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Abstract 

We explore how the inclusion of an anti-trapping current within a phase-field model of 

coupled thermo-solutal growth formulated in the thin interface limit actually affects the 

observed levels of solute trapping during dendritic growth.  The problem is made 

computational tractable by the use of advanced numerical techniques including local mesh 

adaptivity, implicit temporal discreteization and a multigrid solver.  Contrary to published 

results for pure solutal models we find that the inclusion of such an anti-trapping current does 

not lead to the recovery of the equilibrium partition coefficient, except in the limit of very 

slow growth. At higher growth velocities non-vanishing amounts of solute trapping are 

observed.   

 

* Corresponding Author, e-mail : A.M.Mullis@leeds.ac.uk

              tel : +44-113-343-2568 

              fax : +44-113-343-2384 

mailto:A.M.Mullis@leeds.ac.uk


Introduction 

Dendritic growth has been a subject of enduring scientific interest, both because it is a prime 

example of spontaneous pattern formation and due to the propensity of many metals to 

solidify dendritically from their parent melt.  Moreover, remnants of these dendritic 

microstructures often survive subsequent processing operations, such as rolling and forging 

and thereafter have a pervasive influence on the engineering properties of these metals.   

 

In recent years significant progress towards understanding dendritic growth has been afforded 

by phase-field modelling.  However, the application of phase-field modelling has largely been 

restricted to two limiting cases; namely the thermally controlled growth of pure substances 

[e.g. 1, 2]and the solidification of relatively concentrated alloys and solutions [e.g. 3, 4], 

wherein growth is sufficiently slow that the problem may be considered isothermal.  

However, in the cases of the solidification of very dilute alloys and of rapid solidification 

processing the isothermal approximation is no longer valid and it becomes necessary to solve 

the problem for coupled heat and solute transport. 

 

Two basic formulations of the coupled phase-field problem have been reported in the 

literature.  The first, which is due to Loginova et al.
[5]

, follows on from the derivation of the 

solutal model of Warren & Boettinger
[6]

.  However, there are doubts about the quantitative 

validity of this model
[7] 

as the numerical results display excess solute trapping and have an 

unresolved interface width dependence. This methodology has been extended numerically by 

Lan et al.
[8]

, who introduced an adaptive finite volume solver, which allowed them to use 

realistic values of Le, although this did not overcome either the excess solute trapping or the 

interface-width dependence observed in the solution.  An alternative formulation of the 

coupled phase-field problem based on the Karma thin interface model
[9]

 has been presented by 

Ramirez & Beckermann
[10, 7]

 and has been extended numerically by ourselves
[11, 12]

 to 

incorporate a fully adaptive, fully implicit, multigrid solver, allowing higher Lewis numbers 

and lower undercoolings to be studied.  As the thin interface model has been shown to be 

independent of the length scale chosen for the mesoscopic diffuse interface width, it is 

capable of giving quantitatively correct predictions for dendritic growth velocity, V, and tip 
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radius, ρ.  Moreover, the inclusion of an anti-trapping current
[9]

 within this formulation of the 

coupled problem should ensure that the problems associated with excess solute trapping 

observed in the models of [5, 8] are overcome.   

 

For the growth of a dendrite under solute only control it was shown in [9] that the inclusion of 

an anti-trapping current effectively totally suppresses solute trapping.  However, the growth 

velocities observed for solutal dendrites may be very low compared to that for dendrites 

growing under coupled thermo-solutal control, and consequently it is not clear what effect the 

inclusion of an anti-trapping current within a coupled thermo-solutal model of dendritic 

growth will have.  That is the subject of this paper.  

 

During equilibrium solidification solute will partition between the solid and the liquid such 

that the concentrations,  and , at the interface location in the solid and liquid phases 

respectively are in a fixed ratio,  

0
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where kE is the equilibrium partition coefficient and can be obtained from the location of the 

liquidus and solidus lines on the phase diagram.  This partitioning of solute ensures that the 

chemical potentials on either side of the interface remain equal. However, as we depart from 

equilibrium by increasing the growth velocity, V, either by undercooling the melt or by 

imposing large thermal gradients to effect rapid heat extraction, the actual ratio   

moves away from kE and begins to approach 1.  This process of solute trapping has been 

shown by Aziz
[13, 14]

 to give rise to a velocity-dependant partition coefficient, k(V), which 

follows the relationship 

00 / ls cc

 

β
β

+
+

=
1

)( Ek
Vk            (2) 

 

 3



where β is a dimesionless growth velocity which is generally written as either β = V/VD, 

where VD is a characteristic diffusive velocity for atoms at the solid-liquid interface, or as 

β = Vλ/Di, where λi is a measure of the solid-liquid interface width and Di is an interface 

diffusion coefficient.  In this latter case β takes the form of an interface Peclet number.   

 

Description of the Model 

The starting point for our investigation into the extent of solute trapping within coupled 

thermo-solutal phase-field models of solidification is the definition of a free energy 

functional,  
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where φ(x, t) is the phase variable, which takes values +1 in the solid phase and -1 in the 

liquid phase, c(x, t) is the local concentration of component B in A and T is the absolute 

temperature.  σc and σφ are the gradient entropy coefficients which ensure the increase in 

entropy throughout solidification, although here, as in most other phase-field simulations, we 

assume σc = 0, while σφ is related to the width of the diffuse interface, W, via the relation 

σφ = W
2
H.  f(φ, c, T) is the local free energy which may be written,  
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where the first term on the right-hand side is the sum of the free energies of the pure materials 

with melting temperature TM, and has the standard form of a double-well potential with barrier 

height H,  
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while the second term is the free energy due to the solute addition.  The form of fAB(φ, c, T) 

has been derived in [10] and [15] on the basis of the equilibrium properties that follow from 

the two conditions 
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where µE is the spatially uniform value of the chemical potential.  The first condition is used 

to determine the form of the equilibrium partition coefficient, kE, and the equilibrium 

concentration profile while the second leads to the form of fAB(φ, c, T), which is given as, 
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where R is the universal gas constant, ν0 is the molar volume (which we assume constant), m 

is the slope of the liquidus line, ∆T = TM - T is the undercooling.  )(~ φg  is an interpolating 

function that satisfies the conditions 1)1(~ ±=±g  and 0)1(~ =±′g  , and  
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where sε~  and lε~  are the free energy densities of the pure solid and pure liquid phases 

respectively.   

 

The evolution of the phase and concentration fields are given by  
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where Kφ  is the atomic mobility at the interface and 

 

)(0 φν
Dq

RT
K

M
c =                      (11) 

 

where D is the diffusivity of the solute in the liquid phase and q(φ) is an interpolating 

polynomial that describes how the diffusivity varies across the solid-liquid interface.  For an 

asymmetric system, which is appropriate to solute transport (i.e. the diffusivity in the solid is 

very much smaller than that in the liquid), we require q(1) = 1 and q(-1) = 0.   

 

Here the first term inside the bracket in Eq. (10) is a manifestation of Fick's law for diffusion 

in the liquid while the second term is an anti-trapping current as first proposed by [9], which 

takes the form,  
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where c∞ is the far-field solute concentration, a is an adjustable parameter which controls the 

magnitude of the anti-trapping current, the value of which will be discussed later and u is a 

dimensionless variable given by  
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Here the interpolating function )(~ φg  may be replaced by the function h(φ).  This is permitted 

as )(~ φg  enters into the equations for the evolution of both the phase and concentration fields, 

but the actual requirements on the interpolating function are less stringent in the concentration 

equation than in the phase equation
[15]

.  Specifically, while it is still required that h(±1) = ±1, 

we do not require h'(±1) = 0, which subsequently allows the simpler choice h(φ) = φ to be 

made.  
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The purpose of the anti-trapping current is to provide a solute flux normal to the diffuse 

interface from the solid into the liquid thus counterbalancing the tendency of phase-field 

models to display unphysically high levels of solute trapping.  This tendency for solute 

trapping is an inherent property of diffuse interface models that do not include an anti-

trapping current and gives rise to a level of solute trapping that is dependant upon the width 

chosen for the diffuse interface.  As the interface width is generally set considerably larger 

than could be considered physical, excess amounts of solute trapping result.   

 

Evaluating the variational derivative (8) and applying the non-dimensionalisations 
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where m is the slope of the liquidus line, L is the latent heat on fusion and cp is the specific 

heat, the phase and concentration equations may be obtained as
[10] 
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where M is the scaled slope of the liquidus line, 
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λ is a coupling parameter,  
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τ is a characteristic time for attachment at the interface,  
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Finally, the temperature equation is just the standard thermal diffusion equation with a source 

term, namely 
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In order to formulate the phase-field model in such a way that the results do not depend upon 

the width, W, of the diffuse interface the thin-interface analysis is applied, in which the 

system is transformed onto a local orthogonal curvilinear co-ordinate system (ξ1, ξ2, ξ3) which 

co-moves with the interface and in which ξ3 measures signed distance from the level line 

φ = 0.  Asymptotic expansions of the solution,  
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on the inner and outer regions of the solid-liquid interface are matched to obtain an equation 

set in which the solution is independent of the width of the diffuse interface.  Here, p is a 

Peclet number given by p = WV/D, where V is the local growth velocity,  
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which is also applied to both U and φ.   

 

Physically, this analysis corrects for the effects of lateral concentration gradients along the 

interface, interface stretching (the fact that when curved a diffuse interface is longer on one 

side than the other) and the excess solute trapping described above.   

 

The analysis has previously been presented for a coupled model by [10], wherein results 

identical to that for the solute only case studied in [9] were recovered.  For this reason we do 

not here repeat the analysis, only drawing attention to some points that we consider salient to 

a discussion of solute-trapping phenomena within the coupled phase-field model.  

Specifically, we note that the first order (in p) solutions for U and θ are,  
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where p(φ0) is the function  
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and Eq. (24) is the same as that obtained for the thin interface analysis of the isothermal solute 

problem
[9]

.  If we now adopt h(φ) = φ, this being the simplest function that satisfies the 

restrictions on h above, and  a = 1/(2√2) which has been shown in the isothermal case to 

eliminate the jump in chemical potentials on either side of the interface
[15, 9]

, with q(φ) = ½(1-

φ) as defined above we have p(φ0) = (φ0 - 1).  That is, the form of the integral in Eq. (24) 

reduces to the same form as that in Eq. (25), which is the also the same form as in the thin 

interface analysis of the pure thermal problem.   

 

In the isothermal model other values of a are permitted should non-zero amounts of solute 

trapping be desired, a point specifically comment upon by [9], although this does require a re-

evaluation of the integral  
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However, in the coupled model the situation is more restrictive in that we require Ui and θi to 

have the same form in order for the analysis to be tractable, a point that is perhaps not clear in 

the derivation of the coupled model presented in [10], as the substitution h(φ) = φ and 

a = 1/(2√2) have already been made when the integrals for U1 and θ1 are formulated.  

However, the implication of this is that once the choice h(φ) = φ  has been made, the thin 

interface analysis for the coupled thermo-solutal model can only be performed for a = 1/(2√2) 

and that this is therefore the only value for which the model is valid. Understanding how the 

anti-trapping current with a = 1/(2√2) effects the solute trapping behaviour of the coupled 

model is therefore an important issue.   

 

Following the thin-interface analysis given in [10] we arrive at the equations governing the 

evolution of the coupled concentration, thermal and anisotropic phase fields, non-

dimensionalised against the characteristic length and time scales W0 and τ0 respectively as,  
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where ψ = arctan(φx/φy) is the angle between the normal to the interface and the x-axis and 

A(ψ) = 1 + ε.cos(ηψ) is an anisotropy function with strength ε and mode number η.  The 

characteristic length and time scales are given by  
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The dimensionless coupling parameter, λ, results from the thin interface analysis and is given 

as
[10, 9]

,  
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where d0 is the chemical capillary length and the constants a1 and a2 are given by 
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with K as given in Eq. (27) and 
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Numerical Methods 

The governing equations are descritized using a finite difference approximation based upon a 

quadrilateral, non-uniform, locally-refined mesh with equal grid spacing in both directions.  

This allows the application of standard second order central difference stencils for the 

calculation of first and second differentials, while a compact 9-point scheme has been used for 

Laplacian terms, in order to reduce the mesh induced
[16]

 anisotropy.  The mesh data is stored 

in a quadtree data structure as in [17, 
18

]. 

 

In order to ensure that sufficient levels of refinement occur around the interface region and 

that the extreme multi-scale nature of the thermal and solutal diffusion fields at high Lewis 

numbers are handled appropriately, adaptive refinement is based upon an elementwise 

gradient criterion given by 
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where h|ν | is the element size on the finest level of refinement and EC and ET are user-defined 

constants which control the respective effect of the concentration and thermal fields relative to 

the phase-field.  These are compared to two tolerances,  and .  If, at any location 

within the domain  the mesh is refined at that location while conversely if 

the mesh is permitted to coarsen at that location (subject to geometric constraints).  In order to 

+
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guarantee that the solution is sufficiently resolved, a number, Ns, of extra (safety) layers of 

elements may be added to those marked by the gradient criterion at each level. 

 

As discussed elsewhere
[19, 20]

 if explicit temporal descretization schemes are used for this 

problem the maximum stable time-step is given by ∆t ≤ Ch
2
, where C = C(λ, Le, ∆T), with 

C ≤ 0.001 found under certain conditions leading to unfeasibly small time-steps.  

Consequently, an implicit temporal descretization is employed here based on the second order 

Backward Difference Formula, which is an implicit linear 2-step method, with variable time-

step.  Rewriting Equations (28) - (30) in operator form  
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the second order Backward Difference Formula (BDF2) with variable time-stepping can be 

written as  
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where, r = ∆tk/∆tk-1 and the choice of time-steps is based on a set of local error estimators in φ, 

U and θ as described in [12].  The method leads to second order convergence in both time and 

space and the method can be shown to be A-stable
[21]

, so is therefore appropriate for stiff 

systems of differential equations.   

 

When using implicit time discretisation methods on heavily refined finite difference grids it is 

necessary to solve a very large, but sparse, system of non-linear algebraic equations at each 

time-step.  Multigrid methods are among the fastest available solvers for such systems and in 

this work we apply the non-linear generalization known as FAS (full approximation scheme 

[22]).  The local adaptivity is accommodated via the multilevel algorithm originally proposed 

by Brandt
[23]

.  The interpolation operator is bilinear while injection is used for the restriction 
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operator.  For smoothing the error we use a fully-coupled nonlinear weighted Gauss-Seidel 

iteration with  
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The number of pre- and post-smoothing operations required for optimal convergence has been 

investigated within the context of phase-field simulation in [12, 11].  Based on that work we 

have used V-cycle iteration with 2 pre- and 2 post- smoothing operations at each level. 

 

A major property of the multigrid method is h-independent convergence, which means that 

the convergence rate does not depend on the element size.  This behaviour is vital in respect 

of being able to solve the extreme multi-scale problem arising from coupled thermo-solutal 

phase-field simulations. 

 

Results 

Validation of our numerical scheme against both other coupled phase-field models
[10, 7]

 and, 

where available, against analytical solutions for pure thermal and pure solutal growth have 

been reported previously
[11, 12, 20]

, and is therefore not repeated here.  The correct 
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implementation of the anti-trapping current within the model has been validated by reducing 

the coupled model to the pure solutal case at solutal undercooling Ω by setting 1/Le → 0, 

removing Eq. (30) from the equation set and fixing the system temperature everywhere at 

θsys = -Ω with Mc∞ = 1 - (1-kE) Ω [see 19].  By so doing it is possible to explore the behaviour 

of the anti-trapping current during the growth of a dendrite under solute only control, wherein 

we find, in agreement with [9], that solute trapping is suppressed and that the curvature 

corrected partition coefficient  

 

])1(1[ 0
0 ρ

d
kk

c

c

l

s −−=                     (46) 

 

recovers the equilibrium partition coefficient, kE, to a very high degree of precision.  

Specifically, for Ω = 0.15 and kE = 0.3 we recover k = 0.3000 ± 0.0001, where this has been 

tested for λ between 1 and 5 and for h between 0.78 and 0.19 (corresponding to 11 to 13 

levels of refinement respectively on a domain of [-800,800]
2
).  

 

We now consider the partitioning behaviour of the model when we allow a dendrite to grow 

under coupled thermo-solutal control.  Fig. 1 shows the measured (curvature corrected) 

partition coefficient for a large number of simulations as a function of the dimensionless 

velocity.  All the simulations in this sequence have kE = 0.3, Mc∞ = 0.05, λ = 5 and γ = 0.02 

and were run with a fixed minimum grid spacing of h = 0.78, although the domain size varied 

between simulations such that interactions between the domain boundary and the thermal 

field were not encountered.  The growth velocity of the dendrite was controlled by varying the 

undercooling, ∆, in the range 0.1 � 0.8.  Lewis numbers in the range 200 - 10000 were 

considered and are denoted by the symbols in the figure.  It is very clear from the figure that 

despite the presence of an anti-trapping current the measured partition coefficient varies 

strongly as a function of velocity, with the equilibrium value, kE, only being recovered as the 

velocity tends to zero.  Moreover, although we have shown elsewhere
[20]

 that the actual 

growth velocity is a strong function of Le, no explicit Lewis number dependence is observed 
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with all the points corresponding to Lewis numbers in the range 200-10 000 laying, to a very 

good approximation, on the same curve.  

 

As described above, in experimental solidification studies the observed velocity dependant 

partition coefficient, k(V), is described by the relationship due to Aziz
[13, 14]

 given in Eq. (1).  

Should this relationship also hold for the phase-field model, plotting the group {(k-kE)/(1-k)} 

against V should yield a straight line with gradient 1/VD = λi/Di.  A plot of this type is shown 

in Fig. 2, where we now also include data for values of the coupling parameters, λ, of 1 and 2 

as well as the data shown previously for λ = 5.  As before all simulations are run with 

kE = 0.3, Mc∞ = 0.05, γ = 0.02 and with a minimum h of 0.78.  The Lewis number in the 

simulations is, as before, in the range 200 - 10 000, although for clarity we have not indicated 

the Lewis number in the plot.  This is reasonable as we have already demonstrated above that 

there is no explicit Lewis number dependency.  A number of points are apparent from the 

figure.   

 

Firstly, despite being formulated within the thin interface limit described by [9, 10] the model 

does have an interface width dependence in so much as solute-trapping is concerned, with a 

more diffuse interface giving rise to higher levels of solute-trapping.  Despite this, in respect 

of the other main predictive quantities obtained from the model (i.e. V, ρ) the results obtained 

from the model are indeed independent of the width of the diffuse interface.  This  has been 

shown both by Ramirez & Beckermann
[7]

 and ourselves
[19, 12]

, with further evidence being 

presented in Figure 3, where we show that models with different values of λ, and which 

therefore display different solute trapping characteristics, give mutually consistent values for 

V and ρ.  Note that here, due to the requirement to keep the group W0V/D < 1
[15]

, the range of 

accessible values of V decreases as λ increases.   

 

The second point that we note is that the data do, to a reasonable approximation, fit the Aziz 

model in respect of their velocity dependence.  Moreover, if we calculate the slope of the 

regression line in each of the three cases we obtain, 0.56, 1.09 and 2.75 (for λ = 1, 2 and 5 

respectively), these values displaying an almost exact 1 to 2 to 5 ratio.  Equating the gradient 
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of the regression line with λi/Di and noting that λi is the width of the diffuse interface, which 

within the phase-field model is W0, itself simply a linear scaling of the coupling parameter λ, 

we may obtain Di = 1.81.  Similar results can be obtained by varying λ over a wider parameter 

space while keeping all other parameters, including ∆, fixed, an example of which is shown in 

Fig. 4. Here the model parameters are kE = 0.3, Mc∞ = 0.05, γ = 0.02, ∆ = 0.25, Le = 200 and 

we have plotted the group {(k-kE)/V(1-k)} against λ so that, as above, the gradient may again 

be directly associated with 1/Di.  Here we obtain Di = 1.91 by associate λi with W0 (note 

however that 1/gradient of the line is 1.69 as the graph is plotted against λ, not W0, to convert 

to W0 the scaling factor of a1 also needs to be applied).  

 

Summary and Conclusions 

We have used the phase field model due to Ramirez & Beckermann
[7, 10]

, modified to include 

an implicit solution capability, to explore how the inclusion of an anti-trapping current within 

a model of coupled thermo-solutal growth formulated in the thin interface limit actually 

affects the observed levels of solute trapping during dendritic growth.  Contrary to published 

results for pure solutal models we find that the inclusion of such an anti-trapping current does 

not lead to the recovery of the equilibrium partition coefficient, except in the limit of very 

slow growth. At higher growth velocities non-vanishing amounts of solute trapping are 

observed.  Moreover, the extent of this solute trapping is dependant upon the width of the 

mesoscopic diffuse interface.  Indeed, to a good approximation we find that our model 

recovers the Aziz solute trapping law with a constant interface diffusivity, that is that the 

solute trapping behaviour may be expressed as a function of the group β = Vλi/Di.  This result 

has significant implications for the simulation of the growth of dendrites under coupled 

thermo-solutal control.   

 

In particular it has hitherto been assumed that provided the phase-field model is constructed 

within the thin interface formalism, quantitatively valid results may be obtained independent 

of the width of the diffuse interface, leaving this parameter to be chosen for computational 

expediency.  We now show that this strictly is not the case and that actually λ, and hence W0, 

should be chosen so as to match the expected levels of solute trapping. In fact, this is not a 
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particularly stringent condition as both the results presented here and elsewhere [12, 7, 10] 

suggest that V, ρ and σ* do not show a strong dependence on λ, and therefore that they are 

only weakly effected by solute trapping.  This will be particularly true at low undercoolings, 

where the levels of solute trapping are expected to be low.  Conversely, at higher 

undercoolings and where quantitative predictions of segregation behaviour are required λ may 

no longer be considered to be a free parameter, wherein it becomes appropriate to enquire as 

to the appropriate value of λ to yield quantitatively valid solute trapping results.   

 

However, obtaining quantitative evidence for what might constitute an appropriate level of 

solute trapping is far from straight forward.  Experimentally, this is generally presented as a 

diffusive velocity (VD = Di/λi), with estimates varying by up to two orders of magnitude in 

closely related systems (e.g. from VD = 0.37 m s
-1

 in Si-As [24] to VD = 32 m s
-1

 in Si-Bi 

[25]).  Moreover, there is the possibility that VD is dependant upon kE, with values of kE close 

to unity giving values of VD towards the lower end of the spectrum of values.  For metal (Al) 

based systems, which is probably the closest match to the parameter set used here, [26] have 

reported values for VD that may be around 5-20 m s
-1

. Using the results from above we would 

estimate the equivalent (dimensional) diffusive velocity operating here as (1.91/W0)D/d0.  We 

have shown previously
[20]

 that the parameter set used here is consistent with Cu- 5wt.% Ni, 

wherein we obtain D ≈ 3.2 × 10
-9

 m
2
s

-1
 [27] and d0 = 3.7 × 10

-10
 m [28] or VD ≈ (19/W0) m s

-1
.  

This would suggest that W0 should be adjusted to be between 1-3 to give realistic values of 

solute trapping.   
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Fig. 1. Measured partition coefficient, k, as a function of growth velocity for the coupled 

thermo-solutal phase-field model with kE = 0.3, Mc∞ = 0.05, λ = 5 and γ = 0.02.  Velocity is 

varied via altering the undercooling ∆.  

 

 

 

 

 

Fig. 2. Solute partitioning behaviour as a function of velocity showing good general 

agreement with the Aziz model and a dependence upon coupling parameter, λ, (and hence 

diffuse interface width)  
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Fig. 3. Dendrite tip radius as a function of velocity for different values of λ, showing that 

although λ effects the solute trapping characteristics of the dendrite, mutually consistent 

values for the tip velocity and radius are obtained independent of the value used for λ. 

 

 

 

 

 

Fig. 4. Solute partitioning behaviour as a function of the coupling parameter, λ, showing good 

general agreement with the Aziz model.  
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