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Abstract

Traffic density has been shown to be a factor of traffic complexity which
influences driver workload. However, little research has systematically varied and
examined how traffic density affects workload in dynamic traffic conditions. In this
driving simulator study, the effects of two dynamically changing traffic complexity
factors (Traffic Flow and Lane Change Presence) on workload were examined. These
fluctuations in driving demand were then captured using a continuous subjective
rating method and driving performance measures. The results indicate a linear

upward trend in driver workload with increasing traffic flow, up to moderate traffic



flow levels. The analysis also showed that driver workload increased when a lane
change occurred in the drivers’ forward field of view, with further increases in
workload when that lane change occurred in close proximity. Both of these main
effects were captured via subjective assessment and with driving performance
parameters such as speed variation, mean time headway and variation in lateral
position. Understanding how these traffic behaviours dynamically influence driver
workload is beneficial in estimating and managing driver workload. The present
study suggests possible ways of defining the level of workload associated with
surrounding traffic complexity, which could help contribute to the design of an

adaptive workload estimator.
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1 Introduction

Driving a vehicle is a highly dynamic, safety critical task. Drivers are constantly
exposed to a vast array of information and have to select what is relevant in order to
make decisions and execute appropriate responses. These decisions are shaped by
their expectations of the road, traffic scenarios and the conditions they encounter
(Oppenheim et al., 2010). For safe driving, drivers have to perceive, identify and
correctly interpret the relevant objects and elements in the current traffic situation.
Drivers then construct and maintain a mental representation of the current situation
which forms the basis of driver’s decisions and actions (Endsley, 1995). Failure to
process safety-relevant information may lead to errors. In dynamic changing traffic

conditions, the task of driving fluctuates with the surrounding situation and the



requirement to manoeuvre the vehicle appropriately. Task demand is defined as
the demands of the process of achieving a specific and measurable goal using a
prescribed method (Cacciabue & Carsten, 2010). Workload is the amount of
information-processing resources used per time unit, to meet the level of
performance required (Wickens & Hollands, 2000). Workload serves as an indication
of the effect the task demand has on the driver as well as the driver state. In a
dynamic traffic environment, the operator may occasionally experience periods of
particularly high task demand and fluctuations in driver capabilities. From the
human factors perspective of safe traffic and transport systems, the match between
the driver’s capabilities and the demands of the actual driving task determines the
outcomes in terms of safer or less safe driving behaviour. This relationship has been
modelled by Fuller (2000, 2005), as the task-capability interface model (TCI) of the
driving process. Driving demand in dynamic conditions depends on the combination
of environmental features, such as traffic complexity, other road users’ behaviour,
characteristics of the vehicle and its speed and position on the road. Driver
capability is limited by personal competence (experience, age, attitude etc) and
shaped by momentary variations in driver states (such as fatigue, alcohol, time
pressure). In the case when there is a mismatch between the task demand and the
driver capabilities, the corresponding task difficulty which arises from the dynamic
interaction between them, may be reflected in the changes in task performance.
With the interface between the driving demand and momentary driver
capability being important for road traffic safety (Fastenmeier and Gstalter, 2007),
the accurate modelling of driver workload is regarded as crucial in the context of

driver assistance systems that aim to optimise drivers’ workload. Automobile



companies are developing intelligent systems such as workload managers to control
in-vehicle communications based on the assessed workload of the driving situation.
To date, research on workload manager systems had focused mainly on the
distractions within the vehicle, such as studies on the effect in-vehicle warnings on
driver workload (Hibberd et. al., 2012, in press). However these systems have yet to
consider external demands such as weather and traffic complexity in driver
workload assessment. Research shows that traffic density affects driver workload;
Brookhuis et al. (1991) reported that drivers’ subjective mental effort was higher on
a busy ring road compared to when driving on a quiet motorway. De Waard (2008)
showed that increased traffic density has been shown to increase workload and the
probability that error will lead to accidents. Hao et al. (2007) found that driving
performance did not worsen with increasing traffic, although mental workload
(physiological and subjective assessment) increased and situation awareness
worsened with increasing traffic. SchieBl (2008) also reported a significant effect of
traffic density on strain or workload; measuring subjective strain continuously via a
15-point rating scale, she found it rose up to a medium traffic density, thereafter
plateauing and remaining the same afterward, whereas physiological strain
decreased. Although Schiefl (2008) argued that the continuous subjective rating
measure was sensitive to the fluctuations in workload resulting from the
surrounding traffic density, the analyses were computed based on a dataset which
was rather limited (n=6). Moreover, participants were instructed to give a new
rating when they perceived a change in their subjective workload as opposed to

being prompted at particular time points.



Changes in traffic demands can be sudden, urgent and unpredictable, such as a
vehicle pulling-in from an adjacent lane. When such a critical situation occurs,
driving task demand increases with the event occurring in the ‘field of safe travel’
(Gibson and Crooks, 1938). While some studies have reported that driving task
demand increases when the absolute number of vehicles in the forward scene
increases (Zhang, Smith, Witt, 2009; Schweitzer & Green, 2007), it is unknown if the
behaviour of the vehicles’ lane changes such as their proximity and the direction of
lane change affects driver workload.

Workload assessment has involved measurement of performance, subjective
impressions of workload and physiological indicators (O’Donnell & Eggemeier,
1986). Sheridan (1980) suggests that operator ratings are the most direct indicators
of workload. Subjective measures of mental workload are obtained from subjects’
direct estimates of task difficulty and under repeated exposures to the same tasks,
the reliability coefficients for subjective measures of mental workload using uni-
dimensional ratings have been reported as high as or higher than 0.90 (Gopher &
Browne, 1984). Since subjective measures are easy to obtain and excel in face
validity as the measures depend directly on the subject’s actual experience of
workload (Gopher & Donchin, 1986), it is possible that subjective measures are
more accurate in tapping into driver’s current workload as compared to some
objective measures. It is argued that physiological measures are able to provide
information about mental workload that cannot easily be obtained from
performance or subjective measures (Humphrey and Kramer, 1994). Heart rate for
example, has the longest history of use in assessing operator workload and many

studies have reported that heart rate variability measures are sensitive to variations



in task demand. However, this rationale is not always supported as the body also
responds physiologically to things other than mental workload. Physiological
measures may therefore only capture certain elements and performance measures
may not correspond to workload. Dissociations between the measures could also be
resulted due to how the measures are taken. Therefore care should be taken to
ensure that the measures utilised could provide explanations about the level of
mental effort used. While there are not many studies use performance measures to
evaluate workload, the studies that do make comparisons between the subjective
and objective measures of workload often find dissociation (Yeh & Wickens, 1988).
Although subjective measures are often collected at the end of a mission or task
risking earlier experiences being forgotten, they are more sensitive to processes
which require awareness (or attention) as they rely on subjects’ conscious,
perceived experienced with regard to the interaction between the operator and the
system. Often, subjective experiences of overload take precedence when an
operator is performing a task, even when objective measures do not indicate an
overload (Moray, Johanssen, Pew, Rasmussen, Sangers, & Wickens, 1979).
Therefore, regardless of the limitation of subjective measures, subjective workload
represents the degree to which an individual experiences workload demands, and
this experience itself has potential consequences for performance levels. Hence,
subjective measures of workload are used in the present investigation to
characterise how much mental effort is experienced in performing driving tasks in
varying traffic conditions.

To further verify subjective measures of workload, driving performance such as

longitudinal and lateral driving performance measures were also employed to



examine whether driver’s driving behaviour varied with changes in driving demand.
Research has shown that headway from the lead vehicle (Green, 2004), time-to-
collision (Kondoh et al., 2007; Wada et al., 2010), and variation of speed (Cacciabue,
2007) are key factors examined for primary task demand relating to traffic. Although
the aim of the study is to explore driver’s temporal workload in response to changes
in immediate traffic, understanding possible adaptation in driving behaviour may
provide clarification of changes in driver workload and thus verify the utility of
subjective measures in quantifying these external demands.

In summary, the dynamic aspect of workload in the face of fluctuating traffic
conditions has not been examined thoroughly in the literature. Traffic density,
measured in terms of traffic flow, has not been systematically manipulated in
previous studies and in addition it is not clear how these relative temporal demands
can be measured directly using subjective measures. Moreover, the influence of
lane changes undertaken by other traffic on driver workload has not been explored
at all. Better understanding of whether driving demand is also influenced by the
behaviour of those vehicles help identify potential situations where drivers
experience high workload. Therefore, the aim of this study was to examine the
relationship between a number of traffic complexity factors, namely Traffic Density
and Lane Changes of Other Traffic and measures of continuous subjective driver
workload and driving performance. It is hypothesised that as Traffic Density
increases, driving task difficulty will also increase due to drivers needing to process
more information in the external traffic environment in order to manoeuvre the
vehicle safely. In relation to Lane Changes of Other Traffic, it is hypothesised that

subjective workload increases when they occur and those that occur in close



proximity are more workload-inducing than those that occur further ahead.
Following the estimation of driving task difficulty via subjective measures, data
acquired relating to the vehicle and the driving environment (for example, speed,
time headway and steering) can also be used to assess the driving task demand. In
general, driving task demand increased with a reduction in headway and with
increasing number of objects in the forward scene (i.e. traffic flow and presence of

lane changes).

2 Method
2.1 Simulator

The experiment took place in the moving-base, high-fidelity University of Leeds

Driving Simulator (UoLDS), see Figure 1.

Figure 1 The University of Leeds Driving Simulator

The UoLDS is based on a complete 2005 Jaguar S-type vehicle housed within a

dome, with all of its basic controls and dashboard instrumentation fully operational.



The projection system within the dome provides a total horizontal field of view of
250° and vertical field of view is 45°. The central rear channel (60°) is viewed
through the vehicle's rear view mirror, whilst LCD panels are built into the Jaguar's

wing mirrors to provide the two additional rear views. Data were collected at 60Hz.

2.2 Participants

Drivers were recruited from both an existing database and responses to the
University of Leeds website and local poster advertisement. Forty six drivers
participated in the study. All participants were holders of a valid driving license for
over five years, with a reported minimum annual mileage of 16,000 km. They all had
normal or corrected-to-normal vision. Ten participants did not complete the
experiment due to simulator sickness and simulator technical complications.
Eighteen males and eighteen female participants successfully completed the study.
Their age ranged between 25 and 50 years old; mean age was 37 years (5.D.= 6.9

years). All drivers were paid for their participation (£15).

2.3 Experimental design

Three roads were modelled, each being a 19km two-lane divided motorway
where the behaviour of the traffic was dynamically scripted to change lanes,
overtake and stay in front of or behind the participant’s vehicle. The three roads
varied in their average traffic flow and therefore the number of lane changes that

occurred as shown in Table 1.



Table 1 Average traffic flow and number of lane changes for each drive

Drive 1 Drive 2 Drive 3
Low Traffic Medium Traffic High Traffic
Complexity Complexity Complexity
Average Traffic Flow 416 810 1654
(vehicles/lane/hour)
Tota No. of Lane Changes 1065 1428 2688
(count)

Example screenshots of the three simulated drives are shown in Figure 2.

Figure 2 Three simulated roads with varying Traffic Complexity (left to right:
Low, Medium, High)

Due to the naturalistic nature of the choreographed traffic, for the purposes of
data analysis each road was divided into 252m long sections. The first 3km of data in
each road were excluded to allow participants to adjust to the traffic conditions and
to allow the simulated traffic to build up to the appropriate flow level. The following
16km road geometry was consistent across the three roads, with 75% of sections
being straight and 25% being curved. In order to eliminate the carryover effects
between sections (e.g. accelerating out of a curve or decelerating into one), the data
recorded in the first and the last 26m of each 252m straight section were excluded
from the analyses, as detailed in Figure 3. This resulted in there being 63 road

sections for inclusion in the analysis.
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Figure 3 Data recording at each road section

These road sections could then be defined according to their traffic complexity

in terms of Traffic Flow and Lane Change Presence, Proximity and Direction.

Traffic Flow was characterised according to the Level of Service (LOS) as
defined in the Highway Capacity Manual (2000); these range between
LOS A (minimal traffic) and LOS F (traffic congestion). According to the
Highway Capacity Manual (2000), the traffic in LOS F can be considered
as erratic and unstable. There occurred very few instances of LOS F in
this study, making it difficult to draw statistically robust conclusions.
Therefore, the LOS F data were excluded from the analysis, leaving five

levels of this independent variable as shown in Table 2.

Table 1 Description of number of vehicles in each Level of Service (LOS)

(Source: Highway Capacity Manual, 2000)

LOS A B C D E
Density 7 11 16 22 25
(vehicles'km/hr)

Lane Change Presence within 252m of the front of the participant’s
vehicle was considered, creating a dichotomous independent variable

(present/absent).
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iii.  When a lane change by a vehicle ahead occurred, its proximity to the
participant varied and they were subsequently categorised as being in
either the near-zone or far-zone. The near-zone was defined as the area
between the participant’s vehicle and the lead vehicle, whilst the far-
zone was defined as the area between lead and preceding lead vehicle,
see Figure 4.

iv.  Lane Change Direction was also varied, with vehicles either moving away

from the participant’s lane or towards it.

Legend:
S = Participant vehicle
L = Lead vehicle
Flow of waffic L II.  =Vehicle preceding lead vehicle
o = Other vehicles
+ ' A —  =Dhrection of lane change (Towards)
i FariZone ‘ = Direction of lane change (Away)
L

L Nean-Zone ‘

Lane 1 Lane 2

Figure 4 Description of type of Lane Change

A within-subjects design was used, whereby the order in which the participants
drove the three roads was counterbalanced. The other vehicles consisting passenger
vehicles such as highway maintenance vehicles and heavy good vehicles were
scripted to change lanes when certain conditions were met (e.g. available gap). To
encourage participants to interact with the surrounding traffic, they were instructed

to drive with an element of urgency whilst adhering to the traffic regulations (i.e.

12



speed limit). The following instructions were given to the participant prior to the
start of the drive,
“You are late for a meeting. You will arrive on time if you drive at 110km/h.”
A 10 minute practice of the experimental road preceded the experiment to
ensure a certain level of competence with the simulator controls and familiarisation

with the rating scales.

24 Measures of subjective workload

Overall (i.e. after each drive) and continuous (i.e. during each drive) measures of
subjective workload were elicited. An informal post-study interview session was also
conducted at the end of study to expand the understanding of ease of use of
workload ratings and to discuss factors that influenced driver’s ratings.

i. Overall workload (NASA-RTLX and RSME). It is common to assess workload
over a long period of time (Verwey & Veltman, 1996) as a global measure of
operator demand. In this study, after the completion of each of the three
drives, the two most commonly used techniques of eliciting subjective
mental workload were administered; the Raw NASA-Task Load Index (NASA-
RTLX; Byers, Bittner, & Hill, 1989) and RSME (Zijlstra, 1993). The NASA-RTLX is
a multi-dimensional instrument consisting of six subscales exploring Mental
Demand, Physical Demand, Temporal Demand, Own Performance, Effort, and
Frustration Level. Each subscale is 10-cm long depicting a scale of 0 to 100,
with the endpoints of the response scale anchored ‘low’ and ‘high’. The
NASA-RTLX has successfully been used to measure small changes in workload

(Jahn, Oehme, Krems, & Gelau, 2005), specifically in mental and temporal
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ii.

demands. The RSME is a uni-dimensional rating scale developed by Zijlstra
(1993) to investigate mental effort only. Perceived mental effort is rated on a
15-cm long vertical line marked at 1-cm intervals and reflects a scale of O-
150. The scale has nine anchor points ranging from ‘absolutely no effort’
(close to the 0 point), to ‘rather much effort’ (approximately 57 on the scale)
to ‘extreme effort’ (approximately 112 on the scale). This scale has been
widely used in traffic research (De Waard, 1996) since it is a fast and easy
method; however it provides no diagnostic information about the sources of
workload (Zjilstra, 1993).

Continuous Subjective Rating (CSR). As well as the workload measures taken
post-drive, in the present study ratings were also collected continuously
during each drive to assess the fluctuations in participant’s workload. De
Waard (1996) notes that where performance measures might be insensitive
to increases in workload, changes in continuous workload ratings may well
give an indication of effort exerted. A pilot study using a 15 point rating scale
similar to that of Schiepl (2008), suggested response-bias with participants’
scores clustering around multiples of 5. Participants also indicated a
preference for a smaller scale and therefore a 10-point scale was used here.
The rating scale consisted a 1-10 point scale, explained verbally as
representing low (1-3), medium (5-6) and high (8-10). Participants were asked
to provide a workload rating by an auditory prompt, approximately every 8

seconds (i.e. in each 252m road section).
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2.5 Measures of driving performance

During the trials, driving behaviour in terms of speed, steering, and vehicle
position (lateral position, time headway) were sampled and calculated for each road
section (each 252 m) as detailed previously in Figure 3. Curve sections (which
comprise of 25% of the total sections) were removed when examining the lateral
control measures.

i Mean and Standard Deviation of Speed. Ratings of workload
systematically increase with speed (Fuller, McHugh and Pender, 2008)
since task difficulty has been suggested to be analogous to mental
workload (Fuller, 2005). Since very little change of speed occurs in the
case of roads with constant geometry (straight or low curvature roads),
standard deviation of speed would be an indication of changes in traffic
conditions (Cacciabue, 2007) and thus suggesting variation on driving
demand while controlling the roadway features. This is particularly
applicable in more dense traffic conditions where space is restricted,
causing drivers to proceed more cautiously with lower speed.

ii. Mean Time Headway. Headway is a measure of longitudinal risk to
understand whether a following vehicle is travelling too close to a lead
vehicle compared with a recommended safe following distance (Roskam
et al., 2002). In previous studies of estimating driver workload, Green et
al. (2011) suggested that headway from the lead vehicle should be
considered when measuring the influence of other road users on driver
workload and this measure had been included in workload estimator

equations such as the SAVE-IT project (Green, 2011). In this study, the
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fii.

iv.

continuous workload ratings collected requires the driver to constantly
monitor the surrounding traffic, thus it is possible that workload rating
may be influenced by the overall headway experienced. Since the traffic
flow manipulated in this study may affect the participant's driving speed,
time headway is therefore examined and compared over conditions.
High Frequency Component of Steering Angle. A detailed analysis of
lateral deviation performances can be conducted by focusing on the
variation of steering wheel angle by means of a spectral analysis of the
steering signal. This involves transforming the signal to a frequency
domain (by means of Fourier transform) and analysing those frequency
bands affected by different factors. Mc Lean and Hoffman (1975) found
that the frequency content in the 0.35-0.6 Hz band is sensitive to
variations in both primary and secondary task load, thus an effective
indirect measure of the driver workload since any variations on drivers’
attention affect the steering wheel frequency variation (Ostlund et al.,
2004). In this study, the high frequency component is defined as the
proportion between the power in frequency band between 0.3 and 0.6
Hz and the total steering activity signal (i.e. power of frequency band
between 0 — 0.6 Hz).

Standard Deviation of Lateral Position (SDLP). Lateral position variation is
influenced by unintentional lateral variations caused by the difficulty to
drive within the safe path of travel. SDLP is a primary task performance
measure which is sensitive to high workload in conditions where driver

performance is not optimal (de Waard, 1996). In this present study, it is
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assumed that changes in lateral position would be significant when driver
workload significantly increased with the changes in traffic conditions. In
a study conducted by Green et al. (1994) that examined the relationship
between road geometry and workload ratings, standard deviation of
lateral position was found to correlate with workload ratings when
workload was light and traffic absent. In the present study, it is assumed
this variation is capable of detecting the driver workload changes caused

by the impact of the traffic conditions.

3 Results

Data were tested for normality and sphericity before proceeding to parametric
analyses (ANOVA). The Greenhouse-Geisser correction was applied where
necessary. Gender was included as a between subjects factor.

In order to compare the sensitivity of the three measures of subjective
workload, the average CSR was computed across all road sections for each of the
three drives and compared to the overall workload scores obtained post-drive
(NASA-RTLX and RSME).

The RSME, NASA-RTLX and mean CSR scores were standardized to a 100 point
scale and correlations were computed between CSR and RSME (r=0.720, p<0.001),
CSR and NASA-RTLX (0.739, p<0.001) and RSME and NASA-RTLX (r=0.834, p<0.001).
A one-way repeated MANOVA conducted using the three workload scores, found
main effect of Traffic Complexity (F(6,29)=110.138, p<0.001). Post-hoc pairwise
comparisons revealed there were significant differences (p<0.001) between each of

the Traffic Complexity conditions for each workload measure, see Figure 5.
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Figure 5 Mean subjective mental workload scores by Traffic Complexity

One-way repeated MANOVA analysis of the six dimensions of NASA-RTLX
revealed significantly higher mental demand (F(2,68)=132.745, p<0.001), physical
demand (F(2,57.56)=61.246, p<0.001), time pressure (F(2,68)=81.234, p<0.001),
poorer own performance (F(2,68)=44.346, p<0.001), greater effort (F(2,68)=73.431,
p<0.001) and frustration (F(2,68)=75.214, p<0.001) in medium and high traffic
complexity, compared to low traffic complexity. There was no significant effect of
gender.

Following this analysis of overall workload, the data were then stratified by road
section, allowing the investigation of the effect of the four independent variables
(outlined in Section 2.3) on CSR scores. This allowed the examination of how
temporal fluctuations in Traffic Complexity might affect workload. The experimental
design was not a full factorial one as not every factor was tested at every level of all
of factors (e.g. where a lane change was absent there was no associated level of

proximity or direction). Therefore we first considered if there were effects of Traffic
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Flow and the Presence of Lane Changes on subjective workload and then proceeded
to examine the characteristics of those Lane Changes in more detail (Proximity and

Direction).

3.1 Effect of Traffic Flow and Lane Change Presence on subjective workload

First, the segmented CSR data were subjected to two-way ANOVA repeated
measures analyses. There were significant main effects of Traffic Flow (F (3.024,
105.841) =126.075, p<0.001) and Lane Change Presence (F (1, 35) =47.104, p<0.001)
on CSR ratings as shown in Figure 6. There was no significant interaction between

Traffic Flow and Lane Change Presence.
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Figure 6 Mean CSR by Traffic Flow and Lane Change Presence

Post-hoc polynomial contrasts showed a significant quadratic effect of Traffic
Density (F (1, 35) =71.407, p<0.001) on CSR, suggesting that workload increases and

then levels off beyond LOS D. There was no significant effect of gender.

19



3.2 Effect of Traffic Flow and Lane Change Presence on Driving Performance

Lateral and longitudinal data were analysed with mixed MANOVA repeated
measures analyses and gender as the between-subject factor. At the Bonferonni
adjusted alpha level of 0.01, findings showed that there were significant effects of
the Traffic Flow (F(20,15)=65.477, p<0.001) and Lane Change Presence
(F(5,30)=53.917, p<0.001) and their interaction (F(20, 438.744)=3.922, p< 0.001) on
the combined dependent variables. No significant effect of gender was found.

Analysis of the dependent variables individually showed effects of Traffic Flow
on longitudinal measures only. However effects of Lane Change Presence were
found for all except high steering frequency. Two-way ANOVAs were conducted on
significant measures (i.e. all except non-significant high steering frequency
measures) revealed by MANOVA and Greenhouse Geisser correction was employed
where the sphericity assumption was violated.

ANOVA showed main effect of Traffic Flow with a significant reduction in
average mean speed (F(3.244, 113.548)=249.897, p< 0.001) and increase in standard
deviation of speed (F(2.914, 102.002)=37.207, p<0.001)(Figure 7). Similar trend was
also found with main effect of Traffic Flow in average mean speed (F(1,35)=7.766,
p=0.009) and variation in speed (F(1,35)=66.138, p<0.001) in traffic conditions
involving lane changes. There was no significant interaction between Traffic Flow
and Lane Change Presence on standard deviation of speed suggesting that main
effect of Traffic Flow is present regardless of Lane Change Presence and vice versa.
In contrast, a significant interaction was found with mean speed (F(2.753,
96.351)=729.932, p=0.004). Simple effects analysis (paired sample t-test

comparisons of presence and absence of lane changes for each Traffic Flow
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condition) showed an effect of Lane Change Presence for all except LOS A,

t(35)=0.504, p=0.618.
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Figure 7 Comparison of mean and standard deviation of speed (and standard
errors)

Since effects on speed were found across LOS, time headway were compared
over conditions. Significant effects of Traffic Flow, F(1.077,37.688)=135.199,
p<0.001), Lane Change Presence, F(1,35)=73.819, p<001) and an interaction
F(1.621,56.750)=9.095, p=0.001 for time headway were found. Pair-sampled t-test
indicates there was a significant effect of Lane Change Presence on all LOS. Mean
time headway increased in the presence of lane changes in all traffic flow conditions
where participants keep a mean time headway 0.926 s (95% Cl — 0.707 to 1.145)

longer than they did during the no Lane Change Presence conditions (Figure 8).
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Figure 8 Mean time headway (and standard error) by Traffic Flow and Lane Change
Presence
There was a significant main effect of Lane Change Presence on variations in
lateral position (F(1,35)=8.973, p=0.005). Participants deviated more in lateral
position when lane changes were present (M=0.099m) than when absent

(M=0.88m)(Refer to Figure 9).
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Figure 9 Averaged standard deviation of lateral position (and standard error)
by Traffic Flow and Lane Change Presence

22



3.3 The effect of lane change characteristics

Given that the presence of lane changes impacts on driver workload and driving
performance, further analyses were undertaken to establish if Lane Change
Proximity and Lane Change Direction were significant factors. The near-zone was
defined as the area between the participant’s vehicle and the lead vehicle (569 lane
changes took place here), whilst the far-zone was defined as the area between lead
and preceding lead vehicle (2147 lane changes). However only 31 participants
experienced both characteristics of lane changes, therefore data for the 5
participants were excluded. Two way repeated ANOVA showed a significant main
effect of Lane Change Proximity, (F(1,30) = 8.445, p<0.005) with CSR scores obtained
when the lane change occurred in the near-zone being higher than those obtained
with lane changes in the far-zone (see Figure 10). There was, however, no significant
main effect of Lane Change Direction on CSR ratings. No significant interaction

between Lane Change Direction and Proximity was found.

OTowards BAway
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L ane Change Proximity

Figure 10 Mean CSR (and standard error) by Lane Change Proximity and
Direction
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Although no significant effect of Lane Change Direction was found on any of the
performance measures, there was an effect of Lane Change Proximity on mean
speed (F(1,30)=19.586, p<0.001) and standard deviation of lateral position
(F(1,30)=8.430, p=0.007). Results indicate that participants drove at a lower mean
speed of 30.293ms™ s (i.e. an average reduction of 2.182ms™" in mean speed) and
performed poorer in maintaining lateral position with an average increase of
0.024m in SDLP when experiencing lane changes in the near-zone. Although other
factors such as the criticality of these lane changes (for example, time-to-collision at
which they occur) could offer an explanation to changes in primary task
performance, this factor was not explored further due to insufficient data for

statistical testing.

4 Discussion

The main aim of the present study was to investigate the relationship between
dynamic traffic behaviour factors and subjective workload. Measures of self-
reported workload elicited after each of three twenty-minute drives significantly
increased as traffic complexity increased, as characterised by traffic density and the
lane changes encountered. Based on the correlations between the three workload
measures, it can be concluded that mean CSR is as reliable measure of overall driver
workload as the widely validated uni-dimensional RSME and multi-dimensional
NASA-RTLX scales.

Establishing the feasibility of using a simple scale to detect changes in reported
workload allowed the subsequent analysis of temporal fluctuations in workload by

dividing the road into 250m sections. Each road section was characterised by its
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momentary traffic flow and lane changes. Subjective workload, as measured by CSR,
varied in the hypothesised direction, increasing systematically as traffic flow
increased. Schiefl (2008) who also found similar results argued that mental load is
higher in high traffic flow due to drivers being restricted in the actions available to
them. Feedback from the post-study interviews in this study indicated that
participants rated higher when they experienced a ‘boxed-in” effect with the
presence of the vehicles, especially heavy goods vehicles, in dense traffic.
Participants also indicated higher ratings when a highway maintenance vehicle
(misjudged as a traffic police vehicle) was present in the nearby surroundings. Other
traffic factors which influenced their ratings included frustration when traffic was
operating at non-normal speed i.e. when vehicles on the slow lane were moving
faster and less congested than the fast lane. The driving performance measures
demonstrated changes in longitudinal and lateral control, an effect that was linear
up to moderate traffic. However from moderate traffic to high traffic density
conditions, the driving task is more heavily influenced by other vehicles thus
requiring participants to adapt their speed and headway with respect to the
surrounding traffic. Driver workload measured subjectively indicates that driving
task difficulty increases with required driver input and attentional demand from
traffic monitoring.

However, this study not only wished to establish how the density of traffic
influenced workload, i.e. the number of vehicles that drivers were required to
monitor, but also whether the specific behaviour of those vehicles was influential.
Whilst undoubtedly there are other behaviours that can be considered, such as a

lead car braking, we chose to focus on lane changes due to the relative lack of
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research observed in the literature. Moreover, drivers reported increases in
workload when a lane change occurred in their forward field of view, with further
increases when that lane change occurred in close proximity. This is congruent with
the notion of a safety margin (Endsley, 1995) which influences a driver’s interactions
with other road users under normal driving conditions (e.g. distance keeping) and in
their risk assessment if a critical situation occurs. This concept was first conceived as
the “field of safe travel” by Gibson and Crooks (1938) and later adapted by e.g.
Kontaratos (1974) who defined two safety zones (termed collision and threat zones).
If another vehicle entered these zones, then the driver undertakes an emergency
reaction. Ohta (1993) defined these safety margins as four zones, with the most
critical being when a following vehicle is within 0.6 s of a lead vehicle. In this zone,
drivers experience feelings of being in danger of colliding with the vehicle ahead.
Ahead of this critical zone is the danger zone (0.6 s to 1.1 s headway) whose upper
border corresponds to the minimum subjective safe following distance. The normal
(or comfort) driving zone then extends to 1.7 s headway, beyond which is the
pursuit zone. In the current study, the near-zone lane change events occurred in all
four zones, thus allowing the possibility of measuring the criticality of these lane
changes and evaluating the effect of this factor on driver workload.

Intuitively, driver workload and driving behaviour varies as a function of traffic
complexity. However, as far as we are aware, there are no reported studies that
have systematically varied complexity factors and measured the resulting workload,
in a dynamically changing traffic environment. This study has attempted to do just
that, albeit in a simulated context. In order to advance our knowledge in the

modelling of driver workload, it was more efficient to undertake the study using a
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driving simulator: in an on-road study it would not have been possible to control the
surrounding traffic or expose the participants to identical experimental conditions.
Whilst simulator studies can invite criticism for their lack of validity, we argue that
the lack of fundamental understanding in the domain of traffic complexity and
workload is partly due to the difficulties in manipulating it in the real world: hence, a
simulated environment is ideal. Another advantage of using such a highly controlled
experimental setting is the ability to prompt participants to provide a workload
rating to a pre-specified schedule: this continuous measurement of driver workload
is superior to that of conventional post-drive scales, given the natural fluctuations in
traffic complexity that can be observed in real-life settings. The range of workload
scores obtained suggests the method is sensitive to these fluctuations and has face-
validity. Both these characteristics will aid the design of a workload manager that is
reliable and acceptable to drivers.

However, self-report measures can be prone to response bias (for example,
Green et al. (2011) found ratings tended to be clustered at lower ends of the range
and significantly favouring rounded numbers) and considering that workload is
multidimensional and multifaceted construct, it is unlikely that the manifestations of
workload would be captured by one unique, representative measure. In this study,
driving behaviour such as speed, time headway and lateral position were found to
vary with the traffic complexity. Although further analysis is required to examine the
direct relationship between subjective rating of driving performance and objective
performances measures, however this study had indicated that categorising the
traffic complexity variables influence on driver workload and driver performance

may prove useful in estimating driver workload as traffic demands could now be
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determined and weighted accordingly. Following the findings from this study, lane
change characteristics could be explored further to examine the varying criticality on
driver workload. Understanding of possible problematic traffic behaviours may help
in optimising the design of a real-time workload estimator which considers not only
the driver’s distraction within the vehicle but also the dynamic workload resulting

from surrounding traffic demand.
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