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Abstract: Background: Glioblastoma is the most aggressive primary brain tumor, and is associated with 

a very poor prognosis. In this study we investigated the potential of microRNA expression profiles to 

predict survival in this challenging disease.  

Methods: MicroRNA and mRNA expression data from glioblastoma (n=475) and grade II and III glioma 

(n=178) were accessed from The Cancer Genome Atlas. LASSO regression models were used to identify 

a prognostic microRNA signature. Functionally relevant targets of microRNAs were determined using 

microRNA target prediction, experimental validation and correlation of microRNA and mRNA 

expression data.  

Results: A 9-microRNA prognostic signature was identified which stratified patients into risk groups 

strongly associated with survival (p=2.26e-09), significant in all glioblastoma subtypes except the non-

G-CIMP proneural group. The statistical significance of the microRNA signature was higher than MGMT 

methylation in temozolomide treated tumors. The 9-microRNA risk score was validated in an 

independent dataset (p=4.50e-02) and also stratified patients into high- and low-risk groups in lower 

grade glioma (p=5.20e-03). The majority of the 9 microRNAs have been previously linked to 

glioblastoma biology or treatment response. Integration of the expression patterns of predicted 

microRNA targets revealed a number of relevant microRNA/target pairs, which were validated in cell 

lines.  

Conclusions: We have identified a novel, biologically relevant microRNA signature that stratifies high- 

and low-risk patients in glioblastoma. MicroRNA/mRNA interactions identified within the signature 

point to novel regulatory networks. This is the first study to formulate a survival risk score for 

glioblastoma using microRNAs associated with glioblastoma biology and/or treatment response, 

indicating a functionally relevant signature. 
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We would like to thank the reviewers for their time and expertise reviewing this manuscript.  We are 

delighted that reviewer 1 and reviewer 3 find our response to their initial comments satisfactory. Our 

detailed response is below: 

Reviewer #1: All issues have been addressed. 

 

Just a small thing: 

In response to one of my comments on outperforming MGMT, I would also be cautious in having such a 

statement as 'highlight'. 

 

We agree with this, and have removed this statement from the highlights 

 

 

 

 

Reviewer #2: The authors have made improvements to the original manuscript, and have identified a 

microRNA signature that could be important for predicting patient outcome for those with glioblastoma. The 

authors imply that the strength of their study is the use of an independent dataset, and refer to their 

microRNA signature (for predicting patient outcome) as 'robust'. The 'in house' cohort is not sufficient for 

the findings to be validated. Without validating the findings in a more appropriate cohort the current study is 

preliminary in relation to finding a robust signature. An attempt could be made to validate the microRNA 

signature by improving the cohort chosen. 

 

Thank you for this important comment.  We fully appreciate that at this point the signature 

remains to be finally validated. Unfortunately, our “in house” collection is limited and there are 

no published independent datasets with detailed annotated patient data that are suitable for this 

at present. In light of these obstacles we have altered our manuscript, to remove the words 

“robust signature” from the title and within the text. We have emphasized in our previous 

revision that the signature we have identified could be important and further validation is 

needed. We would like to finally point out that we have gone further than similar studies in terms 

of extending our signature to two separate datasets (One from lower grade tumors (TCGA), and 

one “in house”), even though these do have clear limitations, which are acknowledged. We have 

also removed the reference to validation in two independent datasets from the highlights 

section. 
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Abstract 

Background: Glioblastoma is the most aggressive primary brain tumor, and is associated 

with a very poor prognosis. In this study we investigated the potential of microRNA 

expression profiles to predict survival in this challenging disease.  

Methods: MicroRNA and mRNA expression data from glioblastoma (n=475) and grade II 

and III glioma (n=178) were accessed from The Cancer Genome Atlas. LASSO regression 

models were used to identify a prognostic microRNA signature. Functionally relevant 

targets of microRNAs were determined using microRNA target prediction, experimental 

validation and correlation of microRNA and mRNA expression data.  

Results: A 9-microRNA prognostic signature was identified which stratified patients into 

risk groups strongly associated with survival (p=2.26e-09), significant in all glioblastoma 

subtypes except the non-G-CIMP proneural group. The statistical significance of the 

microRNA signature was higher than MGMT methylation in temozolomide treated tumors. 

The 9-microRNA risk score was validated in an independent dataset (p=4.50e-02) and 

also stratified patients into high- and low-risk groups in lower grade glioma (p=5.20e-03). 

The majority of the 9 microRNAs have been previously linked to glioblastoma biology or 

treatment response. Integration of the expression patterns of predicted microRNA targets 

revealed a number of relevant microRNA/target pairs, which were validated in cell lines.  

Conclusions: We have identified a novel, biologically relevant microRNA signature that 

stratifies high- and low-risk patients in glioblastoma. MicroRNA/mRNA interactions 

identified within the signature point to novel regulatory networks. This is the first study to 

formulate a survival risk score for glioblastoma using microRNAs associated with 

glioblastoma biology and/or treatment response, indicating a functionally relevant 

signature. 

Keywords: glioblastoma, prognosis, microRNA, signature, TCGA.
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1. Introduction 

Glioblastoma is a primary central nervous system tumor with a particularly poor outcome 

(Louis et al., 2007; Stupp and Roila, 2009). Standard treatment involves surgery followed 

by radiotherapy and chemotherapy with temozolomide (Louis et al., 2007; Stupp and 

Roila, 2009). Current molecular prognostic markers include IDH1/2 (isocitrate 

dehydrogenase 1/2) mutation and MGMT (O6-methylguanine-DNA methyltransferase) 

promoter methylation, which confer improved prognosis and relative sensitivity to 

temozolomide treatment respectively (Riemenschneider et al., 2010). Additional prognostic 

indicators are age and Karnofsky performance score (KPS) (Chaichana et al., 2013). 

Glioblastoma primarily occurs de novo with no evidence of progression from a lower grade 

tumor. However, approximately 5%, known as secondary glioblastoma, arise by 

progression from a lower grade astrocytoma (Ohgaki and Kleihues, 2007). Secondary 

glioblastoma is often associated with mutations in IDH1/2 (Parsons et al., 2008).  

MicroRNAs are 22-24 nucleotide non-coding RNAs, which downregulate translation by 

targeting messenger RNAs (mRNAs) (Krol et al., 2010). MicroRNA expression signatures 

can define tumor types and molecular subgroups, and are prognostic in some cancers 

(Calin and Croce, 2006; Hayes et al., 2014; Kim et al., 2011; Volinia et al., 2006). 

Molecular profiling studies have shown differential microRNA expression in glioblastoma 

compared to normal brain tissue, and also between glioblastoma subtypes (Kim et al., 

2011; Lang et al., 2012). Several individual microRNAs have been associated with 

glioblastoma prognosis (Mizoguchi et al., 2012), but it is likely that multiple microRNAs will 

provide a more statistically robust approach. Previous prognostic signatures for GBM have 

been designed {Lakomy:2011ju}{Srinivasan:2011fh}{Zhang:2012iq}, although the 

microRNAs employed are not consistent between studies. 
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A novel methodology, known as LASSO (least absolute shrinkage and selection operator 

(Tibshirani, 1996), was used, with glioblastoma data from The Cancer Genome Atlas 

(TCGA) (“The Cancer Genome Atlas - Data Portal, tcga-data.nci.nih.gov,”), to identify a 9-

microRNA prognostic signature. The 9 microRNAs were then used to generate a risk score 

algorithm suitable for clinical prognostic stratification. The signature separated patients 

according to outcome, was relevant in temozolomide treatment and was validated in an 

independent dataset. Although other microRNA prognostic signatures have been identified 

in glioblastoma, this is the first to use the whole TCGA dataset; it is relevant across 

subtypes, and in treatment and is the first to be validated in an independent dataset. 

Moreover, the signature microRNAs have been previously implicated in glioblastoma, with 

known functional roles, further supporting the relevance of the signature.  Thus we have 

identified a functionally relevant, microRNA-based prognostic signature in glioblastoma.  

 

2. Materials and methods 

2.1 TCGA clinical information and expression data 

Level 2 Agilent microRNA 8x15k microarray and G4520A microarray gene expression data 

plus clinical information for 475 glioblastoma and 10 unmatched non-tumor samples were 

downloaded from TCGA (“The Cancer Genome Atlas - Data Portal, tcga-data.nci.nih.gov,”) 

(accessed October 2012). Only patients treated with radiotherapy and some form of 

chemotherapy were selected (Table 1). Illumina HiSeq sequencing data (level 3, reads per 

million of total reads mapping to a mature microRNA) for microRNAs were downloaded for 

all samples with grade II or III glioma from TCGA (n=178; 55 astrocytoma, 47 

oligodendrocytoma, 75 oligodendroglioma, 1 not stated; 95 grade II, 112 grade III, 1 not 

stated). 
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2.2 Statistical analysis of microRNA expression data in glioblastoma 

Glioblastoma samples were assessed using a LASSO penalized regression analysis to 

predict survival using microRNA expression (Tibshirani, 1996) with leave-one-out cross-

validation using R software (v2.15.1) and the Penalized package (Goeman, 2012.). A risk 

score was generated using the sum of microRNA expression values weighted by the 

coefficients from the LASSO regression, as described (Alencar et al., 2011). 

This was: E_miR-n = expression of microRNA n. 

Risk score = -0.044E_miR-370 + 0.062E_miR-124a + -0.066E_miR-145 + 0.005E_miR-

34a + 0.015E_miR-10b + 0.092E_miR-148a + 0.162E_miR-222 + -0.032E_miR-9 +  -

0.021E_miR-182 

 

The risk score was applied to all glioblastoma samples in the dataset and the samples 

separated into low- and high-risk groups using the median as a cut-off. A Cox regression 

model incorporating age and the log-rank test were used to assess overall survival (OS) of 

the two groups in the whole dataset, the molecular subtypes of glioblastoma (using 

published classification information (Brennan et al., 2013)) and temozolomide treated 

patients. The score was also assessed in progression-free survival (PFS). A statistical 

significance threshold of p=0.05 was used throughout.  Pearson’s correlation coefficient 

was calculated for correlation of age with risk score. Multivariable Cox regression models 

for the risk groups and each of the following factors (separately); MGMT methylation, 

gender, IDH mutation, subtypes, extent of resection and KPS (at diagnosis) were used to 

compare the two predictors using TCGA data (Brennan et al., 2013). 

 

2.3 Prognostic validation of the signature in an independent dataset 
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Frozen glioblastoma tissue was obtained from the Brain Tumour North West tissue bank, 

Royal Preston Hospital, UK. Total RNA was extracted using TRIZOL (Life Technologies, 

UK) according to the manufacturer’s guidelines. 1µg of total RNA was reverse transcribed 

using the NCode miRNA First-strand cDNA synthesis Kit (Life Technologies). Real-time 

PCR was performed using GoTaq qPCR Master Mix (Promega, UK) on an Applied 

Biosystems 7500 PCR Machine with U6 snRNA endogenous control. Average Ct values 

were calculated for each miRNA, then normalized to U6 average Ct values (Ct). These 

Ct values were used in the signature algorithm to create risk scores for each patient. 

One-tailed Cox regression was performed using these scores. The patients were 

separated according to the 60th percentile and the high- and low-risk groups assessed for 

association with survival using a one-tailed log-rank test.  

 

2.4 Assessment of the 9-microRNA signature in lower grade glioma 

MicroRNA expression for WHO Grade II and Grade III astrocytoma was based on 

sequencing reads per million mapping to a mature microRNA. Risk scores were calculated 

and significance assessed as above. The median of the lower grade dataset was 

recalculated and used to separate the samples into two groups.  

 

2.5 Cell culture, transfection and validation of candidate microRNA targets 

 LN229 glioblastoma cells (ATCC) were cultured in DMEM containing 10% fetal bovine 

serum at 37°C in 5% CO2. Cells were transfected with 100nM miR-9 mimic or scrambled 

control oligonucleotides (ThermoScientific, Waltham, USA), using 10ȝl of Lipofectamine 

RNAiMAX (Life Technologies, Carlsbad, CA) per 2.5ml of transfection mix in six-well 

plates containing 150,000 cells/well. RNA was extracted 48 hours post-transfection 

(miRNeasy, Qiagen, Gaithersburg, MD) and first-strand synthesis done using 
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SuperScript® II Reverse Transcriptase (Life Technologies).  Quantitative PCR (qPCR) 

analyses were performed in triplicate with Taqman assays (Life Technologies).  

 

2.6 Identifying predicted microRNA targets associated with survival 

Gene expression was compared between two groups of patients from the extremes of 

survival in the TCGA dataset; poor prognosis (survival time < 115 days, n=14, minimum 

KPS at diagnosis=80) and good prognosis groups (survival time >1825 days, n=14). The 

LIMMA (linear models for microarray data) package was used to perform differential 

expression analysis, and the genes with a p-value of less than 0.05 and greater than 1.5-

fold change in expression were used as input to RmiR version 1.14, an R-based program 

for assessment of microRNA targets (Favero v2.14.). Gene ontology analysis was 

performed using Metacore v6.16 (Thomson Reuters) modified exact Fisher’s test and 

pathways determined using DIANA miRpath (Vlachos et al., 2012) (one-tailed Fisher’s 

exact test for enrichment of predicted microRNA targets). RmiR v1.14 was used to identify 

targets of the 9 microRNAs amongst the genes which were present in all databases of; 

Miranda (Miranda et al., 2006), Pictar (Krek et al., 2005) and Targetscan (Lewis et al., 

2005) (as loaded by RmiR vignette). Correlation of microRNA and gene expression was 

performed using Spearman’s correlation on all 475 glioblastoma samples.  

 

3. Results 

3.1 Identification of a 9-microRNA signature associated with prognosis in 

glioblastoma 

In order to identify microRNAs associated with OS in glioblastoma, LASSO regression 

(Tibshirani, 1996) was performed using microRNA expression data (534 microRNAs, 1510 

probes) for 475 glioblastomas. This method is optimized to hi-dimensional data (where 
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there are more potential predictors than samples) allowing valid inclusion of the 9 

microRNAs in the model. The method performs a sub-selection of microRNAs involved in 

survival by shrinkage of the regression coefficient through imposing a penalty proportional 

to their size. This results in most potential predictors being shrunk to zero leaving a 

relatively small number with a weight of non-zero. These microRNAs may not be the only 

potential predictors in the set, because, if two predictors exhibit co-linearity, LASSO will 

choose the one that has the strongest association with response (which is not necessarily 

the only causal one, especially if the difference between the two predictors’ degree of 

association with response is not significant) and the other will be given zero weight.  

Using the LASSO method, 12 microRNA probes were identified with non-zero regression 

coefficients. This included two probes for miR-182, which differed in length by one 

nucleotide. The longer probe was used for the remainder of the study. Also a probe for 

miR-565 was identified that has since been excluded from miRBase (Griffiths-Jones et al., 

2008) as it is classified as a tRNA fragment; this was not studied further. The LASSO 

model was refitted without these two probes resulting in a 9-microRNA signature (Table 2). 

MicroRNAs given a negative LASSO coefficient are positive predictors of survival and vice 

versa. Seven of the microRNAs were significantly differentially expressed in non-tumor 

tissue compared to glioblastoma (Table 2).  

 

3.2 A risk score combining expression values of the 9 microRNAs predicts survival 

A risk score was created using the regression coefficients from the LASSO analysis (see 

methods) to weight the expression value of each of the 9 microRNAs. The risk score was 

then separated on the median (1.48 quantile normalized probe expression) to create high 

and low risk groups. The median survival time of the low-risk group was 13.1 months and 

the median of the high-risk group was 9.5 months. Risk score was associated with survival 
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using log-rank test (Fig 1, p=2.26e-09). Median expression of each signature microRNA in 

both groups is shown in Supplementary Fig S1. 

Pearson’s correlation of age with risk score showed a significant direct correlation 

(R=0.248, p=4.13e-08). Multivariable Cox regression of the risk group and age showed the 

risk group to be an independent predictor of survival irrespective of age (Group HR=1.61, 

95% CI=1.30-1.99, p=1.40e-5; Age HR= 1.03, CI= 1.02-1.04, p=2.50e-3). As males have 

poorer outcome in glioblastoma (Krex et al., 2007), the risk score was evaluated according 

to gender, and was found to be similar in the male and female groups (median 1.48 in 

each group).  

 

3.3 Assessment of the risk score in glioblastoma subtypes and in relation to other 

prognostic factors 

We then determined the risk groups for each of the TCGA-defined glioblastoma molecular 

subtypes (Brennan et al., 2013): proneural G-CIMP positive (n=36), proneural G-CIMP 

negative (n=88), neural (n=77), classical (n=128) and mesenchymal (n=143). Risk group 

was associated with survival in all subtypes except proneural G-CIMP negative (Fig 2A-E).  

The groups were then fitted to a Cox regression model incorporating age in each patient 

subtype. The score remained significant in the classical (HR=1.73, 95% CI=1.13-2.64, 

p=0.011) and neural (HR=2.03, 95% CI=1.23-3.38, p=0.007) groups and age was a 

confounding factor in the mesenchymal group (HR=1.46, 95% CI=0.95-2.23, p=0.084). 

The proneural G-CIMP positive group could not be calculated because all samples but one 

stratified to the low risk group. The proneural G-CIMP negative group was not significant 

(HR=1.15, 95% CI=0.70-1.86, p=0.059). The survival groups also had significantly 

different PFS by log-rank (p=9.91e-08) (Fig 2F). There were 26 samples in the cohort with 
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IDH1 mutations, only one of which stratified to the high-risk group, which suggests the 

signature is selecting for a subtype with already known survival differences. 

The risk score was evaluated by fitting a Cox model incorporating the risk group and other 

factors involved in glioblastoma prognosis (gender, MGMT methylation, IDH mutation, 

patient subtype, extent of resection and KPS score). In each case, the score was 

significant and was not related to these factors (Supplementary table S2). 

We then calculated the risk score solely in the group of patients treated with the most 

common chemotherapy agent, temozolomide (n=219). This group showed a high 

association between risk score and survival using log-rank (p=8.6e-04) (Fig 3A). The 

power of the signature was compared to that of MGMT status by the log-rank test.  In the 

304 patients for whom MGMT methylation status was available (Brennan et al., 2013), 

multivariable Cox regression indicated the microRNA signature (HR=1.88, CI=1.42-2.48, 

p=9.4e-06), which showed a 1.88-fold increased risk when stratified to the high-risk group, 

was more predictive than the MGMT methylation signature  (HR=1.47, CI=1.12-1.93, 

p=0.006), which showed a 1.47-fold increase in risk when MGMT is unmethylated. In the 

group treated with temozolomide only (n=219) there was a 1.76-fold increase in risk by 

stratification to the low-risk group; this stratifies patients better than the MGMT signature, 

which shows a 1.65-fold increase in risk when stratified to the unmethylated group in the 

TCGA dataset.  

 

3.4 Risk score validation in an independent dataset 

Risk scores were calculated for an independent dataset of 20 glioblastoma samples 

(supplemental Fig S3), with microRNA expression generated using qRT-PCR and was 

significantly associated with survival (HR=10.7, p=0.036). This patient group had an 

overall worse prognosis (80% died earlier than the expected median of 450 days) than 
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those in the TCGA (70% died earlier than 450 days), and therefore, expecting more 

patients to fall into the high-risk group, the patients were dichotomized based on the 60th 

percentile (0.76 Ct). This resulted in 12 patients in the high-risk group with a median 

survival of 6.27 months and 8 patients in the low-risk group with a median survival of 16 

months. These groups predict survival using a one-sided log-rank test (HR=3.01, p=0.045) 

(Fig 3B). 

 

3.5 Risk score assessment in lower grade glioma 

Risk scores were also calculated for grade II and III gliomas (n=178), using TCGA 

sequencing data. This was done using the 9 microRNAs and weighting derived in 

glioblastoma. The cohort was dichotomized into high- and low-risk groups using the 

median (-19541.96 reads per million) as a cut-off. As observed in the glioblastoma dataset, 

the score proved to be a significant predictor of survival using log-rank (Fig 3C, p=5.2e-03) 

and in a Cox model with age (Group HR=0.62, CI=1.05-3.31, p=3.5e-02; Age HR=1.06, 

CI=1.04-1.10, p=2.2e-07). The low-risk group comprised of 44 grade II and 45 grade III 

samples; 22 were astrocytomas, 22 oligoastrogliomas and 45 oligodendrogliomas. The 

high-risk group comprised of 37 grade II samples and 51 grade III samples (1 not stated); 

33 were astrocytomas, 25 oligoastrocytomas and 30 oligodendrogliomas. 

 

 

3.6 Predicted targets of these microRNAs 

Bioinformatic analysis was used to investigate targets of signature microRNAs to identify 

the associated pathways involved. Firstly, genes associated with long and short survival 

groups in glioblastoma were identified in TCGA. A total of 1154 genes were associated 

with short and 400 genes with long survival (Supplementary Fig S4).  
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Predicted interactions of the 9 microRNAs with the survival-associated genes were 

assessed in the Miranda (Miranda et al., 2006), Pictar (Krek et al., 2005) and Targetscan 

(Lewis et al., 2005) databases. This led to the identification of 10 significant 

microRNA/mRNA interactions with an inverse correlation of at least 0.25 across all 

glioblastoma samples (Table 3). Using DIANA miRPath (Vlachos et al., 2012) we identified 

the top pathways that the signature microRNAs are predicted to target. The most 

significant pathways identified included adherens junction, MAPK signaling, focal 

adhesion, axon guidance and WNT signaling (Supplementary Fig S5).  

Targets implicated most strongly in patient survival were identified for miR-9, which 

showed a significant correlation with eight mRNAs. Correlation with FBN1 is shown in 

Figure 3D. In order to assess whether these may be functional targets, a glioblastoma cell 

line was transfected with a miR-9 mimic and the expression levels of the predicted targets 

were assessed using qPCR. LMNA, WNT4, FBN1, P4HA2 and SLC25A24 had 

significantly lower levels of expression when transfected with the mimic in comparison to a 

scrambled control (Fig 3E) suggesting miR-9 may directly target these mRNAs in 

glioblastoma cells.  

Thus, bioinformatic analysis of signature microRNAs has identified potential targets and 

biological processes known to be involved in glioblastoma biology, further supporting the 

relevance of the 9-microRNA signature.   

 

4. Discussion 

4.1 The 9-microRNA signature is a molecular indicator of prognosis 

Using LASSO regression, this study has identified and independently validated a 

biologically relevant 9-microRNA signature that predicts survival in glioblastoma. The 

signature separates patients into high- and low-risk groups with respect to OS and PFS 



13 

 

and may have clinical utility for decisions on patient management. The signature is valid in 

all glioblastoma subtypes except proneural G-CIMP negative tumors, and is linked to 

temozolomide response.  

The independent dataset used here is relatively small and therefore confounding factors 

for patient age, treatment received and extent of resection could not be accounted for. 

Further validation, ideally prospective, and calculation of sensitivity and specificity, is 

required before this signature could be implemented clinically. The independent dataset 

results that were generated using qRT-PCR indicate that the signature can be 

implemented using techniques that would be more conducive to a clinical diagnostic 

laboratory and these are the methods that should be explored further. A limitation of this 

approach is that a different technique has been used for validation and therefore a single, 

defined cut-off could not be ascertained.  

Prognostic signatures using microRNAs have been formulated previously in glioblastoma 

but these have not been validated or evaluated within different subgroups of the disease, 

or in relation to molecular characteristics of the disease (Kim et al., 2011; Niyazi et al., 

2011; Srinivasan et al., 2011; Visani et al., 2013). A recent study identified prognostic 

microRNAs for each subtype of glioblastoma using TCGA data (Li et al., 2014) and five 

microRNAs in our signature overlap; miR-222, which they report predicts prognosis in 

classical and neural, miR-370 which predicts prognosis in neural and miR-34a, miR-145 

and miR-182 which predict prognosis in the proneural non-G-CIMP group. Interestingly, 

3/9 microRNAs in our signature are present in their model for proneural G-CIMP negative 

tumors yet our signature did not significantly stratify patients in this subtype.  

The LASSO regression model was chosen to improve on other approaches by utilizing all 

475 patients, and all microRNAs available to build the signature. This allows a small 

number of microRNAs for use in a diagnostic signature with maximal information but does 
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not identify all predictors in the dataset involved in survival. This provides a signature with 

the prediction power similar, or better than, that of MGMT methylation. It must be noted 

however that MGMT methylation was assessed in an unselected population, with the 

Infinium methylation beadchip {Bady:2012jb}, which is not the gold standard employed in a 

diagnostic laboratory and therefore may lack sensitivity compared to clinical results. 

MGMT was also not assessed in the validation dataset due to lack of methylation data so 

this finding requires further confirmation. This signature has a manageable number of 

microRNAs for a prognostic indicator, and is well below the number of predictors employed 

in commercialized kits for other cancer signatures such as Mammaprint (Sorlie et al., 

2001) and ms-14 (Cheang et al., 2009) in breast cancer.  

 

4.2 Roles of the microRNAs in the signature in glioma biology 

All microRNAs in this signature, with the exception of miR-370, have been previously 

associated with glioma biology (Fowler et al., 2011; Gabriely et al., 2011; Genovese et al., 

2012; J. Kim et al., 2011; Mucaj et al., 2014; Rani et al., 2013; Song et al., 2012; Tan et 

al., 2012; Zhang et al., 2010) which has not been shown for previous glioblastoma 

microRNA signatures {Lakomy:2011ju}{Srinivasan:2011fh}{Zhang:2012iq}. Although miR-

370 has not been reported to have a role in glioblastoma, it targets TGFB-RII, (Lo et al., 

2012) which has a role in glioblastoma cell growth and invasion (Kaminska et al., 2013). 

These studies suggest a potential role for miR-370 in glioma biology. Establishing a 

defined role for these microRNAs in glioma biology requires further work to determine the 

direct roles of these microRNAs in predicting prognosis of glioblastoma. 

In addition to their established roles in glioma biology, 5 of the 9 signature microRNAs 

have been associated with sensitivity to temozolomide; miR-9 (Munoz et al., 2013), miR-

145 (Yang et al., 2012), miR-148a (Hummel et al., 2011), miR-182 (Tang et al., 2013) and 
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miR-222 (Chen et al., 2012).  These observations suggest that the microRNA signature 

reflects roles in both tumor biology and treatment resistance, which combined lead to 

significant effects on patient survival. 

 

4.3 Translational relevance of the signature 

This prognostic signature has potential applicability to the clinic by stratifying patients, and 

identifying those less likely to respond to current treatments. The signature ultimately may 

facilitate confidence in treatment decisions and recognizing candidates for new therapies. 

It may be that the most powerful use of the signature is in combination with MGMT 

methylation status. Technologies such as the nanostring nCounter platform may provide 

highly accurate quantitative measurements of transcripts for tumor diagnosis as has been 

shown for medulloblastoma (Northcott et al., 2012), and is readily applicable to microRNA 

studies.  

In conclusion, we have identified and validated a 9-microRNA-expression signature using 

biologically relevant markers of use in prediction of prognosis in glioblastoma. Analysis of 

targets of these microRNAs has identified potential key players in glioblastoma networks 

that could be targeted to combat the aggressive disease. The LASSO approach may be 

more broadly applicable in the identification of relevant microRNA and gene expression 

signatures in large datasets. 
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Figure Legends 
Table 1. Characteristics of patients used in the generation of the signature.  The 

characteristics of the 475 patients included in the generation and testing of the model. 

There are more males in the study (62%), which is expected for a glioblastoma cohort. 

KPS was calculated prior to surgery. There were 26 IDH mutations recorded in this cohort 

although 117 did not have IDH mutation information. 

 

Table 2. MicroRNAs associated with survival using the LASSO regression test.  

Significant (p<0.05) results are shown in bold. Nine microRNAs were reported as non-zero 

coefficients, five were negatively associated with survival and four were positively 

associated with survival. Seven were differentially expressed in unmatched non-tumor 

samples compared to glioblastoma samples.  

 

Table 3. Predicted target interactions of the signature microRNAs with significant 

correlation in expression.  The ten interactions predicted between the 9-microRNA 

signature and the mRNAs identified to be involved in survival, which also showed a 

significant inverse correlation in expression of at least 0.25 across the patient set. Two of 

these mRNAs, FBN1 and TGFBI, exhibited particularly high correlations in expression with 
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miR-9 as well as significant differential expression between glioblastoma compared to non-

tumor tissue. 

 

Fig 1. The patient groups assigned to the high- and low-risk groups using the 

median as a threshold.  A score for each patient was calculated using the microRNA 

expression signature and patients were separated into high and low risk groups using the 

median as a cut-off. A) The low-risk group has significantly longer survival times than 

those in the high-risk group by log-rank test.  B) Expression patterns of the significant 

microRNAs in the high- and low-risk groups, as defined by the risk score, shown in a 

heatmap. The top five microRNAs in the heatmaps (black) act as more aggressive 

microRNAs, and the bottom four (yellow) are less aggressive microRNAs.  

 

Fig 2. Log-rank of the low-risk and high-risk groups in subgroups of glioblastoma. 

Risk scores were calculated with the same threshold as the whole cohort for each subtype 

of glioblastoma. The risk groups were significant by log-rank test (non-age adjusted) in all 

subtypes of glioblastoma but proneural G-CIMP negative (A-E). Risk score is also a 

significant predictor of progression free survival (F).  

 

Fig 3. Assessment of risk groups in TMZ treated patients, the validation cohort and 

lower grade glioma and correlation of FBN1 with miR-9.  A) The subgroup of patients 

treated with the chemotherapy agent temozolomide was significantly delineated using the 

signature.  B) MicroRNA expression determined by qRT-PCR in an independent cohort of 

20 glioblastomas stratified patients by survival based on the signature. C) MicroRNA 

sequencing data of 178 lower grade glioma samples (55 astrocytoma, 47 

oligodendrocytoma, 75 oligodendroglioma, 1 not stated) significantly separated this cohort 
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into high and low risk groups by log-rank.  D) FBN2 mRNA expression showed an inverse 

correlation of at least 0.5 with miR-9 expression. E) Expression of the predicted targets 

following transfection of a miR-9 mimic into LN229 cells relative to a scrambled control. 

Significant decrease in expression (t-test, p<0.05) was observed for P4HA2, LMNA, 

WNT4, FBN1 and SLC25A24 48 hours after transfection of the mimic. Results are 

representative of duplicate experiments. 
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Table 1 Hayes et al. 

 

Characteristic Number of patients (n=475) 

Age 

(median=59)     

<60 years 248   

≥60 years 227   

Gender     

Male 293   

Female 182   

Karnovsky Performance score   

≤70 141   

>70 220   

Not available 114   

Days to death/ last follow-up (median 430 days) 

<450 days 301   

≥450 days 174   

≤30 days 20   

Therapy     

TMZ 3   

TMZ and 

radiation 187   

Other 285   

 

Table1
Click here to download Table: Table 1 Hayes et al.doc

http://ees.elsevier.com/molonc/download.aspx?id=88929&guid=4d29938a-1fb7-40bc-8efd-4adfc826fd72&scheme=1


 



Table 2  Hayes et al. 

 

Mirna 

LASSO 

Penalized 

coefficient for 

risk score (log2) 

Fold change in 

GBM compared 

to non-tumor  

miR-124a 0.062 0.032 

miR-10b 0.015 10.005 

miR-222 0.162 0.278 

miR-34a 0.005 3.121 

miR-182 -0.021 3.708 

miR-148a 0.092 2.752 

miR-145 -0.066 0.541 

miR-370 -0.044 1.274 

miR-9 -0.032 0.863 
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Table 3 Hayes et al. 

 

MicroRNA 

LASSO 

penalized 

Coefficient 

(log2) 

Gene 

symbol 

Gene 

change 

with 

increasing 

survival 

Spearmans 

Correlation 

Fold 

difference 

in GBM to 

non-tumor 

tissue 

P-value of 

GBM/normal 

(FDR 

adjusted) 

hsa-miR-9 -0.032 TGFBI 4.499 -0.649 11.487 0.000 

hsa-miR-9 -0.032 P4HA2 2.527 -0.615 1.108 0.999 

hsa-miR-9 -0.032 FBN1 2.054 -0.53 1.808 0.001 

hsa-miR-222 0.162 KHDRBS2 0.189 -0.496 0.024 0.000 

hsa-miR-9 -0.032 SLC25A24 3.574 -0.473 2.17 0.000 

hsa-miR-9 -0.032 SLC31A2 2.384 -0.463 0.593 0.039 

hsa-miR-9 -0.032 FNDC3B 2.171 -0.406 3.828 0.000 

hsa-miR-182 -0.021 F13A1 10.982 -0.309 1.785 0.106 

hsa-miR-9 -0.032 LMNA 2.034 -0.292 2.25 0.000 

hsa-miR-9 -0.032 WNT4 2.038 -0.265 0.691 0.003 
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