substrate and enzyme. Lane C contains substrate incubated without enzyme for 180min. The identities of the bands are indicated on the right of the
panel (see text for details). Their sizes in nucleotides are given in parentheses. (B) Schematic diagram showing the positions of sites of cleavage by
RNase E (6) (our unpublished data). The three tracks of values below the tRNA positions indicate the length of each segment (nucleotides), the sizes
of segments following cleavage at E1, E3 and E5 and following cleavage at E2 and E4, respectively.
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Requirements for direct-entry cleavage at E3 and E5

To study the requirement for direct-entry cleavage at E3
and E5, without the complication of cleavage at E1, the
segment of the precursor upstream of hisR was removed.
Incubation of the resulting 50-triphosphorylated transcript
with T170V produced three major detectable products in
what appears to be stoichiometric amounts (after taking
into account the size-dependent differences in staining);
50 hisR to E5 (307 nt), 50 hisR to E3 (199 nt) and E3-30

(137 nt) (Figure 2). E5 to 30 (29 nt) was too small to be
detected. A much weaker band that probably corresponds
to 50 hisR to E4 (225 nt) was also detected. Interestingly,
no E3 to E5 product (108 nt) was detected, even after ex-
tending the incubation with a higher concentration of
T170V (data not shown). The above indicated that
T170V can cleave efficiently at either E3 or E5 by direct
entry, but not both. More remarkably, removal of the
segment downstream of proM, which contains the E5
site, was found to block completely cleavage at E3: only
the weak band assigned to 50 hisR to E4 was detected. The
E3 site remained single stranded as judged by the ability of
a complementary oligonucleotide described later in the
text to direct cleavage by RNase H (data not shown).
This was the first indication that direct entry might
require recognition of an unpaired region that is
adjacent, but not contiguous to a segment in which
RNase E cleavage can occur. Repeating the study with a
substrate truncated upstream of leuT produced identical
findings and confirmed the identity of the cleavage
products (data not shown, also Figure 3).

The finding that T170V can cleave a
50-triphosphorylated transcript efficiently at E3 or E5,
but not both, suggested a model in which RNase E inter-
acts with the 30 half of the argX-hisR-leuT-proM precursor
via simultaneous contact with single-stranded regions en-
compassing the E3 and E5 sites and that subsequent
cleavage at E3 or E5 reduces the affinity of the interaction
such that cleavage at the other cannot occur via this route.
As predicted by this model, the binding of an oligonucleo-
tide complementary to the E3 site completely blocked
cleavage at E5, as well as at E3 (Figure 3). This was
shown using a substrate with the region upstream of
leuT removed. It is clear that the 50 leuT to E5 (210 nt)
species was no longer produced. Cleavage at E5 was also
blocked by the binding of an oligonucleotide complemen-
tary to the E4 site, which is located downstream of E3
within the intergenic region of leuT and proM. This did
not, however, block cleavage at E3; both the E3 to 30 and
50 leuT to E3 species were produced. Thus, the binding
events that normally lead to cleavage at E3 or E5 are
not identical; cleavage at E5 appears to require an add-
itional or extended contact not required for cleavage at
E3. Nevertheless, as found for E3, cleavage at E5
requires an unpaired region that is adjacent, but not con-
tiguous to the site of E5 cleavage. Specific annealing of
complementary oligonucleotides to the substrate was con-
firmed by RNase H digestion (Supplementary Figure S5).

Requirements for direct-entry cleavage at E1

To investigate the substrate requirements for cleavage at
E1, we deleted segments upstream of the 50-end of argX,

Figure 2. The requirements for direct-entry cleavage at E3. Truncated versions of the argX-hisR-leuT-proM precursor were generated by shortening
the template used for in vitro transcription. All of the transcripts had 50-triphosphorylated ends and were incubated with T170V. The boundaries of
each of the transcripts and the positions at which they were cleaved are shown schematically at the top of each panel. The cleavage of the transcripts
was assayed as Figure 1. The enzyme and initial substrate concentrations at the start of each reaction were 7 and 250 nM, respectively. Lanes 1–5
contain samples taken 0, 5, 15, 30 and 60min after mixing substrate and enzyme. Lanes C1 and C2 correspond to substrate incubated without enzyme
for 0 and 60min. The RNA was stained using SYBR� Gold stain (Life Technologies). The identities and sizes of the species produced by cleavage of
the precursor starting at the 50 end of hisR tRNA are indicated on the left of the panel. The identities and sizes of the products of cleaving full-length
transcript are indicated on the right of the panel, as Figure 1.
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downstream of the 30- end leuT and downstream of the
30- end of hisR (Figure 4, panel A). Only deletion of the
segment upstream of argX affected RNase E cleavage at
E1. Although cleavage in this case was detected, the effi-
ciency was reduced significantly by �8-fold. Thus, for all
three sites, direct-entry cleavage is strongly influenced by
an unpaired region that is adjacent, but not contiguous.
Interestingly, the binding of oligonucleotides complemen-
tary to the single-stranded region in the intergenic region
upstream of E1 increased the efficiency of cleavage by
�3-fold in the absence of the 50 leader region (Figure 4,
panel B), but not in its presence (data not shown). We
suggest that the oligonucleotide blocks a binding event
that is ‘off path’ with regard to cleavage at E1. RNase E
can bind many more sites than it cleaves efficiently (55)
(our unpublished results). Regardless of the actual explan-
ation, the effect of the complementary oligonucleotides on
E1 cleavage is further evidence that single-stranded
regions in addition to the segment in which cleavage
occurs can influence the efficiency of cleavage.
Having found that an adjacent single-stranded seg-

ment(s) also regulated direct entry at E1, we tested
whether these segments, or any other in the 50 half of the
precursor, could restore cleavage at E3 in the absence of the
30 trailer, or cleavage at E5 in the absence of access to the
single-stranded region encompassing the E3 site. The
answer was negative (Figure 5). Within the context of the
full-length transcript, we found that cleavage at E5 was still
blocked using the E4 complementary oligonucleotide and
that cleavage at E1 was still reduced by deletion of the 50

leader (data not shown). Thus, single-stranded regions
appear to be able to mediate direct entry at adjacent, but

not distal sites. This may reflect the need for a particular
local conformation to mediate efficient direct entry.

The 50-monophosphate-dependent cleavages

As indicated earlier in the text, a short intermediate
accumulated during incubation with wild-type NTH-
RNase E, but not its T170V equivalent (Figure 1). This
intermediate corresponds to E2–E3 (117 nt). Moreover,
the accumulation of E2–E3 in reactions with NTH-
RNase E can be blocked by the binding of an oligonucleo-
tide complementary to E1 (Figure 6, panel A). This
suggested that cleavage at E2 is enabled by the
50-monophosphorylated end produced by cleavage at E1.
Consistent with this notion, the binding of an oligonucleo-
tide complementary to the E2 site resulted in the accumu-
lation of E1 to 30 and E1 to E5. The binding of an
oligonucleotide complementary to E1 or E2 also pre-
vented the detection of the E3–E5 intermediate, which
only ever accumulates to low levels, without affecting
the levels of 50 to E5, 50 to E3 and E3 to 30. This
suggests that cleavage at E2 normally results in rapid
50 monophosphate-stimulated cleavage at E3, in addition
to the cleavage that occurs at this site via direct entry.
Consistent with this model, the binding of an oligonucleo-
tide complementary to the E3 site resulted in the accumu-
lation of E2–E5. Furthermore, we also showed in an
additional experiment that the generation of E4–E5 is
stimulated by the 50-monophosphorylated end generated
by cleavage at E3. E4–E5 was generated efficiently from
E3 to 30, which was synthesized by in vitro transcription,
provided the 50-end was monophosphorylated and RNase
E was not impaired in 50 sensing (Figure 6, panel B).

4C1 5C2 1 2 3

L P

E3 E5

L P L P

E3

4C1 5C2 1 2 3 4C1 5C2 1 2 3

E3-3’ 

5’leuT-E5 
(210)

E3-3’

(137)

5’leuT-E3 
(102)

5’leuT-E3

Figure 3. The requirements for direct-entry cleavage at E5. The 50-triphosphorylated substrates incubated with T170V are shown schematically at the
top of the panel. Closed black boxes indicate the binding sites to two complementary oligonucleotides used to block cleavage. Only sites at which
cleavage occurs are indicated. Their precise locations are shown in Supplementary Figure S4. The transcript in each case started at the 50 end of leuT
tRNA. As Figure 2, lanes 1–5 contain samples taken 0, 5, 15, 30 and 60min after mixing substrate and enzyme, whereas lanes C1 and C2 correspond
to substrate incubated without enzyme for 0 and 60min. Enzyme and initial substrate concentration and staining of products as Figure 2. The
labelling on the right and left indicates the species produced in the presence and absence of oligonucleotide binding to a segment encompassing E4.
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Thus, cleavage at E1 by direct entry appears to facilitate a
series of 50-monophosphate-dependent cleavages.

Direct entry occurs in other tRNA precursors and is not
limited by catalytic activity

Although 50-monophosphate-dependent cleavages have
a role in argX-hisR-leuT-proM processing, the initial

cleavage of this precursor at E1, E3 or E5 occurs via
direct entry. The rate at which the full-length precursor di-
minished was largely independent of its 50-phosphorylation
status and a fully functional 50-monophosphate-binding
pocket in RNase E. Moreover, this does not appear to be
specific to this particular tRNA precursor, as we found that
50-triphosphorylated forms of polycistronic metT-leuW-
glnUW-metU-glnVX and glyVXY precursors are also

E1 E2 E1 E1A

4C1 5C2 1 2 3 4C1 5C2 1 2 3 4C1 5C2 1 2 3M

A H L A H A H

5’-3’ leuT
(332)

5’-3’ hisR
(225)

5’argX-3’ 
E1-3’ leuT
(192)

5’-E1 (140)
5’argX-E1
(129)

hisR (214)
( )

E1-3’ hisR
(85)

B

4C1 5C2 1 2 3 4C1 5C2 1 2 3 4C1 5C2 1 2 3

E1

A H

E1

A H

E1

A H

5’argX-3’ 
hisR (214)

5’argX-E1
(129)

E1-3’ hisR
(85)

Figure 4. The requirements for direct-entry cleavage at E1. (A) Identifying the minimum substrate. The triphosphorylated substrates were incubated
with T170V, and the positions of the resulting cleavages are shown schematically at the top of this panel. As Figure 2, lanes 1–5 contain samples
taken 0, 5, 15, 30 and 60min after mixing substrate and enzyme, whereas lanes C1 and C2 correspond to substrate incubated without enzyme for 0
and 60min. Lane M contains the products from cleaving full-length precursor: these are provided as size markers. The labelling on the right indicates
the species produced from one or more of the substrates, whereas the labelling on the left indicates the sizes of the three substrates. (B) The effect of
blocking oligonucleotides on cleavage. As for (A), the substrates are shown schematically at the top of this panel. Closed black boxes indicate the
binding sites to two oligonucleotides complementary to single-stranded segments in the intergenic region between argX and hisR. Their precise
locations are shown in Supplementary Figure S4. Enzyme and initial substrate concentration and product staining (both panels) as Figure 2.
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cleaved efficiently by RNase E T170V in vitro (Figure 7).
Thus, direct entry appears to have a wide-spread role in
tRNA processing. However, somewhat at odds with this
notion was a report based on Michaelis–Menten analysis
that the turnover number (value of kcat) is an order of mag-
nitude lower in the absence of a 50 monophosphate (32).
Therefore, we decided to reinvestigate using high substrate
concentrations (micro to millimolar) to minimize the ex-
trapolation required to estimate the turnover number
(Figure 8). Our analysis revealed that if anything the kcat is
slightly higher in the absence of a 50 monophosphate. For
the 50-monophosphorylated oligonucleotide substrate, we ob-
tained values of KM and kcat of 5.7mM and 1.1 s�1, respect-
ively, in good agreement with values obtained previously by
us (24), whereas for the 50-hydroxylated equivalent, we
obtained KM and kcat of 0.9mM and 3.5 s�1, respectively.
Using these values, the efficiency of cleavage (kcat/KM) of the
50-monophosphorylated substrate is calculated to be 50-fold
higher than its 50-hydroxylated equivalent. This matches
well with the fold differences in cleavage efficiencies
obtained previously for these substrates under non-
saturating enzyme conditions (46). Thus, efficient cleavage
does not require activation of the catalytic step by a
50-monophosphorylated end.

DISCUSSION

As an adequate pool of tRNAs for translation is abso-
lutely essential for rapid bacterial growth (57,58), the

maturation of tRNAs from their precursors is a key
aspect of RNA metabolism. The initiation of tRNA mat-
uration in E. coli is mediated by RNase E (6,7,59), which
is renowned for being 50-end dependent (1,2). However,
the biochemical analyses described here, which used the
previously characterized T170V mutant of RNase E (46)
and the enzymatic manipulation of the 50-phosphorylation
status of transcripts, show that the initiation of the mat-
uration of tRNAs encoded by the argX-hisR-leuT-proM
precursor is not critically dependent on 50-
monophosphate-sensing (Figures 1–5), although it does
have a role (Figure 6). Our work supports strongly the
conclusion, based on the lack of accumulation of tRNA
precursors in an E. coli strain containing a 50-sensor
mutant of RNase E, that the initiation of tRNA matur-
ation, at least in some examples, is mediated by the direct
entry of RNase E (49).

Our finding that direct entry requires access to single-
stranded segments that are adjacent but not contiguous
with single-stranded sites in which cleavage occurs fits
with a model in which the simultaneous interaction of
two single-stranded segments with RNase E can negate
the requirement for a 50-monophosphate group (46). The
antiparallel arrangement of segments 50 and 30 to folded
tRNA mirrors the antiparallel arrangement of the two
RNA-binding channels in a principal dimer of RNase E
(26). Thus, as found for other multimeric regulators (e.g.
many bacterial transcription factors), simple cooperativity
may be central to the initiation of tRNA processing by

E1 E1

4C1 5C2 1 2 3 4C1 5C2 1 2 3M

A H L P

M

A H L P

E1-3’ proM
(311)

E1-3’
(341)

5’-E1
(140)

5’-E1
(140)

Figure 5. The requirement for adjacent single-stranded segments. The 50-triphosphorylated substrates incubated with T170V and the positions of the
resulting cleavages are shown schematically at the top of the panel. The first lacked the 30 trailer, whereas the second had a complementary
oligonucleotide overlapping the E3 site (see Supplementary Figure S4). As Figure 2, lanes 1–5 contain samples taken 0, 5, 15, 30 and 60min
after mixing substrate and enzyme, whereas lanes C1 and C2 correspond to substrate incubated without enzyme for 0 and 60min. Lane M contains
the products of cleaving full-length precursor with T170V. These are provided as size markers. Enzyme and initial substrate concentration and
product staining as Figure 1.
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RNase E in E. coli. In addition to increasing the affinity of
the interactions, cooperativity may also increase the select-
ivity. Despite having relatively low sequence specificity
(53,54,60), RNase E cleaved the argX-hisR-leuT-proM

precursor at only a limited number of sites (Figure 1).
The molecular details of direct entry are probably best
addressed by structural analysis of RNase E bound to a
tRNA precursor or other direct-entry substrates. At this

E1              E2                  E3 E4 E5A

4 51 2 3 4 51 2 3 4 51 2 3 4 51 2 3

argX hisR leuT proM

No block E1 block E2 block E3 block

4 51 2 3 4 51 2 3 4 51 2 3

5 ’-3’  (481)
5’ -E5 (452)
5’ -E3 (344)
E1-3’  (341)
E1-E5 (312)

E2 E5 (225)E2-E5 (225)

E1-E3 (205)

5’-E1 (140)
E3-3’ (137)

E2-E3 (117)

E1-E2 (88)
E4-E5 (82)

E3-E5 (108)

( )

B 5’ triphosphate 5’ monophosphate

4 5C 1 2 3 6M 4 52 3 61C 4 52 3 61

p p

wild type V071Tepytdliw

E3(GGG)
( )-3’ (140)

E4-E5 (82)

Figure 6. The 50-monophosphate-dependent cleavages within the polycistronic argX-hisR-leuT-proM precursor. (A) Full-length precursors without or
with a complementary oligonucleotide bound to a segment encompassing the E1, E2 or E3 sites were incubated with wild-type enzyme. Lanes 1–5
contain samples taken 0, 5, 15, 30 and 60min after mixing substrate and enzyme. The labelling on the right indicates species produced from one or
more of the substrates (see text for details). Enzyme and initial substrate concentration and product staining as Figure 1. (B) The E3 to 30 intermediate
was generated by in vitro transcription, and the 50-monophosphorylated version was generated using TAP, as Figure 1. Labelling and numbering are
also as Figure 1, except lane C contains substrate incubated without enzyme for 120min. Enzyme and initial substrate concentrations and product
staining as Figure 2. The E3 to 30 intermediate generated by in vitro transcription migrated slightly slower than that generated by RNase E cleavage due
to the presence of three extra G0s at the 50 end: a requirement for efficient transcription. The position of E3(GGG) to 30 and the E4 to E5 product are
indicated on the left. The intermediates that are barely detectable correspond to E4 to 30, E3(GGG) to E5 and trimming of the 50 GGG nucleotides.
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point, we do not exclude the possibility that another
feature of tRNA precursors contributes to direct the
entry of RNase E. We have preliminary evidence that
tRNA has a role, perhaps in aligning the intergenic
single-stranded regions optimally for efficient cleavage
(unpublished data). The conformational context of sites
cleaved by RNase E is well documented as having a role
in controlling cleavage efficiency (61).

The initiation of tRNA processing by direct entry,
which we show is not limited to the argX-hisR-leuT-
proM precursor in E. coli (Figure 7), may extend to
other bacteria. An analysis of the 30 trailer sequences of
tRNAs has found that AU-rich segments, which are
recognizable by RNase E (53–55), are selectively
conserved in bacteria with homologues of RNase E (48).
Moreover, a preliminary analysis of transcripts in the

C 61 72 3 4 5 6M 1 72 3 4 5

wild type T170V

glyV-glyX-glyY

1000
800
600

400

nt

5’ to 3’ (386)

’ to 3’
300

200

5 glyV (345)

3’ glyV to 3’ (255)

100

5’ to 3’glyV (131)

wild type T170V

metT-leuW-glnU-glnW-metU-glnV-glnX

C 61 72 3 4 5M 61 72 3 4 5

1000
800

600

400

nt

5’ to 3’ (793)

5’ to 3’ metU (509)

300

200

3’ metU to 3’ (284)

l V t 3’ (163)

100

3’ gln to 

3’ metU to 3’ glnV (121)

Figure 7. Initial cleavage of polycistronic metT-leuW-glnUW-metU-glnVX and glyVXY by 50-monophosphate-independent mechanism. Both of the
50-triphosphorylated precursors were generated by in vitro transcription and incubated with NTH-RNase E wild-type or T170V as indicated. Lanes
1–7 contain samples taken 0, 5, 15, 30, 60, 120 and 180min after mixing substrate and enzyme, whereas lane C corresponds to substrate incubated
without enzyme for 180min. Lane M contains an RNA marker and the sizes (in nucleotides) are indicated on the left. Labelling on the right of each
image indicates the positions of substrate and readily detectable products, which have been mapped tentatively according to size and positions of
RNase E cleavages mapped by ourselves (our unpublished RNA-seq data). Enzyme and initial substrate concentration and product staining are as
Figure 1.

4586 Nucleic Acids Research, 2014, Vol. 42, No. 7

Indeed, w
.
'
s


E. coli transcriptome that are cleaved efficiently by T170V
in vitro (our unpublished data) suggests that direct entry
may also be a common feature of mRNA degradation, as
proposed previously (46). By characterizing and
comparing additional substrates, it should be possible to
determine the extent to which the conformational context
of single-stranded segments places limits on direct entry;
some initial cleavages by RNase E in E. coli are clearly
dependent on the generation of a 50-monophosphorylated
end (36). Furthermore, evidence has emerged recently that
the decay of a regulatory RNA requires the physical
recruitment of RNase E via an adaptor protein (62).

In addition to shedding light on the role of direct entry,
our study also provides an example, perhaps the clearest

to date, that the generation of a 50 monophosphate as the
result of an initial cleavage can trigger multiple cleavages
(Figure 6), as was suggested when RNase E was first
found to be able to interact with 50-monophosphorylated
ends (34). Cleavage at E1 was followed by cleavage at E2,
then E3 and finally E4 and E5. Thus, although processing
in vivo might be initiated by direct entry, subsequent steps
can be mediated by 50-end-dependent cleavages (Figure 9).
The location of the 50-monophosphate binding pocket
next to the active site is ideal to engage the 50-end of the
downstream product of cleavage. Engagement with this
pocket appears, from the Michaelis–Menten analysis
reported here (Figure 8), to enhance primarily the
affinity of the overall interaction, as found previously
for E. coli RNase G (21).
Finally, we would point out that the absence of detect-

able intermediates of tRNA processing in a 50-sensor
mutant strain of E. coli (49) is not at odds with a role
for 50-end-dependent cleavages. It simply indicates that
these cleavages are not critical. For example, it is
possible that some tRNAs can be separated endonucleo-
lytically by RNase P, which generates the mature 50-end of

Figure 8. Michaelis–Menten analysis of the cleavage of a
50-hydroxylated derivative of BR13. The reaction conditions and the
measurements of initial rates were as described previously (21). The
substrate was a 30 fluorescein-labelled version of BR13 (56), referred
to as LU13, that had GAG, rather than GGG, at the 50-end (46). The
cleavage of the 50-monophosphorylated equivalent of the substrate was
included as a control. The concentration of NTH-RNase E was 1 nM
and the substrate was assayed over a concentration range of 500 nM to
14 mM and 10 mM to 1mM for PLU13-Fl and OHLU13-Fl, respectively.
Data are plotted as the initial rate (v) over substrate concentration (a).
The values of KM and kcat were calculated from the curve of best fit to
the Michaelis–Menten equation.

A

argX hisR leuT proM

E1              E2                  E3 E4             E5

B

argX hisR leuT proM

E1              E2                  E3 E4             E5

Figure 9. Summary of RNase E direct entry and 50-monophosphate-
dependent cleavages in the argX-hisR-leuT-proM precursor. (A) The
requirement of adjacent but not contiguous single-stranded segments
for direct-entry cleavage. Closed rectangles indicate sites to which
RNase E binds as part of cooperative interactions that mediate direct
entry; the dark gray arrows indicate a requirement of binding at the
indicated region for efficient cleavage at the site shown by a pair of
scissors. Efficient direct-entry cleavage at E1 requires binding to the 50

leader. Interaction with the E3–E4 region leads to efficient cleavage at
E5 and conversely binding to the E5 region results in efficient cleavage
at E3. Direct-entry cleavage at E3 and E5 are mutually exclusive. (B)
50-monophosphate dependent cleavages within the argX-hisR-leuT-
proM precursor. Binding and cleavage by direct entry are labelled as
panel (A). Direct-entry cleavage at E1 results in the generation of a 50-
monophosphate, which in turn enables a series of 50-monophosphate-
dependent cleavages, represented by the pale gray arrows, starting at
E2 and followed by E3, and then E4 and E5. The final products of
RNase E cleavage of the argX precursor may be produced by a com-
bination of direct entry and 50-end-dependent cleavage.
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all tRNAs (47), in the absence of a 50-end-dependent
cleavage that would normally occur upstream within the
same intergenic region. The 30 tails of tRNAs separated
from the precursor by RNase P cleavage would then be
trimmed 30 exonucleolytically in vivo, as found for 30 tails
generated by RNase E cleavage (47). A role for RNase P
in the separation of tRNAs has been documented for the
metT-leuW-glnUW-metU-glnVX precursor. In accordance
with our biochemical analysis of this transcript (Figure 7),
the only sites of RNase E cleavage detected in vivomapped
downstream of metU (63).
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