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Abstract. The use of paired-comparison psychophysical 
experiments is an important technique that is used widely in 
imaging studies. It is sometimes difficult to compare every 
stimulus with every other; the number of paired comparisons 
for n stimuli becomes prohibitive for large values of n. Thus, 
experiments are often designed by missing some pairs. 
However, the effect on the accuracy of the estimations of the 
scale values is not clear. Similarly, if more resources are 
available, would it be better to recruit more observers 
making the same paired comparisons or to have the original 
observers carry out additional paired comparisons? This 
work seeks to develop a framework for addressing these 
practical questions surrounding incomplete paired-
comparison experiments design. A Monte-Carlo 
computational simulation is carried out with an ideal 
observer model. Results suggest that the proportion of paired 
comparisons is more critical than the number of observers 
with small number of stimuli. 
 

INTRODUCTIONȱ
A common problem for the psychophysicist is to derive 

the best possible set of numerical responses from a set 

of mental comparisons made by an observer or by a 

group of observers
1-2

. Not only are these responses to be 

arranged in their correct subjective order, as determined 

from the consensus of comparisons by all observers, but 

also they are to be correctly spaced along a scale of 

numerical response values (i.e. interval scale data). 

Thurstone described the technique now known as 

paired comparisons as a means of accomplishing this 

objective
3-4

. The technique is widely used in the color-

imaging domain
5-7

. 

The paired-comparison technique may be 

described as follows for n stimuli and k observers. The n 

stimuli are considered in pairs. Each of the k observers 

is required to indicate their opinion as to which of the 

two stimuli in each pair evokes the greater response 

(thus, by way of example, if the brightness of the n 

stimuli is being considered the observers would be 

expected to indicate which of a pair of stimuli is 

brighter). In the case where every stimulus in a set is 

compared with every other stimulus in the set there are 

simple and well-documented techniques to allow the 

estimation of scale values for each of the stimuli which 

are based on case V of Thurstone’s law of Comparative 

Judgment. These usually involve calculating the 

preference ratio for each paired comparison.   

Thurstone’s model is not the only method for 

conversion of experiment proportions to scale data.  

There are some alternative models with a similar 

function to Thurstone’s model such as the Gaussian 

model
8

, the logistic Bradley-Terry model
9-13

, Angular 

Transformation model
14

 and Uniform Distribution 

model
2

. 

Hohle
15

 compared the Logistic Bradley-Terry 

model and Thurstone’s Case V using maximum 

likelihood methods of scale estimation. He found that 

the logistic Bradley-Terry model had a slight edge for 

experimental data with less complexity in mathematics 

and fewer assumptions. Jackson and Fleckenstein
16

 

compared the Thurstone-Mosteller model, the Scheffe 

method, the Morrissey-Gulliksen model and the 

Bradley-Terry model and summarized that the Scheffe 

model could provide a method for estimation and 

testing order of presentation; the Bradley-Terry model 

provided the most effective analytical procedure for a 

complete paired-comparison experiment; if the primary 

interest of research is to obtain response scales, 

Thurstone-Mosteller model was preferred because of 

easy computation; the Morrissey-Gulliksen model was 

helpful to reduce the size of  the experiment. Later, the 

superiority of the logistic Bradley-Terry model was 

confirmed again by Handley
17

 by comparing the Logistic 

Bradley-Terry model and Thurstone’s Case V. 

Handley’s experiment indicated that the logistic Bradley-

Terry model yielded almost the same estimated scale 

values as the Thurstone’s Case V for complete paired-

comparison data with advantages of simplicity for 

analysis, availability for incomplete data and suitability 

for more statistical analyses (e.g. maximum likelihood 

estimate for scale parameters with confidence and 

hypothesis tests for uniformity and preference 

agreements among groups) than Thurstone’s Case V. 

Handley’s suggested that the logistic Bradley-Terry 

model had overwhelming advantages over Thurstone’s 

Case V in the imaging community and should be widely 

used instead of Thurstone’s Case V. 

However, when the complete matrix of 

comparisons is carried out the work required becomes 

prohibitive for large numbers n of stimuli
18-19

. Thus, the 

investigator most likely conducts an incomplete paired-

comparison experiment with a high number of stimuli
20

. 

In addition, depending on the spacing of the stimuli 

relative to the discriminal unit (or just-noticeable 

difference) it is possible that some of the preference 

ratios will be 1 or 0. If all observers agree that one 

stimulus is preferred over another there is no 

information available as to the relative difference 

between the scale values for those two stimuli, only the 

rank order of those scale values. These two problems 

can both result in an incomplete table of response-

difference values and this requires alternative methods 

for estimating the scale values
2,21

. We refer to this as the 

incomplete-matrix problem and it is with methods for 
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solving this problem that this work is concerned. Dittrich 

et al.20

 have recently also conducted a various-scenario 

analysis on the missing data for paired-comparison study. 

Their work was based on a decision-analysis approach 

rather than on a statistical-modeling approach and used 

the Bradley-Terry model as the method of obtaining 

scale values. However, the work by Dittrich et al. was 

not concerned with the questions that the current study 

was designed to address. We note, however, that use of 

blocks to separate the stimuli into two of more groups is 

an alternative method of effectively reducing the number 

of paired comparisons when the number of samples is 

large.
12

 Durbin, for example, suggested using balanced 

incomplete block (BIB) designs for incomplete paired 

comparisons
22

.  The block sizes were suggested to be 

more than two
12

. Within each block the rank orders of 

objects are obtained
23-29

. To guarantee the stimuli in each 

block can be comparable, two or more stimuli in one 

block must be appear in the adjacent block
30-31

 and every 

stimuli should appear equally often in all blocks
32

. A 

computer-sorting algorithm can also be used for work 

reduction, which can reduce the average number of 

comparisons and the number of comparisons from the 

samples far apart from each other and also produce a 

sorted list according to the rank order of samples
33-36

. 

According to Whaley’s model
37

, an average of no more 

than n3/2

 comparisons are needed. According to the 

procedure of heap sort an average of no more than 

nlog2
n
 comparisons are needed

38

. However, this sorting 

technique tends to present one sample of a pair twice in 

a row, which breaks the basic rule of keeping the same 

sample separated in time
39

. Later, Silverstein and Farrell
40

 

proposed a binary tree sorting method, which can 

provide a more accurate estimation of the original values 

with the disadvantage of the difficulty of dealing with 

hardcopy samples. 

In this study we consider how to solve the problem 

of estimating the scale values from incomplete matrices 

of preference ratios. Note, however, that we only 

address the problem that results from all of the pairs not 

being considered; we do not explicitly address the 

problem that occurs when the preference rations are 0 

or 1, We investigate the method developed by Morrissey 

that determines scale values according to a least-squares 

solution
21, 41

. Although the Morrissey method is not the 

only method
42-44

 that can be used to solve the incomplete-

matrix problem it is a method that is widely used. The 

substantial research questions that this study addresses 

are: (1) What proportion of the matrix is required in 

order for the method to be valid and how robust is the 

method as the matrix becomes more sparse? (2) What is 

the relationship between the sparseness of the matrix 

and the number of observers who take part in the 

paired-comparison experiment? These questions are 

addressed via a Monte-Carlo computational simulation 

using an ideal observer model. 

 

EXPERIMENTALȱȱ
IdealȬObserverȱModelȱ

According to Morrissey’s method (1955) from the data 

from all k observers, a preference ratio (the ratio of 

actual to possible number of times that one stimulus is 

judged greater or better than the other) is computed for 

each pair. The preference ratio is interpreted as the area 

under the normal frequency function; the upper limit of 

integration is interpreted, both in magnitude and in 

sense, as the response difference between the two stimuli 

constituting the pair. Again, by example, if a pair is 

viewed 10 times and one stimulus is preferred 9 times 

out of 10, then the preference ratio would be 0.9; this 

would correspond to a response difference of 1.28 in 

units of standard normal deviate (similarly, if the 

preference ratio was 0.5 then the response difference 

would be zero). 

An ideal observer model has been constructed to 

simulate the response to a paired-comparison 

experiment. The perceptual response P to a stimulus S 

is modeled by a normal distribution with mean S and 

standard deviation  where  is inversely related to the 

discriminatory power of the perceptual system. Figure 1 

illustrates the situation for two stimuli S2 and S1 whose 

physical values are 10 and 5 respectively; the 

corresponding perceptual responses P2 and P1 are 

normally distributed around S2 and S1 each with standard 

deviation  (in the example shown in Figure 1,  = 1). 

Thus, the ideal-observer model operates by 

generating perceptual responses for pairs of stimuli 

drawn from normal distributions N (S2, �) and N (S1, �). 

The output of the model R1,2 is 1 if the perceptual 

response to P2 is greater than P1 and 0 if P1 is greater 

than P2 (if P1=P2 then we assume chance performance).  

The ideal-observer model described allows us to 

simulate a paired-comparison experiment for n stimuli 

and k stochastically similar observers. In order to carry 

out the Monte-Carlo simulation it is necessary to define 

the value of the internal noise in the perceptual system �.  

The appropriate selection of  must be influenced by 

the stimuli values S1 … Sn. If  is too large then adjacent 

stimuli will not be discriminable by the ideal observer. 

Similarly, if  is too small then the preference ratio for 

the comparison of two adjacent stimuli will be 0 or 1. 

Stimuli were selected (see section on Monte Carlo 

simulation later) such that, when the stimuli are arranged 

in rank order, on average adjacent stimuli differ by 1 

unit. For this work, we defined  such that adjacent 

stimuli (differing by one unit) were at discrimination 

threshold. We assume that, for adjacent stimuli, the 

difference P2 - P1 is normally distributed N(1, √(22

)) and 

wish to find the value of  for which there is a 75% 

chance that a value drawn from this distribution would 

be greater than zero (this corresponds to the ideal 

observer making 75% correct decisions which we define 

as threshold performance). Use of tables or simple 

computational methods reveal that � = 1.048. The use of 

this value of  implies that the most similar stimuli in the 

work will be at discrimination threshold; of course, the 

difference between other stimuli (which will form the 

majority of the paired comparisons) will be much greater 

than threshold.   
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Stimuli are randomly selected from a range that 

depends upon the number of stimuli n so that on 

average neighboring stimuli (when the stimuli are 

arranged in rank order) would have a difference of 1 

stimulus units. Specifically, n stimuli are randomly 

selected from the range [-n/2 … n/2]. 

 

 

Figure 1. Schematic diagram of the ideal-observer response function. In 

this case, two stimuli (S1 = 5 and S2 = 10) are presented to the observer. 

The perceptual responses to the stimuli S1 and S2 are drawn from 

normal distributions N(S1,) and N(S2,) respectively where  is the 

internal noise in the perceptual system (and in this case  = 1). The 

probability that S2 will elicit a stronger response than S1 is determined by 

both the distance S2-S1 between the stimuli and the sensitivity of the 

system (governed by ). 

 

MorrisseyȱMethodȱ
The ideal-observer model allows us to construct a matrix 

of preference ratios and according to Morrisey’s method 

the application of Thurstone’s law allows us to construct 

a matrix of response differences. For p paired 

comparisons we construct matrices A and d such that  

 = d                             (1) 

 

where d is a (p + 1) × 1 matrix of response differences, v 

is a p × 1 matrix of scale values and A is a (p + 1) × n 

operational matrix that defines the pair-wise 

comparisons that are made.  For clarity, in the case 

where n = 3 Equation 2 can be written in full as 
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where vi are the scale values and di,j are the response 

differences for i{1,2,3}
2, 19

. The last row in matrices A 

and d imposes the constraint that the sum of all scale 

values is zero. Equation 2 can be solved using 

MATLAB’s backslash operator (which is equivalent to 

Gaussian elimination) thus v = A\d. The advantage of 

Morrissey’s method is that it can be solved even when 

every possible paired comparison is not carried out. We 

can therefore evaluate the effectiveness of the Morrissey 

method for different degrees of experimental 

completeness. 

 

MonteȬCarloȱSimulationȱ
A Monte-Carlo simulation of a paired-comparison 

experiment was conducted to explore the accuracy of 

the Morrissey method to estimate scale values according 

to the following steps: 

1) Randomly select n scale values from the uniform 

distribution [-n/2, n/2].  

2) For each of the n(n-1)/2 pair-wise comparisons, 

present the two stimuli to the ideal observer model 

(defined by ) and obtain the observer preference. 

Repeat for k observers. 

3) Construct the preference ratio matrix.  

4) Estimate scale values using the Morrissey method. 

5) Compare the estimated scale values with the actual 

scale values. 

In order to compare the performance of the 

methods the scale values (actual and estimated) were 

normalized to the range 0-1 and the correlation 

coefficient r
2

 calculated for the estimated and actual 

normalized scale values. The simulation was repeated 

1000 times, each time starting with a different random 

set of scale values and the mean correlation coefficient 

(averaged over all 1000 trials) was used as a measure of 

performance. The experiment was repeated for different 

values of n and k and also using only some of the 

possible paired comparisons (for a completion rate of 

50%, for example, only half of the paired comparisons 

were used and these were randomly selected for each of 

the 1000 trials). The number of different conditions was 

405 composed of 5 observer numbers (k = 5, 10, 15, 20, 

25) × 9 stimulus conditions (n = 10, 20, 30, 40, 50, 60, 

70, 80, 90) × 9 matrix conditions (completion rate = 

10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%).   

In this work described so far the observers were all 

statistically identical. A modification to the main 

experiment was also carried out in which each observer 

was assigned a small bias for each of the n stimuli. In this 

modification instead of the observers response to the ith 

stimulus Si being N(Si, ), the observers response was 

N(Si, ) + Bi where Bi is the observer’s bias for sample 

i. The value of Bi was selected for each observer and for 

each stimulus from the range [-1.04 1.04].  
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Figure 2. The performance (mean correlation coefficient) is plotted against the proportion of the paired comparisons for various stimuli (n = 10, 50 and 

90) and the number of observers (k = 5 and 25). 

 

 

 

 

 

 

This range was chosen so that the size of the bias 

was comparable with the noise (defined by ) in the 

observer’s response. The bias was selected differently for 

each of the 1000 simulations. 

 

RESULTSȱ
Figure 2 illustrates some of the data obtained from the 

main experiment (where observers are stochastically 

identical). In Figure 2, the performance (mean 

correlation coefficient) is plotted against the proportion 

of the paired comparisons and the number of observers 

for various values of n. These plots indicate that the 

correlation coefficient is relatively invariant to the 

proportion of paired comparisons considered except 

when the number of stimuli n is small. It is also apparent 

that as the number of stimuli increases the proportion of 

paired comparisons required for a given performance 

reduces. 

In order to further analyze the data we have 

determined the proportion of paired comparisons 

required in order to yield a given performance which we 

have somewhat arbitrarily defined as r
2

 = 0.95. For each 

condition (defined by k and n) we generate a plot of r
2

 

versus proportion and fit the data with a natural log 

function and use this to determine the proportion of 

comparisons required for our threshold performance (r
2

 

= 0.95). Figure 3 shows an example for the case of k = 

10 and n = 20. In this plot we omitted the data obtained 

for very low proportions of paired comparisons. The 

reason for this is that when the proportion of 

comparisons was less than 30% the matrix solution 

became unstable and in some of the 1000 simulations 

the matrix was so ill-conditioned that no solution was 

possible; in these situations the performance (mean 

correlation coefficient) was computed from the 

remaining simulations where a solution was possible. 

This reduced the reliability of the data at very low 

proportions of paired comparisons and therefore, since 

these data typically resulted in quite small r
2

 values 

anyway, it was decided that the logarithmic fits would 

only apply to 30% or greater of paired comparisons. The 

quality of fit in Figure 3 was typical of all 25 plots (the r
2

 

values for the logarithmic fits ranged from 0.9012 to 

0.9794). 
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Figure 3. The performance (mean correlation coefficient) is plotted 

against the proportion of the paired comparisons for n = 20 and k = 10. 

Figure 4 plots the threshold values for the 

proportion of paired comparisons for different values of 

n and k. This figure further emphasizes that the number 

of stimuli has more impact than the number of 

observers and that as the number of stimuli increases a 

lesser proportion of paired comparisons is required. For 

small scale experiments (n < 20) it is necessary to carry 

out more than half of the possible paired comparisons. 

However, for larger scale experiments as few as 20% or 

30% of paired comparisons are required to achieve good 

performance. 

 

 
Figure 4. The threshold values for the proportion of paired comparisons 

for different values of n and for k = 5 (diamond), k = 10 (square), k = 15 

(triangle), k = 20 (cross) and k = 25 (star). 

 
However, Fig. 4 results from our simulations that 

involve k statistically identical observers. In any real-life 

experiment the observers are unlikely to be statistically 

identical and may exhibit personal bias for various 

stimuli. Therefore the complete Monte Carlo simulation 

was repeated but including an additional factor to 

represent observer bias. Figure 5 shows the final 

outcome of the simulation with bias. In fact, the 

inclusion of observer bias made relatively little 

difference to the final results.  

Table 1 is provided as a summary of the results 

and as a resource for other researchers who wish to 

undertake incomplete paired-comparison experiments 

to estimate scale values. It is based on the data from the 

model without observer bias and indicates the threshold 

percent of comparisons that are required for different 

numbers of stimuli and observers. 

 

 

Figure 5. The threshold values with bias for the proportion of paired 

comparisons for different values of n and for k = 5 (diamond), k = 10 

(square), k = 15 (triangle), k = 20 (cross) and k = 25 (star). 

 
Table 1 Threshold values for the per cent of paired comparisons needed to 
achieve a criterion performance in incomplete paired comparison experiments for 
different numbers of stimuli (across the columns) and different numbers of 
observers (down the rows). 
 

k 

10 

(%) 

20 

(%) 

30 

(%) 

40 

(%) 

50 

(%) 

60 

(%) 

70 

(%) 

80 

(%) 

90 

(%) 

100 

(%) 

5 78 60 48 37 30 26 23 22 21 19 

10 67 55 43 34 27 22 22 21 20 18 

15 62 50 41 32 26 20 22 20 19 18 

20 58 47 39 31 24 19 22 20 19 17 

25 56 46 38 30 24 19 21 20 18 17 

 

CONCLUSIONSȱȱ
The design of paired-comparison experiments is an 

important psychophysical technique that can be applied 

to a wide range of problems. For large numbers of 

stimuli it is not always practical to be able to complete all 

the possible paired comparisons and scale values are 

often estimated from a partially complete experiment. 

The design of such experiments has been explored in 

this work through a computational simulation that 

incorporates an ideal-observer model (characterized by a 

standard deviation ) that allows the estimation of scale 

values from a simulated experiment when the ideal-

observer is presented with paired comparisons of stimuli 

of known scale values. The findings suggest that the 

number of observers who take part in the experiment is 

less critical than the proportion of possible paired 

comparisons that are carried out.  This has important 

implications for the design of psychophysical 

experiments and it would seem that reasonable results 

are obtained when 40-50% of the paired comparisons 

are made. Further work is underway to further explore 

this issue. This will include simulations of the 

experiment for different values of the observer variable 

and the condition of every observer evaluating a 

different set of stimuli. 

Note Morrissey’s least-square solution is used as 

the analysis method in this study where stimuli were 
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randomly selected from the complete set of possible 

pairs. However, there are other designs for incomplete 

paired-comparisons experiments. McCormick and 

Bachus
45

 conducted a personnel-rating experiment to 

evaluate the reliability of partial pairings experimental 

design. In their experiment the cycle type of incomplete 

design was adopted where pairs were not randomly 

selected but chosen in a given pattern according to 

different ‘rhythms’
19

. The results showed that as the 

number of pairs was reduced, the correlations between 

the results from the full matrix and partial matrix 

declined consistently. When the total number of 

personnel was 50, 35% of partial pairs could yield 

reliable results with correlation of around 0.95. When 

the total number of personnel was 30, 41% of partial 

pairs were needed to achieve the correlation of around 

0.95.  These findings are consistent with our key results 

in Table 1. However, the previously published results 

were only tested using the Personnel Comparison 

System, which is applied particularly in employee rating 

with consideration of more than one attribute of objects. 

Furthermore, our work gives more general and robust 

results that also take into account the number of 

observers.  

For our results to be useful it is important to 

understand the assumptions that we made in the model. 

In the first experiment, without bias, the observers were 

stochastically identical. This means that there is no 

material difference between two observers participating 

each once and one observer participating twice (inter- 

and intra-observer variability were both controlled by 

our single parameter ). This assumption may be 

reasonable when all observers would essentially make 

the same judgment subject to noise. An example of this 

might be if observers were asked to evaluate the lightness 

of uniform stimuli. However, it is easy to consider 

examples where the assumption would certainly not be 

reasonable. One such example would be if observers 

were asked to rate the beautifulness of a number of 

different faces. In such an example, we would expect 

some observers to vary quite wildly from one another in 

terms of their judgments. To address this limitation, the 

second experiment that we reported assigned a bias for 

each observer for each stimulus. The bias was selected 

randomly and to be of a similar magnitude to the noise 

term () but for each observer was fixed for each 

stimulus. The implication of this is that now some 

observers may consistently rate one sample as stronger 

than another despite their underlying properties (in our 

model) suggesting otherwise. The introduction of this 

observer-bias term made relatively little difference to the 

results. However, it is possible that this was because the 

bias used was quite small. Further work is certainly 

required to ascertain the effect of larger observer bias 

and to therefore increase the applicability of our 

findings. 
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