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ABSTRACT

The renin-angiotensin-aldosterone system (RAAS) plays a key role in the regulation of

blood pressure. Renin is the rate limiting enzyme of the RAAS and aliskiren is a highly

potent and selective inhibitor of the human renin. Renin is known to be active both in the

circulating blood stream as well as locally, when bound to the (pro)-renin receptor ((P)RR).

In this study we have investigated a possible mechanism of action of aliskiren, in which its

accumulation in the plasma membrane is considered as an essential step for effective

inhibition. Aliskiren’s interactions with model membranes (cholesterol rich and poor) have

been investigated by applying different complementary techniques: differential scanning

calorimetry (DSC), Raman spectroscopy, magic angle spinning (MAS) nuclear magnetic

resonance (NMR) spectroscopy and small- and wide- angle X-ray scattering (SAXS and

WAXS). In addition, in silico molecular dynamics (MD) calculations were applied for further

confirmation of the experimental data. Aliskiren’s thermal effects on the pre- and main

transition of dipalmitoyl-phosphatidylcholine (DPPC) membranes as well as its topographical

position in the bilayer show striking similarities to those of angiotensin II type 1 receptor

(AT1R) antagonists. Moreover, at higher cholesterol concentrations aliskiren gets expelled

from the membrane just as it has been recently demonstrated for the angiotensin receptor

blocker (ARB) losartan. Thus, we propose that both the AT1R and the (P)RR-bound renin

active site can be efficiently blocked by membrane-bound ARBs and aliskiren when

cholesterol rich membrane rafts/caveolae form in the vicinity of the receptors.

KEYWORDS: Aliskiren, renin, PRR, DPPC bilayers.
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1. Introduction

Hypertension is a risk factor associated with cardiovascular diseases, and the first leading

cause of death in economically developed countries. For this reason, medicinal chemists aim

to synthesize more effective and novel drugs, which can regulate the blood pressure with

longer duration of action and fewer side effects. The most important system which interferes

with the regulation of pressure is the Renin-Angiotensin-Aldosterone System (RAAS) [1, 2].

RAAS activation is stimulated by drop in blood pressure, loss of blood volume or reduction

in plasma sodium concentration. These signals trigger the release of renin, a highly specific

and selective aspartic protease, which cleaves angiotensinogen (Aog) to produce the inactive

decapeptide angiotensin I (AngI). AngI is next converted by angiotensin-converting enzyme

(ACE) to the active peptide angiotensin II (AngII), which causes vasoconstriction when it

binds to the angiotensin subtype 1 receptor (AT1R) or stimulates the secretion of the hormone

aldosterone. Since the rate-limiting step in this cascade is determined by renin to produce

AngI, inhibition of this step is an effective therapeutic target against hypertension [3].

For many years, we are studying the interactions of AT1R antagonist molecules or

angiotensin receptor blockers (ARB) that prevent AngII to exert its detrimental effects on

AT1 receptor, with the lipid bilayers and their receptor active site in order to comprehend

their molecular basis of action. ARBs are hypothesized to act on the AT1R by a two-step

process [4]. In the first step the drug is incorporated into the membrane, and in the second

step it diffuses to the receptor site, where it binds to the active site of the AT1R [5-7].

For renin, the situation is to some extent different [8]. Renin circulates in the blood

plasma, and thus a direct inhibition of renin in the systemic system by aliskiren is possible.

However, renin binds with a high affinity to the (pro)-renin receptor ((P)RR) [9-11], and

subsequent studies have shown that (P)RR-bound renin has a fourfold higher catalytic

activity [12]. Thus a second, local mechanism of action of aliskiren is also possible (Fig. 1A).

Due to its high lipophilicity (log P octanol/water = 2.45 at pH 7.4 [13]) aliskiren is expected

to accumulate as efficiently in lipid bilayers as the comprehensively studied ARBs [14-17]. In

this study we therefore investigate the binding of aliskiren to different lipid bilayer models

(both, cholesterol poor and rich) and put the results in context with the extensively studied

AT1R antagonists for an improved understanding of the local interactions of aliskiren with

(P)RR bound renin.
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Cell plasma membranes have a complex architecture hosting various kinds of protein

receptors which for the assembly of signalling molecules are believed to get organized in

cholesterol rich micro-domains (rafts). The most abundant lipid species in the lipid matrix of

the vascular smooth muscle cells [18] and sarcolemma cardiac membranes [19] are

phosphatidylcholines (PCs). The most frequently found among them are PCs with oleic and

linoleic chains, and further dipalmitoyl-phosphatidylcholine (DPPC). Hydrated DPPC bilayer

models (poor and rich in cholesterol) have been therefore applied to investigate aliskiren-

bilayer interactions (Fig. 1B and 1C) as it comprises very convenient mesomorphic states

(gel, gel/fluid and fluid) and its thermal as well as dynamic properties have been studied

thoroughly [20].

In this context, we have initiated a new research activity that aims to compare the

membrane effects of aliskiren with those of AT1R antagonists, since both classes of

molecules act in the same system and have been used synergistically to affect the

biomembrane and increase their therapeutic index [21, 22].

To undertake this task, we have studied interactions between drug and lipid bilayers

using differential scanning calorimetry, Raman spectroscopy, solid-state magic angle

spinning (MAS) NMR spectroscopy and small- and wide angle X-ray scattering. In addition,

we have complemented our studies using in silico MD simulations.

2. Materials and methods

2.1. Materials

Dipalmitoyl-phosphatidylcholine and cholesterol were purchased from Avanti Polar

Lipids (Birmingham, AL), and used without further purification. The salt form of aliskiren

(aliskiren-hemifumarate) was kindly supplied by the Novartis (Basel).

2.1. Differential scanning calorimetry

For DSC experiments about 7 mg 50% (w/w) liposomal dispersions were used. The

aliskiren concentrations were 5, 10, 15 and 20 mol% and the cholesterol concentration varied

from 12-15 mol%. All samples were scanned from 25 to 50 °C at least three times until

identical thermal scans were obtained using a scanning rate of 2.5 °C/min. Further details of
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the sample preparation, set-up and data analysis can be found in our previous publications

[14-17].

2.2. Raman spectroscopy

The samples preparation for the Raman measurements was identical to that for DSC.

Raman spectra were recorded with a Perkin-Elmer GX Fourier Transform spectrometer

(Shelton, CT). Raman spectra of the examined samples were obtained in the frequency region

of 3500–400 cm−1 and in the temperature range 25 to 50 °C. Further experimental details can

be found in our previous publications [14-17].

2.3. MAS NMR

Sample preparation for solid-state NMR was identical to that for DSC. The samples (20

µL) were transferred to 3.2 mm zirconia rotors. 13C MAS and 13C CPMAS NMR spectra

were obtained at 150.80 MHz with a 600 MHz Varian spectrometer (Palo Alto, CA). The

spinning rate used was 5 kHz. The experimental temperatures were 25, 35, and 45 °C for

CPMAS experiments and 45 °C for the MAS measurement. Chemical shifts were reported

relative 13C resonance of tetramethylsilane. For both measurements number of scans was

400 and relaxation delay was 5 s. Polarization transfer in the CPMAS measurements was

achieved with RAMP cross-polarization [23] (ramp on the proton channel) with a contact

time of 5 ms. High-power continuous-wave hetero-nuclear proton decoupling was applied

during acquisition.

2.4. X-ray scattering

The samples for the X-ray scattering experiments were prepared in a similar way as for

DSC measurements. Time resolved simultaneous small- and wide-angle X-ray scattering

(SAXS and WAXS) experiments were carried out at the Austrian SAXS beamline at

ELETTRA, Trieste [24, 25]. The experimental details of the set-up and sample environment`

are described in previous works [14-17]. The samples were heated from 20 to 60 °C and back

to 20 °C with a scan rate of 1 °C/min taking every minute an exposure for 15 s. Static

exposures were taken before and after each scan.

In the time resolved X-ray scattering experiments, the d-spacings of the gel and fluid

phases were derived by standard procedures [26, 27]. In particular cases, the SAXS patterns

were analysed globally applying the modified Caillé theory [28-30]. This global fitting
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technique is described in details elsewhere [31-34]. The headgroup-to-headgroup thickness,

dHH, and the bending fluctuation (Caillé parameter),ߟ� = గಳ்ଶௗమ ξሺ) (1)

were directly obtained from the fits ,ܭ) denotes the membrane bending rigidity, B the

compression bulk modulus, kB the Boltzmann constant, T the temperature and d the lattice

spacing).

2.5. Molecular dynamics

Aliskiren topology files were produced by PRODGR server. A bilayer of 128

dimyristoyl-phosphatidylcholine (DMPC) and another with DPPC molecules was simulated

with a united atom representation and the topology files were downloaded from the Tieleman

Web page [35-37], while 3655 water molecules were described by the Simple Point Charge

(SPC) model. Three different concentrations of aliskiren were simulated i.e., 1 (equal to 0.8

mol%), 5 (4 mol%) and 11 (9 mol%) molecules, which are all placed initially in the aqueous

phase. Each system was energy-minimized using the steepest descent method and next the

molecular dynamics (MD) simulations were commenced for 250 ns. All simulations were

performed with the MD package GROMACS 4.5.1. [36, 38-40]. Equations of motion were

integrated with a 2 fs time step and all bonds were constrained to their equilibrium length

with the LINCS algorithm. The temperature was kept constant at 325 K using the Berendsen

thermostat with a 0.1 ps coupling time constant, while the Berendsen barostat was employed

for the semi-isotropic pressure coupling of the bilayer at 1 bar. For the non-bonded

interactions of the system, a cut-off radius of 10 Å was applied with pressure and energy

correction terms due to the truncation of the potentials. The PME technique was used for the

treatment of long range electrostatics.

The deuterium order parameter (Scd) of the alkyl tails is given by the following equation:

CD

2 1

3 3xx yy
S S S   (2)

in which:

1
3cos cos

2ij i j ij
S     (3)

Details on how the components are computed can be found in other studies [36, 38].
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3. Results

3.1. Differential scanning calorimetry

The thermal changes of the DPPC and DPPC/cholesterol bilayers in the absence and

presence of aliskiren have been analysed in DSC measurements (see Supporting Information,

Fig. S1). In Table 1 the quantitative data of the diagnostic parameters (Tm, ǻȉm, and ǻǾ) are

presented. In pure DPPC, both the pre-transition (lamellar gel phase, Lȕ’ [41] to the ripple

phase, Pȕ’ [42]) as well as the main-transition (formation of the fluid lamellar phase, LĮ [43])

are observed. The recorded transition temperatures (Tpre=37.6±0.3, ǻTpre=1.0±0.3, Tm =

41.20±0.1, ǻTm =0.9±0.1) and enthalpies (ǻHpre=1±0.02, ǻH=7.33±0.08) for pure DPPC are in

good agreement with literature values [20].

Addition of aliskiren at low concentration (5 mol%) broadens the main phase transition

and abolishes the pre-transition without significant effect on the phase transition temperature,

Tm, and enthalpies, ǻǾ. The use of the higher concentrations of aliskiren (10-20 mol%),

results in a further progressive decrease of Tm and an increase of ǻǾ. Two concentrations of

aliskiren (5 and 20 mol%) were used to examine its thermal effects on DPPC/cholesterol

bilayers. In both cases the pre-transition gets suppressed, while the main phase transition

broadens, Tm decreases slightly and ǻǾ decreases (Table 1).

3.2. Raman spectroscopy

Raman spectra of pure DPPC, DPPC/aliskiren (80/20), DPPC/cholesterol (85/15), and

[DPPC/cholesterol (85/15)] / aliskiren (80/20) bilayers were obtained in a temperature range

of 25-50 °C. Spectral bands in region from 1000-1150 cm−1 are related to the hydrocarbon

skeletal C-C stretching modes. In particular, the bands at ~1090 cm−1 and ~1130 cm−1 reflect

the C-C stretching modes in gauche and trans conformations, respectively [16, 17, 44, 45].

The C-H stretching bands at ~2850 cm−1 and ~2880 cm−1 are due to symmetric and

antisymmetric stretching modes in the methylene groups (CH2) of the alkyl chains,

respectively, while the ~2935 cm-1 band is correlated to the symmetric C-H stretching mode

in the terminal methyl group [46-48]. The two intensity ratios I1090/I1130 and I2850/I2880 (Fig. 2)

reflect the transition behaviour of the different bilayers studied and in particular describe the

fluidity of the membranes. How aliskiren influences the order/disorder of the different model

membranes is discussed in section 4.1.
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3.3. MAS NMR

To obtain a detailed local information on the incorporation of aliskiren and cholesterol in

the DPPC bilayers, we applied high resolution 13C MAS and CPMAS NMR spectroscopy

[49] (Fig. 3). Observed chemical shifts for the carbons of DPPC are summarized Table 2 for

DPPC, DPPC/cholesterol (85/15), DPPC/aliskiren (80/20), and [DPPC/cholesterol (85/15)] /

aliskiren (80/20) bilayers (see also Supporting Information Tables S1 and S2). The spectra

are presented according to the (i) headgroup, (ii) glycerol backbone, (iii) esterified carbonyl,

and (iv) hydrophobic lipid chain regions (for carbon identifiers of DPPC refer to Fig. 1B).

3.3.1. Head-group region

Minor changes are observed for the four preparations in the headgroup region (N(CH3)3,

C-2’’’and C-2’’’). Head-group conformational changes from gel to liquid crystalline phase

are less pronounced compared to that observed in the hydrophobic lipid chain region (cp.

section 3.3.4). Further also the presence of aliskiren and cholesterol cause only minor

chemical shift increases (maximum down field effect of 0.13 ppm). Indeed, chemical shifts of

DPPC/aliskiren, DPPC/cholesterol and DPPC/cholesterol and DPPC/aliskiren preparations

are alike, indicating that cholesterol and aliskiren are affecting the headgroup region

similarly.

3.3.2. Glycerol backbone region

A downfield shift was observed during the phase transition from the gel to liquid

crystalline state for the four different membrane models ranging between 0.11-0.24 ppm

indicating their conformational stability in this bilayer region (C-1, C-2, C-3). Cholesterol

caused downfield changes up to 0.1 ppm, when comparing DPPC/cholesterol and DPPC

bilayers at the same temperatures. When the DPPC/aliskiren and DPPC bilayers are

compared, higher downfield shifts reaching 0.37 ppm are observed. DPPC bilayers

containing both aliskiren and cholesterol show similar chemical shifts with those containing

DPPC and aliskiren.

3.3.3. Carbonyl region

The resolution for C-1ƍ in the four preparations was not sufficient to follow the chemical 

shift changes during the phase transition. For C-2ƍ a biphasic effect was observed, i.e., a 

downfield effect in the ripple phase and an upfield effect in the fluid lamellar phase. For C-3ƍ 

a progressive upfield effect (decrease of chemical shift) was eminent as the temperature
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increases reaching 0.7 ppm in the LĮ phase, indicating that this carbon in the carbonyl region

behaves similarly to all other carbons at the hydrophobic region. Similar effects were

observed for the DPPC/cholesterol sample. In DPPC/aliskiren bilayers a progressive upfield

effect (<1 ppm) was observed for C-3ƍ and C-2ǯ. Similar upfield effect (<1 ppm) was also 

obtained in the case that both aliskiren and cholesterol are incorporated in the DPPC bilayers,

i.e., DPPC/aliskiren and DPPC/cholesterol/aliskiren bilayers showed similar chemical shifts.

3.3.4. Hydrophobic lipid chain region

The chemical shifts decrease when DPPC bilayers undergo the transition from the

lamellar gel phase Lßƍ (25 °C) towards the ripple phase Pßƍ (35 °C) and lamellar liquid 

crystalline phase LĮ (45 °C). This is due to the strong trans-gauche isomerization effects

observed especially in the turnover to the LĮ phase. Upfield effect of the carbons which

constitute the hydrophobic region was also observed in DPPC/cholesterol and DPPC/aliskiren

bilayer samples. The most pronounced upfield effect was with (CH2)ǯ10 carbons reaching

almost 3 ppm while with C-16ǯ, C-15ǯ and C-14ǯ the effect was ranging between 0.02-1.40 

ppm.

3.4 X-ray scattering

In Fig. 4 an overview of the time-resolved SAXS/WAXS experiments is presented. In

the contour plots high scattering intensities are colour-coded with red and orange, while

lower scattering intensities are given in green and blue.

The structural changes in pure DPPC bilayers [50] are exemplified in Fig. 4A. At

ambient temperatures the lamellar gel phase (Lȕ') is observed. The chains are packed in an

orthogonal lattice [44,45] and tilted with respect to the bilayer plane about 32° [51].

Thereafter, the stable ripple phase (Pȕ') forms, followed by the lamellar fluid phase (LĮ).

Note, that the transition is not reversible, but in cooling direction two ripple phases form: the

stable and the so-called metastable ripple phase (Pȕ' and Pȕ' mtstbl) [52]. The interaction of 10

mol% cholesterol with phosphatidylcholine bilayers is presented in Fig. 4B. Both in the gel

and the fluid phase regime cholesterol induces in part a liquid ordered (lo) phase, where the

lipids are free to laterally diffuse, but at the same time exhibit a certain chain order [53-55].

As can be seen in the SAXS patterns in Fig. 4C, aliskiren provokes in the gel phase the

onset of an unbinding of the bilayers. The first order diffraction peak is centred at s = 0.007
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Å-1, which corresponds to a d-spacing of about 140 Å. This means that the bilayers are about

100 Å apart. In other words the multilamellar vesicles (MLVs) are highly swollen with water.

In the fluid phase regime the unbinding of bilayer membranes is complete, i.e., the bilayers

are spatially uncorrelated.

In contrast to the effect of aliskiren alone, the incorporation of aliskiren together with

cholesterol in the DPPC bilayers reduces the d-spacing drastically from 140 to 72 Å (Fig. 4D

and Fig. 5B). The d-spacing of 72 Å in the lamellar gel-phase can actually be explained by a

loss of chain tilt in the lamellar gel phase. This is supported by a determined bilayer

thickness, dHH, of 50 Å deduced from the electron density profile of the bilayer (Supporting

Information Fig. S2-S3 and Table S3; note that a complete loss of chain tilt would result in a

d-spacing of about 72 Å [49]). However, in the fluid phase a coexistence of highly swollen

MLVs (maximum d-spacing is 102 Å, Fig. 5B) together with a high fraction of spatially

uncorrelated bilayers is observed.

The temperature dependent lipid chain packing of the four different studied samples is

presented in Fig. 6. The lipid chain packing gives a relatively good indication for Tm. The

melting point for pure DPPC is determined with the WAXS recordings to be at 43 °C, while

with decreasing lipid concentration the melting point is observed at 42, 40 and 38 °C,

respectively. This is readily understood, since an increasing concentration of impurities in the

form of cholesterol and/or aliskiren reduce the overall van der Waals energy. Another effect

can be observed in the packing density of the lipid chains in the gel phase. For instance, at 37

°C the first order diffraction peak indicates an averaged nearest neighbour distance of the

lipid chains of 4.27 Å for DPPC (area per chain 21.0 Å2). Aliskiren alone has a condensing

effect (d = 4.20 Å at 37 °C), whereas 10 mol% cholesterol causes an overall looser chain

packing in the gel phase: the d-spacing is about 4.31 Å in both the DPPC/cholesterol as well

as the DPPC/aliskiren/cholesterol bilayer systems. This is understood, since cholesterol above

a certain threshold (typically > 5 mol%) induces in part the lo-phase, in which the apparent

area per lipid is enhanced.

3.5. Molecular Dynamics

The effect of aliskiren molecules on DMPC and DPPC model membranes was examined

with MD simulations at three different concentrations of the drug, i.e., for one, five and

eleven molecules per 128 lipids (0.8, 4 and 9 mol%). The density profiles of all individual

components in the system along the axis orthogonal to the bilayer (z-axis) are depicted in Fig.
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7. Obviously aliskiren molecules diffuse into the interior of the bilayer even though their

initial positions in the simulations were given in the aqueous phase.

Another important property of a lipid-bilayer system is the area per lipid which may be

estimated by a variety of experimental techniques (e.g., NMR, X-ray diffraction). Most of the

experimental values lie between 61-67 Å2/lipid indicating that the membrane is in the liquid

crystalline phase. Similar results are obtained by our simulations as listed in Table S4.

Moreover, there is an increase for the area per lipid as more aliskiren molecules are added.

Focusing on the headgroup of lipids, the angle between the vector connecting P and N atoms

and the z-axis is important. The presence of aliskiren does not affect the values of the angle

as seen in Table 3. Furthermore, the radial distribution function (RDF) between water oxygen

and phosphate oxygen was computed to evaluate the influence of the drug on the interface

between DPPC and aqueous phase. No significant effect was observed by the aliskiren on the

RDF (Fig. 7C).

The order parameters of DMPC bilayers are presented in Fig. 8A and are in agreement

with reported data using 2H solid state NMR spectroscopy [56, 57]. They were averaged over

the two alkyl tails of DMPC and clearly show upward shifting as the number of drug

molecules increase. Fig. 8B instead represents the change of order parameter as the number

of loaded aliskiren molecules varies from 1 to 11. Accordingly, the highest change in the

order parameter occurs in carbon numbers of 6 to 9 (highlighted region in Fig. 10B). The

results suggest that the aliskiren molecules mainly sit at the middle of the hydrophobic tails

of the lipid. Note that both aliskiren simulation sets on DMPC and DPPC bilayers display

very similar results, i.e., demonstrating that small chain length changes have no a great

influence on the incorporation of aliskiren.

4. Discussion

4.1. Bilayer interactions with aliskiren

According to the differential scanning calorimetric data, aliskiren at 5 mol% broadens

significantly the ǻT1/2 showing that this low concentration acts as an “impurity”. At higher

concentrations, aliskiren progressively lowers the phase transition temperature and increases

ǻǾ, while it affects less ǻT1/2. Similar increases in the ǻǾ, at high concentrations (> 10
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mol%) have also been observed for the AT1R antagonists losartan, irbesartan, valsartan and

candesartan cilexetil, but not for candesartan. In addition, this progressive broadening of the

phase transition and abolishment of the pretransition was more eminent to losartan, valsartan

and candesartan cilexetil, but not for candesartan [16, 17, 58]. This increase of ǻǾ, has been

interpreted in our previous publications to be associated with partial interdigitation of the

lipid chains in the gel phase. In fact the SAXS results of DPPC/aliskiren bilayers at 20 °C

support this probable cause: the membrane thickness, dHH, decreases from 44 Å for pure

DPPC bilayers to about 31Å in the presence of aliskiren (Fig. 9A).

Intramolecular trans-gauche conformational changes within the hydrocarbon chain

region can be monitored directly by the intensity ratio I1090/I1130 in Raman spectroscopy. The

intensity ratio at this peak height allows the direct comparison of the bilayers disorder-order

transitions between liposome preparations without or with drug incorporation. In Fig. 2A the

changes in Raman ratio of I1090/I1130 are presented. The transition temperatures are well in

consistent with the results from the calorimetric measurements. DPPC bilayers show a strong

ǻǿ, the increase in Raman ratio across the gel to liquid crystalline phase (ǻǿ=0.58), which

means rising up of about 80%. Incorporation of aliskiren into these bilayers induces higher

disorder in gel phase and less disorder in fluid phase, when compared to the pure DPPC

system. Note, the increase of this Raman ratio across the gel to liquid phase is only about

22% (from 0.88 to 1.1). The intensity ratio I2850/I2880 (Fig. 2B) describes the main change

occurring in the hydrocarbon-chain region of the lipids and corresponds to intermolecular

interactions among aliphatic chains[59]. It is sensitive to subtle changes in conformational

order from rotations, kinks, twists and bends of the lipid chains [60]. Alike to the ratio

I1090/I1130 the presence of aliskiren causes significant increase in the I2850/I2880 meaning that

drug loading causes disorder in the lipid bilayers in the gel phase. Thus, consistently the two

ratios show that aliskiren causes fluidization of the lipid bilayers. However, the Raman

spectroscopy results show distinct differences between the effects of aliskiren in DPPC

bilayers as compared to AT1R antagonists. Aliskiren increases the trans-gauche ratio to a

lesser extent than ARBs (e.g., olmesartan increases that ratio with significantly stronger

extent, i.e. for 0.9 to 1.7 [16]).
13C MAS spectra were especially used to detect the aromatic region, while the 13C

CPMAS spectra of this region were not as eminent (Fig. 2). At 35 °C, the findings reveal a

narrowing of the peaks in aliskiren loaded membranes as compared to the DPPC alone,

indicating a change in fluidity of the lipid bilayers in the ripple phase regime (Pȕǯ phase). 
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When AT1R antagonists or aliskiren are present this phase gets suppressed, which is in

agreement with DSC results. However, there is an exception to the rule, the ARB olmesartan

does not cause an abolishment of the pre-transition and no narrowing of the peaks at 35 °C

was observed indicating the complex motions of the lipids existing in the Pȕǯ phase.

The interdigitation effect induced by aliskiren can be further corroborated by the X-ray

diffraction data. As presented in the results section (Fig. 5A), the head-head distance (dHH) is

about 31.4 Å in the presence of aliskiren. This value is far smaller compared to the dHH value

of 44.2 Å for pure DPPC bilayers [43]. Accordingly, one may conclude that the chain tilt loss

is accompanied by the interdigitation of the hydrophobic layer by about 13Å (Fig. 9A).

Consequently, one expects the area per lipid to increase, and this is exactly what the MD

simulations data confirm as the aliskiren concentration increases (Table 3).

Another apparent effect of aliskiren is the induction of strong water swelling of the

MLVs, i.e. the bilayers separation increases from 19 to 100 Å at 20 °C and from 28 to 130 Å

at 60 °C (Fig. 9). Note also, that actually only a small fraction of the membranes remain

spatially correlated in the fluid phase, while the biggest fraction of bilayers completely

unbinds (cp. Fig. 5). In contrast in the gel phase the main fraction of the sample remains

ordered. Here the swelling can be explained by electrostatic repulsion induced by the

positively charged aliskiren molecules at pH 7 (aliskiren has only one pKa value of 15.9, and

hence has strong basic proprieties [61]; membrane undulation usually play a minor role in the

gel phase). In the fluid phase instead both electrostatic repulsion as well as the onset of

membrane undulations will contribute to the increase in bilayer separation. This means that

above the melting point the onset of Helfrich-undulations of the membranes delivers one part

of the explanation. However, the electrostatic repulsion force is expected to diminish above

Tm. As long as the partition coefficient of aliskiren can be assumed to be temperature

independent, then this force diminishes in the fluid phase, simply because the surface charge

density decreases (note, the area per lipid increases above Tm). Thus, both increased

membrane undulations and a higher partition coefficient of aliskiren in the lamellar fluid

phase would be in accordance with the given observations.

4.2 Location of aliskiren in the DPPC bilayers

Molecular dynamic simulations and NMR spectroscopy data have been used to locate the

topography of the aliskiren in the lipid bilayers. The NMR data show almost no change in

chemical shifts within the headgroup and glycerol backbone and only minor changes in the
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chemical shifts of carbonyl region, when aliskiren is incorporated in DPPC bilayers.

However; drastic changes appeared in the hydrophobic lipid chain region with its maximum

at the carbon number 10. Thus, aliskiren is mainly centred around this carbon, both in the gel

and liquid phase. Further, the MD simulations approve this finding (see the density profiles in

Fig. 7B). We note, that Pomes and co-workers [62] pointed out that water-defect and lipid

surface reorganization processes for small molecule may take as long as several

microseconds. These long term processes are not included in our MD simulations, however,

aliskiren places itself quite deep in the bilayer, where interfacial water-restructuring

mechanism play a minor role. Moreover, order parameter simulations demonstrate that

aliskiren mainly accumulates at the centre of the hydrophobic lipid chain (Fig. 8B;

corresponding to the carbon numbers 7 to 11 in DPPC given in Fig. 1B).

4.3 The influence of cholesterol

At 10 mol% cholesterol content, both in the gel and the fluid phase regime, cholesterol

induces in part the liquid ordered (lo) phase causing a decrease of ǻH by 30% (Table 1).

However, progressive addition of aliskiren into the DPPC/cholesterol composites

increasingly diminishes the effect of cholesterol. Both aliskiren and AT1R antagonist losartan

act similarly against the lowering effect of ǻǾ caused by cholesterol [63].

Furthermore, cholesterol itself induces the condensing effect in the fluid lamellar phase

of DPPC bilayers. This is observed in the increase of the Raman ratio at I1090/I1130 by only

about 15%, however; addition of cholesterol together with aliskiren causes a further increase

of Raman ratio during the main phase transition (ǻǿ=1.55–0.96=0.59, Fig. 2A). Alike the

presence of aliskiren/cholesterol causes significant increase also in the I2850/I2880 ratio

meaning that present of these two components together causes disorder in the lipid bilayers

(Fig. 2B). Thus, it can be understood that aliskiren causes fluidization of the lipid bilayers

even in presence of cholesterol. This is also confirmed by the bilayer thicknesses deduced

from the SAXS data at 60 °C. The dHH values for DPPC/aliskiren and

DPPC/cholesterol/aliskiren do not differ significantly.

From the NMR data, it can be shown that cholesterol abolishes the pre-transition but,

interestingly does not cause significant changes in the line-widths of the peaks (Fig. 3). This

is an interesting observation and points out that, more complex motions are observed in

DPPC/cholesterol bilayers as compared to DPPC/aliskiren or DPPC/cholesterol/aliskiren

complexes.
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While we have observed that aliskiren incorporation induces a strong increase in the

bilayer separations due to electrostatic repulsion, this effect is reduced under the presence of

10 mol% cholesterol, i.e., we observe again a condensation of adjacent bilayers (see Fig. 9

bottom). A similar effect is apparent when losartan is interacting with DMPC/cholesterol

membranes [15]. Initially unbound membranes start to realign in ordered stacks as the

cholesterol content increases in the bilayer. Thus, it is tempting to assume that both losartan

and also aliskiren get expelled from cholesterol rich membranes. This would at least deliver a

straight forward explanation for the observed reduction bilayer separation distance.

In this respect, we briefly discuss a possible route of action of aliskiren. Due to its high

lipophilicity [13] aliskiren is expected to accumulate as efficiently in lipid bilayers as the

comprehensively studied ARBs [14-17] (Fig. 10, left hand side). However, when cholesterol

rich domains (caveolae) would form in the direct vicinity of a (P)RR, then membrane-

accumulated aliskiren molecules are likely to get expelled from the lipid bilayer due to the

high concentration of cholesterol (cp. Fig. 4C and D), and a binding of the inhibitors to the

active site becomes possible from the extracellular fluid (Fig. 10; right hand side). The same

scenario could occur also for the mechanism of action of ARBs, i.e., also the AT1R could be

efficiently blocked by for instance membrane-bound losartans, when a cholesterol rich

membrane caveolae forms. This newly proposed mechanism is also interesting in the light of

the increasingly investigated intracellular renin-angiotensin system [10, 64].
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5. Conclusion

The interactions of aliskiren with cholesterol-rich and cholesterol-poor plasma

membrane models have been investigated both experimentally (DSC, Raman spectroscopy,

NMR, X-ray scattering) and by MD simulations. It turned out that aliskiren behaves in many

respects in a similar fashion as the beforehand studied ARBs. Aliskiren incorporates in the

bilayer with a high affinity, but positions itself a bit deeper in the membrane core as

compared to most of the ARBs. Similarly, aliskiren induces a partial interdigitation of the

lipid chain in the gel phase. As a consequence already at low concentrations the pretransition

of DPPC gets suppressed. Moreover, the thermodynamic alterations (lowering of Tm and

increasing of the main transition enthalpy) and fluidization effects on PC-model membranes

have shown many parallels to the action of AT1R antagonists. Most interestingly, already the

presence of 10 mol% cholesterol expels aliskiren at least in part from the membrane. This has

led us to propose a refined mechanism of action of aliskiren for the case of its accumulation

in the plasma membranes of e.g. vascular smooth muscle cells.

Acknowledgements:We kindly acknowledge Novartis for supplying us with aliskiren.
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Table Legends

Table 1: Representative diagnostic thermal effect values for DPPC and DPPC/cholesterol
bilayers without or with aliskiren.

ȉable 2: Observed chemical shifts for the carbons of DPPC in 13C ȂǹS and CPMAS spectra 
in a temperature range of 25-45 °C.

Figure Legends

Fig. 1. Molecular structures of aliskiren (A) DPPC (B) and cholesterol (C).

Fig. 2. (A) I1090/I1130 vs. temperature plots for pure DPPC (Ƈ), DPPC containing 20 mol% of
aliskiren (Ÿ), DPPC containing 15 mol% cholesterol (Ŷ) and [DPPC/cholesterol (85/15)] /
aliskiren (80/20) (X). The same symbolic is used for panel B representing I2850/I2880 vs.
temperature plots.

Fig. 3. Observed chemical shifts for the carbons of DPPC in carbon-13 CPMAS spectra at 25,
35 and 45 °C for (a) DPPC, (b) DPPC/cholesterol (85/15), (c) DPPC/aliskiren (80/20), and
DPPC/cholesterol/aliskiren (68/12/20) bilayers.

Fig. 4. Temperature scan of multilamellar vesicles of (A) DPPC from 20 to 60 °C and back to
20 °C with 1 °C/min. Note at frame number 1 and 80 the sample temperature was 20 °C and
the maximum temperature was reached at frame 40. For the phase assignments refer to the
main text. (B) DPPC/cholesterol (90/10), (C) DPPC/aliskiren (83/17) and (D)
[DPPC/cholesterol (90/10)] / aliskiren (83/17).

Fig. 5. The scattering profiles of A) DPPC/aliskiren and B) DPPC/cholesterol/aliskiren at two
different temperatures. The profiles correspond to the dashed lines indicated in Fig. 4C and
4D. The solid lines are the global fits of the SAXS data (see section 2.4). Additionally the
electron density map of the DPPC/cholesterol/aliskiren bilayer at 20 °C has been determined
(see Supporting Information Fig. S2-S3 and Table S3).

Fig. 6. Lattice spacing of the first order diffraction peaks of DPPC (black), DPPC/cholesterol
(90/10) (green), DPPC/aliskiren (83/17) (red), and of [DPPC/cholesterol (90/10)] / aliskiren
(83/17) (blue). The WAXS analysis displays the nearest neighbour chain to chain distances
derived from the first order diffraction peaks in the gel phase and rough distances determined
from the position of the diffuse scattering maximum in the fluid phase.

Fig. 7. Molecular dynamics simulations of aliskiren DPPC membrane interactions. A)
Snapshot of aliskiren in the DPPC bilayer (128 lipids, 3655 water molecules). B) Density
profiles along z-axis of the DPPC bilayer for the system with 11 aliskiren molecules. C)
Phosphate oxygen to water oxygen radial distribution function for the three different
concentrations of aliskiren molecules.
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Fig. 8. A) Deuterated order parameters for the alkyl tails of DMPC in presence of aliskiren
molecules as obtained from the MD simulations. B) Difference in the order parameter
between the alkyl chains of highest and lowest loaded aliskiren.

Fig. 9. Schematic representation of the pure DPPC, DPPC/cholesterol, DPPC/aliskiren and
DPPC/cholesterol/aliskiren bilayers. For all four model membrane systems two adjacent
bilayers are shown at 20 °C (A) and at 60 °C (B), respectively. Cholesterol molecules are
colored in green and aliskiren in red. Above each scheme the polar thickness (d-dHH) and
below the d-spacings are given. The data were derived from the SAXS data (see section 3.4).

Fig. 10. Schematic representation of cholesterol-induced release of aliskiren and losartan.
Left hand side: aliskiren and losartan accumulate in the lipid bilayer, but not necessarily
inhibit the (P)RR and AT1R. Angiotensinogen (Aog) gets cleaved by (P)RR-bound renin to
angiotensin I (AngI), which by the angiotensin-converting enzyme (ACE) gets altered to the
active peptide angiotensin II (AngII). Right hand side: As soon as a cholesterol rich caveolae
forms, aliskiren and losartan get released from the bilayer and block the receptors.
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Tables

Table 1

Samples

Tm

(°C)

ǻTm

(°C)

ǻH
(kcal/mol)

DPPC 41.20±0.1 0.9±0.1 7.33±0.08
DPPC/aliskiren 95:5 40.93±0.1 1.6±0.1 7.86±0.08
DPPC/aliskiren 90:10 39.08±0.1 0.9±0.1 9.46±0.09
DPPC/aliskiren 85:15 38.13±0.1 1.1±0.1 10.04±0.10
DPPC/aliskiren 80:20 38.34±0.1 1.5±0.1 10.45±0.10
DPPC/cholesterol 85:15 40.60±0.1 1.0±0.1 5.12±0.05
[DPPC/cholesterol

85:15]/aliskiren 95:5

37.97±0.1 1.5±0.1 6.47±0.06

[DPPC/cholesterol 85:15]

/aliskiren 80:20

36.80±0.1 1.9±0.1 7.33±0.07
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Table 2

13C-MAS

Glycerol Carbons Carbonyl Carbons Hydrophobic Chain Region Headgroup Region

T

(°C)
Sample C-1 C-2 C-3

C-1',

C-1"

C-2',

C-2"

C-3',

C-3"

(CH2)'10,

(CH2)"10

C-14',

C-14"

C-15',

C-15"

C-16',

C16"
N(CH3)3 C-2''' C-1'''

45 DPPC 63.80 71.41 64.41 174.02 34.81 25.86 31.10 32.83 23.41 14.49 54.89 66.82 60.21

45
DPPC/cholesterol
(85/15)

63.88 71.45 64.53
174.19
+174.00

34.93 26.04 31.51 33.00 23.54 14.55 54.93 66.84 60.28

45
DPPC/aliskiren
(80/20)

63.93 71.53 64.59 174.20 34.91
25.90
25.76

30.92
30.35

32.85 23.47 14.64 54.98 66.95 60.32

45
[DPPC/cholesterol
(85/15)] / aliskiren
(80/20)

63.92 71.48 64.59 174.20 34.91 25.90
25.75

30.96
30.36

32.85 23.47 14.64 54.95 66.93 60.30

13C-CPMAS

T

(°C)
Sample C-1 C-2 C-3

C-1',

C-1"

C-2',

C-2"

C-3',

C-3"

(CH2)'10,

(CH2)"10

C-14',

C-14"

C-15',

C-15"

C-16',

C16"
N(CH3)3 C-2''' C-1'''

25 DPPC - 71.22 64.38 172-174 34.98 26.72 33.25 34.22
24.44
24.17

14.65 54.76 66.63 60.22

25
DPPC/cholesterol
(85/15)

- 71.22 64.48 172-174 35.15 26.82 33.26 34.26
24.48
24.15

14.70 54.79 66.66 60.26

25 DPPC/ aliskiren
(80/20)

63.85 71.29 64.50 173-175 35.16 26.57 33.31
32.19

34.62 24.64
24.90

(15.06)
14.65

54.79 66.76 60.23

25
[DPPC/cholesterol
(85/15)] / aliskiren
(80/20)

63.83 71.33 64.52 173-175 35.22 26.63 33.32 34.65
24.68
24.91

(15.09)
14.61 54.81 66.74 60.25

35 DPPC - 71.14 64.38 172-175 35.10 26.37 33.11 - 24.25 14.60 54.79 66.69 60.20

35
DPPC/ cholesterol
(85/15)

- 71.21 64.47 172-175 35.19 26.46 33.10 - 24.29 14.65 54.92 66.81 60.33

35
DPPC/ aliskiren
(80/20)

63.95 71.51 64.62 174.21 34.96 25.89
31.06
30.46

33.30
32.93

24.60
23.55

(15.12)
14.71

54.98 66.94 60.34

35
[DPPC/cholesterol
(85/15)] / aliskiren
(80/20)

63.91 71.44 64.59 174.17 34.91 25.90
31.00
30.42

32.89 23.53 14.66 54.93 66.87 60.31

45 DPPC 63.77 71.37 64.49 174.03 34.81 25.85 31.06 32.79 23.39 14.49 54.86 66.81 60.19

45
DPPC/ cholesterol
(85/15) 63.86 71.43 64.55 174.17 34.93 26.02 31.43 32.97 23.53 14.55 54.93 66.85 60.27

45
DPPC/aliskiren
(80/20) 63.93 71.53 64.56 174.16 34.93

25.87
25.76

30.89
30.32 32.82 23.48 14.63 55.00 66.97 60.32

45
[DPPC/cholesterol
(85/15)] / aliskiren
(80/20)

63.93 71.48 64.58 174.18 34.92
25.88
25.76

30.92
30.34

32.83 23.46 14.63 54.97 66.95 60.31
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