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Abstract

We present a behavioural task designed for the investigation of how novel instrumental actions are discovered and learnt.
The task consists of free movement with a manipulandum, during which the full range of possible movements can be
explored by the participant and recorded. A subset of these movements, the ‘target’, is set to trigger a reinforcing signal.
The task is to discover what movements of the manipulandum evoke the reinforcement signal. Targets can be defined in
spatial, temporal, or kinematic terms, can be a combination of these aspects, or can represent the concatenation of actions
into a larger gesture. The task allows the study of how the specific elements of behaviour which cause the reinforcing signal
are identified, refined and stored by the participant. The task provides a paradigm where the exploratory motive drives
learning and as such we view it as in the tradition of Thorndike [1]. Most importantly it allows for repeated measures, since
when a novel action is acquired the criterion for triggering reinforcement can be changed requiring a new action to be
discovered. Here, we present data using both humans and rats as subjects, showing that our task is easily scalable in
difficulty, adaptable across species, and produces a rich set of behavioural measures offering new and valuable insight into
the action learning process.
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Introduction

Theoretical Background
The ability of an agent to add new behaviours to its repertoire is

a critical feature of intelligence, and crucial to the evolutionary

success of species such as homo sapiens. A fundamental computa-

tional problem is for an agent to distinguish those things in the

world it causes from those it doesn’t and, in so doing, discover

what it is doing that is causing any particular outcome. We are

interested in the mechanisms which allow an animal to identify

that something it did caused an unexpected outcome, and thus to

repeat and refine recent behaviour so as to home in on the causal

elements of that behaviour. In other words, we are interested in

how the brain extracts a fragment of the total space of all possible

movements and stores it, making it available for subsequent

selection as ‘something the animal does’ - an action with a known

outcome.

This particular problem is understudied by the behavioural

sciences. The most celebrated approach to action learning,

operant conditioning, has often been focussed on rate of response

as the critical dependent variable, and on variables that influence

rate of response, not on how responses become identified and

refined in the first place. The acquisition of actions is separate

black from moderation of response frequency [2]. Consideration

of the computational framework for understanding operant

conditioning, reinforcement learning, makes this point clear

[3,4]. Although reinforcement learning focusses on the optimal

algorithm for updating the value of different actions according to

sampling of their consequences, it requires that all possible actions

be defined in advance (i.e. that the representation of the ‘action

space’ is known). In a review of the literature on operant

conditioning Staddon & Niv [5] note that it is a ‘historical curiosity

that almost all operant-conditioning research has been focused on

the strengthening effect of reinforcement and almost none on the

question of origins, where the behavior comes from in the first

place.’

Our focus is more in line with that of Thorndike [1], and his

famous experiments looking at cats learning to escape from a box.

Thorndike recorded only escape time, but through this variable,

showed how initial exploration by the animal was refined over

repeated attempts until the key components, and only those, could

be rapidly selected by the animal to affect a predicted change on

the world, namely making possible the goal of escape. Thorndike’s

paradigm captured the outcome of the process of searching motor

space and refining exploratory movements into learnt actions.

We look in more detail at the relationship between exploratory

movements and what is learnt, and so hope with our task to shine

more light on this process of acquiring novel movement-outcome

knowledge. This knowledge of a predictable outcome from a

particular movement is key to our definition of an ‘action’.

Motivations for exploration –– and sources of ‘behavioural

variance’ which allow action discovery –– are of renewed interest

[6].

The importance of exploration for learning has long been

recognised in studies of human development [7,8]. Bruner [9,10]

emphasised the intentional nature of action as critical to how
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skilled actions were learnt. In other words, even very early

exploratory action is controlled by some anticipation of outcome.

Piek [11] concludes that variability was essential for normal

developmental motor learning, and that too little variability, as

well as too much, could be associated with impaired learning.

We discuss below how our task allows the history of behavioural

variance to be related to the acquisition of novel actions, and we

present analyses that show a functional relationship between the

amount of non-instrumental movement (‘exploration’) and subse-

quent competence (‘exploitation’).

Criteria for Assessment of a New Task
Since in this paper we are not primarily introducing a new

experimental result, but a novel experimental paradigm and a set

of results associated with it, we introduce here a brief treatment of

what qualities a novel paradigm should possess.

A novel behavioural paradigm should capture for our scientific

inspection some element of behaviour, making it amenable to

psychological and neuroscientific analysis. Although we want a

task to capture some aspect of behaviour which consistently and

significantly manifests in behaviour outside the lab –– to ‘carve

nature at the joints’, as it were –– we also want the new paradigm

to be simple enough to reflect the operation of a single aspect, or a

related family of behaviours. The paradigm should give repeatable

results which, while it is possible to relate these to existing theory,

are also to some extent novel, in the sense that they confirm,

contradict, or extend results from existing paradigms. Practically,

the task would ideally be cheap and quick to run, and yield valid

results even for non-naive subjects, enabling repeated measures

designs.

Outline of Task
The essence of the task is that the subject’s free movements are

recorded, either via a manipulandum such as a joystick, or directly

such as by using a touchscreen. Certain movements, henceforth

‘targets’, result in a sign or signal, henceforth the ‘reinforcement

signal’. The task is to discover what characteristics of movement

which evoke the reinforcement signal. The target may be defined

in terms of absolute spatial position, in which case it is a ‘hotspot’,

or in terms of a relative motion anywhere in absolute space, such

as a line or circle. The target can even be related to the timing of

the movement, e.g. onset or speed, regardless of its spatial

characteristics. The success of many real-life actions will depend

on all of these components. For different experiments with the task

the reinforcement criteria can be defined in terms of one or more

of these dimensions, so it is possible to investigate the discovery of

different components of an action. When one target has been

learnt the reinforcement criteria are simply changed and a new

action has to be discovered. This therefore affords the require-

ments of repeated measures. Although participants are not naive

to the whole task, they must learn a new action each time the

target is changed.

Experiments reported in this paper investigate spatially defined

targets. This gives the task a superficial similarity to the Morris

water maze [12], with the proviso that it is possible to use the task

with larger subjects (e.g. human and non-human primates), and

that the timescale of the learnt movement is different from that of

the water maze, as is the spatial scale of the movements learnt. A

manipulandum is used for all experiments reported here.

Figures 1 and 2 show the apparatus for running the experiment

with both human and rat participants respectively. Note that in the

human set up the computer display is used only to deliver signals

that the target motion has been made; it provides no visual

feedback on the position of the joystick. For the rat version, a long-

handled manipulandum hangs from the ceiling of the rat’s

enclosure, to give it sufficient mechanical advantage. It can be

moved with precision by the animal using a mouth or forepaw

grip, or less precisely using a full body or tail swipe. Once moved,

the rat joystick is engineered so that it maintains position rather

than returning to the centre point. While a typical computer-

literate human participant can be simply instructed to make

exploratory motions with the joystick, rat participants require

more direction. For the rat versions of the task we preconditioned

the animal to associate the light with the subsequent delivery of the

reward (over 20{25 sessions) and then shaped the animal’s

behaviour by initially reinforcing any movement of the joystick (for

5{10 sessions) and only then assessing subsequent attempts to

acquire a more selective target. This pre-training takes the place of

instruction in the human, allowing subjects of both species to begin

the task with an understanding of the general task, but not the

specific target. A direct comparison of the learning process for

human and rat subjects cannot be freely assumed. It remains an

open empirical question whether it is possible to use the task in a

similar way to investigate common processes underlying action

acquisition.

Results

Characterising Behaviour
Figure 3 shows typical continuous traces from both human and

rat subjects as they initially explore, and then refine, their

movements so as to ‘home in’ on a spatially defined target. Note

the similarity in the plots. Although rats take longer to refine

movements into a stereotyped action, the similarity in the

progression of behaviour in this spatial version of the task suggests

that we are tapping into a similar process in both species that relies

on similar underlying machinery of action-discovery. Qualitative

support for this suggestion is given in the subsequent analyses

presented below.

Validity and Reliability of Measures
Learning rate analysis. Within each session, for both

human and rat participants, performance improves –– a key

dynamic of any putative learning phenomenon. Analysis of

average performance shows that learning rates can be approxi-

mated by the power law of learning [13,14], having the form

efficiency~Emzrange|e{aN ð1Þ

Where efficiency is some measure of performance (with lower values

representing better performance), Em is a minimum, range the

difference between the initial and asymptotic value of the

performance measure, a is the parameter which defines speed of

learning, and N is the number of trials.

Performance of human subjects improves with practice. Figure 4

shows average performance data over 10 trials (N = 30). This is

fitted closely by a power law (a = 0.31, SSE 1.03).

Rat performance is more variable. By comparing early and late

training sessions (shown in Figure 5, a values of 0.03, 0.03 and

0.11) we can see that some task learning does occur, but that

within-session learning is the major determinant of performance

–– each time the animal attempts the task significant learning is

occurring. By changing the target we ‘reset’ the task so that the

performance measure is a relatively pure index of within-task

learning.

Difficulty. Figure 6 shows that the task is easily scalable in

difficulty, in this case by adjusting the size of a spatially defined
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target. This means the task has the potential to be individually

calibrated for difficulty, so that all subjects can be recorded while

attempting the task at the limit of their abilities. Thus the task can

be adapted to different populations, for example children or

groups with neuropsychological conditions.

A Lens on Action Discovery
Exploration and exploitation. A prediction from learning

theory is that greater exploration is associated with improved final

performance [6]. We assessed this by calculating the variability in

performance for the first half of trials, and comparing it with the

average performance in the second half of trials. Path length from

Figure 1. Experimental set-up for humans, showing (A) manipulandum, (B) location of visual signal of reinforcement, (C)
participant engaged in task (not shown for rat subject).
doi:10.1371/journal.pone.0037749.g001
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the beginning of a trial until the target was reached was used as a

proxy for performance. This was positively skewed so all distances

were log transformed. The average path length for the first 5 and

last 5 of 10 trials was used as a measure of first half and second half

performance respectively. The standard deviation over the first 5

and last 5 of 10 trials was used as a measure of variability. Looking

at the average performance and variability for each individual

subject, those that were more inconsistent at the beginning of

learning were better in the second half (see Figure 7). This effect

also holds within subjects, so that for individual targets which were

learnt over ten trials, those for which subjects explored more

initially also showed better performance subsequently (Figure 8).

The average correlation between first half performance and

second half performance, across 30 human subjects, was {0:28
(one sample t-test, different from zero with t~3:51, pv0:01).

The same pattern holds for rats. Across different individuals,

those who explore more in the first half of each training session

perform better in the second half. The average correlation

between first half performance and second half performance was

negative (n~6, mean correlation = {0:185; one sample t-test,

different from zero with t~2:59, pv0:05). Comparing across

sessions, the pattern also holds: when an animal explores more in

the first half it tends to perform better in the second half

(correlation = 0:19, pv0:005).

Figure 2. Experimental set-up for rats, showing (A) manipulandum, (B) location of visual signal of reinforcement, and (D) food
hooper for delivery of rewards to maintain behaviour (not present for human subject).
doi:10.1371/journal.pone.0037749.g002

Attempt:1 Attempt:3 Attempt:5 Attempt:6 Attempt:10

Attempt:1 Attempt:4 Attempt:8 Attempt:13 Attempt:37

Human

Rat

Figure 3. Movement traces (blue) for a spatial target (outlined in red) for typical (a) human and (b) rat participants.
doi:10.1371/journal.pone.0037749.g003
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Discussion

Benefits
The task provides a rich set of behavioural measures. The

moment-by-moment recording of the discovery of actions can give

insight into the micro-features of action learning. For example,

one issue we have considered is the extent to which accidental or

coincidental movement features that are present during a first

successful movement will be preserved and reinforced. We have

supposed that unexpected events provoke inspection of a limited

segment of the record of motor output, the equivalent to the

eligibility trace in reinforcement learning [15]. Identification of the

time window, relative to an outcome, for which non-causal

movement features are not eliminated from an action as it is

refined may be revealing of the temporal extent of this record of

motor output. The manipulation of delay between target-

movements and reinforcement signal may also be revealing of

these internal processes.

The rich set of behavioural measures can also be converted into

robust statistics which show the progression of learning throughout

a batch of trials. Candidate statistics include total length of

movement in between reinforcement signals, time taken to

complete movement and various measures of movement com-

plexity and efficiency.

A prime benefit of the task is that it does not take long to

perform and once a particular target has been learnt the target can

be switched so that the same non-human animal or human

participant can repeat the process of action learning. This allows

experiments with repeated-measures designs (which allow analyses

of greater statistical power) while reducing greatly the expense and

time-cost of experimentation in comparison to those tasks that

require fresh subjects for each batch of trials.

The task enjoys a number of other practical benefits. It is

scalable in difficulty, simply by altering the required precision of

the target. For example, in the spatial version of the task this

corresponds to the size of the hotspot. This means that task

Figure 4. Human performance follows the power law of learning. N = 30.
doi:10.1371/journal.pone.0037749.g004

Figure 5. Rat performance follows the power law of learning. N = 6.
doi:10.1371/journal.pone.0037749.g005
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Figure 6. Task difficulty can be calibrated by adjusting target size Performance shown for different targets. Human subjects (N = 29).
doi:10.1371/journal.pone.0037749.g006

Figure 7. Greater exploration associated with improved performance, across different participants.
doi:10.1371/journal.pone.0037749.g007
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performance can be equated across different populations (e.g.

patients versus controls, lesioned and non-lesion animals).

A Distinct Kind of Learning
Distinct from operant conditioning and reinforcement

learning. Our task has a different focus from those that look at

the attachment of value to actions. The way outcome value (and

aspects of outcome delivery) determines the distribution of effort

once eliciting actions have been discovered is the focus of operant

conditioning experiments and reinforcement learning theory. We,

instead, focus on the process of action discovery. This is a problem

which necessarily must be solved if the problem of how to value

actions is to be solved. The problem is that of identifying what

movements of the entire space of possible movements create

distinct outcomes in the world and so are worth storing and

repeating as actions. Reinforcement learning [3] gives a principled

computational account of the credit assignment problem in

operant conditioning, but assumes a given set of actions to which

credit can be optimally assigned. Our task aims to address this

additional requirement of action-learning, that of identifying what

movements are actions.

It is worth noting that the primary technology of operant

conditioning research, the Skinner box, makes automatic the

recording of response rate at the cost of making invisible the

processes leading up to the selection of the response. Thorndike’s

procedure required a ‘stamping out’ of all behaviours which did

not allow the cat out of the box, and is close to the aspects of action

learning upon which we want to focus. Skinner’s procedure

involves familiarising the animal with the box, so that other

behaviours have already diminished and thus the ‘attentional

problem’ is solved for the animal. Only the lever, the novel

element, is the subject of exploration and so this exploratory

element is minimised and controlled for, to allow the experimental

focus on response rates alone (this is discussed by Skinner himself

[16]). Since then rate of response has been a primary focus of

animal learning research although note that subsequent behav-

iourist research has used other variables such as inter-reinforce-

ment interval or inter-response time). The use of rate as a metric

suggests an interest on the part of the experimenter in those

behavioural events that occur after a response has been acquired.

Indeed laboratory practices are often geared towards reducing the

period of response acquisition as much as possible. The technique

of shaping [17,18] and the use of nose poke responses in place of

more traditional operandum-focused responses [19] are both

motivated by a desire to speed up the process of acquisition and

allow researchers to concentrate on recording the rate of elicitation

of the fully formed response. However, in spite of the implied focus

on post acquisition behaviour, rate is used as a metric in the study

of response acquisition [17,20,21]. There are obvious practical

benefits to this because it allows researchers to employ widely

documented, universally understood experimental techniques;

however, the use of rate as a metric brings with it an unavoidable

limitation: rate is only indirectly related to the efficiency with

which an action is performed because it is also a measure of choice

and not just of performance. It is, therefore, difficult to

differentiate between a fully formed response and one that is

midway through acquisition. Researchers are often forced to

identify acquisition as the point at which rate exceeds an

arbitrarily determined threshold. True performance metrics ––

even ones as simple as the escape time metric employed by

Thorndike [1] –– give a much better representation of the

efficiency of an action and they do not necessitate the use of

thresholds because they directly describe a particular parameter of

the current state of acquisition. Skinner showed that the relation

between effects and actions could be systematically studied, but

Thorndike’s demonstration that from many movements the

Figure 8. Greater exploration associated with improved performance, across different sets of trials.
doi:10.1371/journal.pone.0037749.g008
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critical components for causing a particular outcome could be

identified and refined into a stereotyped action has been relatively

ignored [5].

Note that the reinforcement signal in this task is not a primary

reward. Although overall behaviour may be rewarded, either by

extrinsic rewards such as food or drink, or by intrinsic rewards

such as novelty and satisfaction of curiosity, or by associated

secondary reinforcers of both of these, it is the relationship

between action and reinforcement that is tightly locked in time,

whereas rewards (i.e. at the end of the experiment, or after a

certain amount of reinforcement has been collected) are less tightly

bound to reinforcements (and even less so to actions).

Distinct from motor learning. There is a considerable

literature which deals with the topic of motor learning and the

computational theory of optimal control, in the engineering sense

[22]. It is worth noting that the problems upon which motor

control theories tend to be based involve a single action, or small

set of actions, which are ‘declared’ by the experimenter. Braun

and Wolpert distinguish the ‘parametric’ learning studied in most

of these tasks from the learning which covers wider aspects of the

purpose of the task, which they terms ‘structural’ learning [23]. By

providing continuous feedback on motor performance the motor

learning studied in these tasks may be understood computationally

as a form of supervised learning [22]. The Thorndikian process of

action discovery is thus avoided. The tasks used for such studies of

motor learning, in our view, focus on the ‘how’ of motor control,

rather than the ‘what’ which is the subject of our interest. In

biological terms this relates to the parameterisation of an action so

that it may be efficiently and correctly performed (i.e. timing and

force of muscle contractions). Studies of motor learning tasks have

found a heavy involvement of the cerebellum in this process

[24,25]. An aspect which is not accounted for by cerebellar-

orientated theories of motor control, and which is covered by

Braun and Wolpert’s ‘structural learning’, is the novel action

acquisition we hope to capture with our task.

Distinct from action-outcome learning. Tony Dickinson

has provided a compelling and thorough account of what he has

called ‘Action-Outcome’ learning [26,27]. This action-outcome

learning is contrasted with habit learning, and it is part of a goal-

directed learning system in which the outcome associated with an

action is integral to its representation. We would view action

learning of the sort studied in our task as necessary but not

sufficient for this kind of action-outcome learning. In other words,

Dickinson and colleagues have shown convincingly that rats can

select actions according to the outcome associated with them, an

important cognitive capacity which is beyond the reach of mere

operant conditioning of actions (the ‘habit system’). Both these

systems, we claim, are predicated upon the discovery of novel

actions. Once discovered, actions can both be reinforced by their

consequences, or associated with outcomes.

One test of the distinctiveness of action-outcome learning in the

Dickinsonian sense from action-discovery as present in our task

may be the sensitivity of performance to delays in the reinforce-

ment signals. Free-operant acquisition has been shown to be

robust to delays of up to 32 seconds in the rat [28], although

shorter delays of around 2 seconds can have dramatic effects on

the performance of instrumental actions in both rats and humans

[29,30]. To our knowledge there are no direct tests of the effect of

delay on action-outcome learning (we thank an anonymous

reviewer for pointing this out), but it is reasonable to suspect that

it would have a timing sensitivity comparable to that of free-

operant acquisition. This relative insensitivity, compared to the

timing sensitivity of action-discovery in our new task, may provide

a signature which we can use to compare the two.

A requirement of action learning. As discussed, we view

intrinsically motivated action learning as a necessary, but not

always accounted for, component for the above kinds of learning

to occur. In Staddon and Niv’s [5] terms we are focussing on the

‘origins and refinement of behavioural variety’. We see this as in

the tradition of Thorndike [1], in that the emphasis is on

exploration as a route to action discovery. Variation between

movements is required to identify which components of previous

behaviour were truly causal in provoking an outcome, and which

were merely coincidentally associated. In Thorndike’s task the

question of value (‘‘how much was that action worth?’’) is

deprioritised (escaping the box is unambiguously very high value).

Rather the question of the moment is ‘‘what was it I just did?’’. As

discussed, reinforcement learning does have an account of how

credit is assigned to previous actions, but this framework assumes

that the relevant actions are given. Our concern is how the brain

identifies these relevant actions. Recent research has shown that

response variability, as well as frequency, can be directly

reinforced [31,32], and, further, that variability systematically

changes with changes in reinforcement [33]. This suggests that an

underexplored component of operant conditioning may be the

variability of responding and the way such variability functionally

supports action acquisition.

A Window on Intrinsically Motivated Learning
Our task provides a window on how exploration may be related

to action learning. Although the arena of action learning is narrow

and directed relative to the very broad space of all that might be

considered ‘intrinsically motivated learning’ [6], we feel it still has

some important lessons to impart. It is difficult to argue that any

behaviour is entirely intrinsically motivated, where this is defined

as being entirely separate from exogenous rewards, but it may still

be possible to investigate aspects of behaviour which do not

immediately and directly provoke exogenous rewards. An example

of such an aspect is the exploration in our action acquisition task.

The exploration-performance relation shown above is an example

of how the task can be related to the core issues of the idea of

intrinsic motivation.

Specifically, the task allows us to ask questions of the nature of

the representations formed during intrinsically motivated action

discovery. The paths formed by the animal in the course of

learning an action are a rich data set, which should allow us to ask

what elements of behaviour are reinforced –– are the speed, final

position and/or trajectory of successful movements retained? In

addition, through analyses and the manipulation of factors such as

reinforcement signal, reinforcement timing and exploration

strategy we hope to be able to uncover a richness of information

about the representations formed during action learning that has

not hitherto been available.

Materials and Methods

Ethics Statement
All human work was approved by the University of Sheffield,

Department of Psychology Ethics Sub-Committee (DESC). All this

was carried out in accordance with the University and British

Psychological Society (BPS) ethics guidelines. Written informed

consent was obtained from all participants involved.

Care of animals: all animal husbandry and experimental

procedures were performed in the UK with Government Home

Office approval under section 5(4) of the Animals (Scientific

Procedures) Act 1986. Experimental protocols also received prior

approval according to University of Sheffield ethics guidelines.

The Investigation of Action Acquisition
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The Task with Human Participants
The experiments were run using Matlab (Version 2007) with the

Psychophysics Toolbox extension [34–36]. A commercial joystick

(Logitech extreme 3D pro joystick, P/N: 863225-1000) was used

as the manipulandum, with inputs sampled at 1000 Hz. Code for

the experimental programmes is available upon request. The

search space was defined as a square that was 1024 by 1024 units

in size, which corresponded to the limits of the joystick’s travel (the

joystick movements were physically restricted by a square aperture

at the base of the stick). Movements of the joystick mapped on to

movements within the search space in a 1 to 1 fashion, with the

joystick starting in the centre of the search space at the beginning

of each trial. Once released from the grip of a participant, the

joystick was able to return to the centre of the search space within

a tolerance of 10 units, by virtue of a built-in spring mechanism.

Different sizes of reinforced area (‘hotspots,’ which for this task

are circles defined in the search space) were tested during

development and piloting of the task. The size was eventually set

to occupy 0.91% of the overall search space based on finding a

balance between making the task sufficiently difficult to provide

useful data and the practical limitations of running multiple trials

that were not time-limited. At the beginning of every new trial, the

centre of the hotspot was positioned randomly on an annulus

placed centrally within the search space. The inner edge of the

annulus was exactly 1 times the diameter of the hotspot from the

centre of the search space. The outer edge of the annulus was

exactly 1 times the radius of the hotspot from the edge of the

search space. The reason for these dimensions was to ensure that

the hotspot never overlapped the central starting point or the outer

edge of the search space. Any movement of the joystick into the

hotspot region of the search space was defined as a hit and resulted

in a whole screen flash of 17 ms.

In the ‘continuous’ version of the task (see below), generating a

single hit was not sufficient to bring an end to a trial. Instead, a

criterion was used to determine whether a participant had located

the hotspot (a.k.a an ‘escape criterion’, in reference to Thorndike’s

cats). The escape criterion was defined as the number of hits

required within 1 second in order to bring an end to a trial. Like

hotspot size, the escape criterion was set using information gained

from pilot tests in order to balance task difficulty (more hits per

second meant the threshold was harder to meet) against better

verification of learning (more hits per second requires a participant

to demonstrate better learning of the hotspot location). The

criterion was set at 15 hits per second. From an individual

participant’s perspective the aim in a given trial was, therefore, to

find the hotspot and try to maintain the position of the joystick

over this region until having achieved 15 hits in a second.

Participants sat at a desk in front of the joystick and a 19 inch

computer monitor. Before starting the experimental program, the

task was briefly described verbally with the task goal being phrased

in terms of ‘‘finding the correct position to place the joystick in’’

rather than, say, ‘‘search for the correct location’’.

The Task with Rat Subjects
Rats completed a similar version of the task, using a specially

constructed ‘rat joystick’, which hung from the ceiling of the

animal’s enclosure (see Figure 2). There were two major difference

from the human version of the task. Firstly, movement of the

joystick into the target area/hotspot turned on the box light

(Figure 2B). After the light had been on for 1 cumulative second a

food reward would be delivered with a five second delay. The food

reward is necessary to maintain the animal’s behaviour; the five

second delay is so that task performance is most immediately

guided by the light, rather than by the primary reinforcer of the

food. Whilst the rat is feeding the joystick position is moved to a

new random position. The second major difference from human

participants is that the rats underwent a pre-testing training regime

of a) sensory preconditioning, where the light was associated with

food delivery via classical conditioning, and b) shaping, where the

animal was taught to associate progressively more precise

movements of the joystick with the light reinforcer. Typically a

rat would spend 30 mins each day in the experiment, with the

target staying the same for the entire session and changing to a

new random position each day. Code for running the experiments

is available upon request.

Metrics of Performance
We experimented with a number of metrics of task performan-

ce.The two main ones we use here are total time to locate target

(‘search time’) and the total irrelevant distance travelled, defined as

the path length of manipulandum travel on a trial which is in

excess of the length of the direct line between starting position and

target position. For most experiments these two metrics are tightly

correlated, only diverging when movement speed changes without

the trajectory changing or comparable cases. Note that the

irrelevant distance metric is insensitive to changes in speed, and is

most relevant to versions of the task, as reported here, where the

target is defined in simple spatial terms. Because of these

limitations we have not focussed exclusively on it, but also

reported results using the search time metric.

Continuous vs Iterated Version of the Task
Consider two parameters of the task: the number of attempts

that the participant gets with a particular target before a new

target is selected, and the escape criterion (the action(s) defined as

the criterion of having found the target). If multiple attempts are

allowed we have an ‘iterated’ version of the task, in which it is

possible to observe the acquisition and refinement of the correct

movement over multiple attempts (with or without different

starting positions). If the escape criterion is more strict than a

single hit (e.g. a single entry into the target area) then it is possible

for the participant to refine their knowledge of the target without

returning to a starting position and needing to evoke a whole

movement (i.e. they can reverse their current movement and

repeat their most recent actions). A version of the task with a

stringent escape criterion and only one attempt for each target

would be a ‘continuous’ version of the task, rather than ‘iterated’.

We report results from both versions of the task here (iterated

versions for the data shown in Figures 3, 4, 6, 7 and 8; continuous

version for the data shown in Figure 5). We believe that the

continuous version is more informative of the link between

reinforcement signal and target representation, while the iterated

version is more informative of nature of the action representation

as it develops (Walton, Thirkettle, Gurney, Redgrave and Stafford,

in preparation).
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