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Phase-field modelling of rapid solidification in alloy systems: 
Spontaneous grain refinement effects 

A M Mullis 
Institute for Materials Research, University of Leeds, Leeds, LS2-9JT, UK.  
 
E-mail: A.M.Mullis@leeds.ac.uk 
 
Abstract. Phase-field modelling of rapid alloy solidification, in which the rejection of latent 
heat from the growing solid cannot be ignored, has lagged significantly behind the modelling 
of conventional casting practises which can be approximated as isothermal.  This is in large 
part due to the fact that if realistic materials properties are adopted the ratio of the thermal to 
solute diffusivity (the Lewis number) is typically 103 - 104, leading to severe multi-scale 
problems. However, use of state-of-the-art numerical techniques such as local mesh adaptivity, 
implicit time-stepping and a non-linear multi-grid solver allow these difficulties to be 
overcome. Here we describe how the application of this model, formulated in the thin-interface 
limit, can help to explain the long-standing phenomenon of spontaneous grain refinement in 
deeply undercooled melts. We find that at intermediate undercoolings the operating point 
parameter, σ*, may collapse to zero, resulting in the growth of non-dendritic morphologies 
such as doublons and ‘dendritic seaweed’. Further increases in undercooling then lead to the 
re-establishment of stable dendritic growth. We postulate that remelting of such seaweed 
structures gives rise to the low undercooling instance of grain refinement observed in alloys.  

1. Introduction 
Dendritic solidification is a subject of enduring interest within the scientific community, both because 
dendrites are a prime example of spontaneous pattern formation and due to their pervasive influence 
on the engineering properties of metals.  One long-standing problem with regard to the dendritic 
solidification of metals has been that of spontaneous grain refinement in undercooled pure melts, first 
reported to occur in Ni by Walker [1] in 1959.  At a well defined undercooling, ΔT* = 140 - 150 K, 
Walker observed an abrupt transition from a coarse columnar grain structure to a fine equiaxed 
structure, with a reduction in grain size of at least one order of magnitude. Similar behaviour was 
found in Co, with a value for ΔT* of ≈ 180 K.  This effect has subsequently been identified in other 
pure metals [2, 3, 4] and in a range of alloy systems [5, 6, 7, 8, 9, 10, 11, 12], in which a more 
complex evolutionary sequence is often observed as the undercooling is increased. At low 
undercooling an initially columnar growth pattern is observed which gives way to an equiaxed grain 
structure as the undercooling is increased beyond a critical value, . At yet higher undercooling a 
second region of columnar growth is observed which, in most systems, is replaced by a second region 
of equiaxed growth, the critical undercooling for this second grain refinement transition being .   

*
1TΔ

*
2TΔ

In many of the systems in which spontaneous grain refinement is observed simultaneous 
measurement of the dendrite growth velocity has also been undertaken. As first demonstrated by 
Willnecker et al. [2] in levitation melted Ni, such measurements reveal an apparent correlation 
between the velocity-undercooling relationship and grain refinement.  Below ΔT*, growth velocity can 
be adequately represented by current dendrite growth models, with V ∝ ΔTβ, β > 1. Above ΔT* the 
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velocity-undercooling relationship is approximately linear.  In alloy systems this transition is usually 
observed to occur coincident with the  transition. In most cases the transition to a grain refined 
microstructure at the lower undercooling, , does not appear to have any obvious signature in the 
velocity undercooling curve. Moreover, differences between the as-solidified microstructures of the 
two grain refined regions indicate that there may be subtle differences in the underlying grain 
refinement mechanism.  In the grain refined structures found at high undercooling the solute 
segregation pattern is spheroidal about a small dendrite fragment, whereas in grain refined materials 
formed at low undercooling some of the grains appear to contain small, equiaxed structures [13].   

*
2TΔ
Δ *

1T

The origins of the effect are controversial. Early theories suggested a range of mechanisms which 
included nucleation ahead of the solidification front induced by the pressure pulse associated with 
solidification [1], recrystallisation, either during or immediately after solidification [14, 15], or the role 
of minor solute additions [16, 17, 18]. However, more recent theories regarding the origin of this 
phenomenon tend to invoke fragmentation of the primary crystal, either during [ 19 , 20 ] or 
immediately after [ 21 , 22 ] recalescence.  We have argued previously that the occurrence of a 
discontinuity in the velocity-undercooling curve [2, 23] coincident with the onset of grain refinement 
would tend to suggest the former of these possibilities is more likely, as would an apparent change in 
the morphology of the growth front revealed by high-speed imaging [24].  Specifically, we have 
suggested that a tip-splitting instability at the dendrite tip leads to the growth of an unstable ‘dendritic 
seaweed’ structure, which subsequently remelts to give the observed grain-refinement. Phase-field 
modelling of the thermally controlled solidification of a pure material at high undercooling [25] appear 
to support this suggestion, as does the observation, in deeply undercooled ultra-high purity Cu, of a 
‘frozen in’ seaweed morphology [26] above some critical undercooling. Moreover, above this critical 
undercooling a discontinuity in the velocity-undercooling curve was observed identical in character to 
that found in materials that display spontaneous grain refinement.  

However, the dendritic fragmentation model of Schwarz et al. [21, 22] is perhaps still the most 
widely accepted model for spontaneous grain refinement. The model postulates that two characteristic 
timescales can be defined for dendritic growth from an undercooled melt. The first is the breakup time, 
τbu, which is the time required for fragmentation of the side branches due to remelting and Rayleigh 
instability and is a monotonic function of the dendrite trunk radius, with small radii giving short 
breakup times. If, as seems likely from observations of dendritic growth in transparent systems such as 
xenon [27], dendrites are self-similar when scaled by the tip radius, ρ, this is equivalent to τbu being a 
monotonic function of ρ. The second timescale is the plateau time, τpl, which is the time the melt 
remains at, or around, the melting temperature during recalescence and is determined by the 
macroscopic heat extraction rate. The theory postulates that grain refinement occurs when τbu < τpl, 
which corresponds to the tip radius being below some critical value, ρ*, determined by the heat 
extraction rate. Consequently, if it is assumed that ρ varies with undercooling as predicted by marginal 
stability theory [28, 29] the model appears to offer a natural explanation for there being a single grain 
refinement transition in pure materials and two transitions in alloy systems (see Fig. 1).  

The dependence of the dendrite tip radius upon undercooling as predicted by marginal stability 
theory for alloy systems, with its characteristic local minimum followed by a local maximum, has very 
much been a cornerstone of rapid solidification theory for the past 20 years.  However, since the 
advent of microscopic solvability theory [30, 31] there can be considered to be no theoretical basis for 
marginal stability theory and the experimental evidence in support of the existence of either a local 
minimum, or a local maximum, in the tip radius is scant.  Transparent analogue casting alloys, such as 
succinonitrile-acetone, in which direct measurement of the dendrite tip radius is possible [32], can 
only be undercooled by very small amounts so that the predicted undercooling range in which a local 
minimum might be observed is not accessible.  In metallic systems only an indirect estimate of the tip 
radius is possible, generally by assuming that some characteristic microstructural length-scale, such as 
the grain size or dendrite trunk radius, where observable, scales as a constant multiple of the tip radius.  
However, although there is plentiful evidence of an initial decrease in microstructural length scale in 
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the low undercooling region, it has proved almost impossible to make a continuous extension of such 
an analysis into the high undercooling regime where a local minimum might be inferred.   

 

Figure 1. Schematic representation of the radius 
of a dendrite growing under coupled thermo-
solutal control as predicted by marginal stability 
theory and how this related to the Schwarz 
model for grain refinement. It is assumed that 
for a particular macroscopic heat extraction rate 
there will be a critical radius, below which 
remelting of the dendrite will occur. If the form 
of the radius curve obtained from marginal 
stability is correct this would lead to two grain 
refinement transitions.  

 
Recently though it has become possible to use quantitative phase-field modelling to simulate the 

growth of dendrites under coupled thermo-solutal control [33, 34], breaking the previous reliance on 
marginal stability models for estimating the tip radius in alloy systems where growth is sufficiently 
rapid that the isothermal approximation is no longer valid. Such coupled thermo-solutal simulations 
are extremely computationally challenging due to the severe multi-scale nature of the problem and it is 
only with the application of advanced numerical techniques such as adaptive meshing, implicit time-
stepping and efficient multigrid solvers [35] that investigations into dendritic growth in undercooled 
alloy systems have become feasible over significant regions of the available parameters space, 
including at high Lewis number [36] (Lewis number, Le, is the ration of the thermal to solutal 
diffusivity, α/D). In fact, such studies appear to indicate that, although the occurrence of a local 
minimum in ρ as the undercooling is increased is indeed ubiquitous in the solidification of alloy 
systems, as predicted by marginal stability, a subsequent local maximum in ρ at yet higher 
undercooling is not [37]. In fact, in a systematic study of the calculated radius-undercooling behaviour 
of alloy systems as a function of alloy concentration, partitioning strength and Lewis number [38] 
were unable to identify any part of the studied parameter space in which a maximum in ρ could be 
observed as the undercooling was increased.  

These calculations of the dendrite tip radius in undercooled alloy systems present a potentially 
serious problem for the accepted model of spontaneous grain refinement in alloy systems. If the radius 
does not display a local maximum as the undercooling is increased, then it is difficult to reconcile how 
a break-up time that scales monotonically with tip radius can predict two region of grain refined 
microstructure, nor indeed why the growth of grain refined structures above  should give way to 
columnar growth as the undercooling is increased. However, these calculations also revealed that the 
tip selection parameter, σ*, did show this pattern of local minimum followed by local maximum as the 
undercooling were increased. In fact, qualitatively, the similarities between the behaviour of σ* as 
predicted by the phase-field model and the form of the curve shown in Fig. 1 are remarkable. In this 
paper we explore whether this behaviour observed in σ* is related to spontaneous grain refinement.   

*
1TΔ

 
2. Description of the Model 
The model adopted here is based upon that of [33] in which, following non-dimensionalization against 
characteristic length and time scales, W0 and τ0, the evolution of the phase-field, φ, and the 
dimensionless concentration and temperature fields U and θ are given by 
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where, for 4-fold growth, A(ψ) = 1 + ε.cos(4ψ), d0 is the chemical capillary length, kE is the partition 
coefficient L and cp are the latent and specific heats respectively and λ is a coupling parameter given 
by λ = D/a2 = a1W0/d0 with a1 and a2 taking the values 5√2/8 and 0.6267 respectively [39]. U and θ are 
related to physical concentration, c, and temperature, T, via  
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where m is the slope of the liquidus line, which has dimensionless form 
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The governing equations are descritized using a finite difference approximation based upon a 

quadrilateral, non-uniform, locally-refined mesh with equal grid spacing in both directions.  This 
allows the application of standard second order central difference stencils for the calculation of first 
and second differentials, while a compact 9-point scheme has been used for Laplacian terms, in order 
to reduce the mesh induced [40] anisotropy.  To ensure sufficient mesh resolution around the interface 
region and to handle the extreme multi-scale nature of the problem at high Lewis number local mesh 
refinement (coarsening) is employed when the weighted sum of the gradients of φ, U and θ exceeds 
(falls below) some predefined value.   

It has been shown elsewhere that if explicit temporal descretization schemes are used for this 
problem the maximum stable time-step is given by Δt ≤ Ch2, where C = C(λ, Le, ΔT), with C varying 
from ≈ 0.3 at Le = 1 to C ≤ 0.001 at Le = 500 [41], leading to unfeasibly small time-steps at high 
Lewis number.  Consequently, an implicit temporal descretization is employed here based on the 
second order Backward Difference Formula with variable time-step.   

When using implicit time discretisation methods it is necessary to solve a very large, but sparse, 
system of non-linear algebraic equations at each time-step.  Multigrid methods are among the fastest 
available solvers for such systems and in this work we apply the non-linear generalization known as 
FAS (full approximation scheme [42]). The local adaptivity is accommodated via the multilevel 
algorithm originally proposed by Brandt [43]. The interpolation operator is bilinear while injection is 
used for the restriction operator.    For smoothing the error we use a fully-coupled nonlinear weighted 
Gauss-Seidel iteration where the number of pre- and post-smoothing operations required for optimal 
convergence is determined empirically [41].  Full details of the numerical scheme are given in [35, 44]. 
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3. Results 
ows the variation of (a) the dendrite tip velocity, V, and (b) the equivalent parabolic [34] tip Figure 2 sh

radius, ρ, as a function of the dimensionless undercooling, Δ, for three values of the anisotropy 
parameter ε, namely 0.020, 0.015 and 0.010. Fig. 3 shows the effective radius selection parameter, σ*, 
calculated using the methodology described in [34]. Except for the anisotropy parameter all three sets 
of simulations were run under identical conditions with Mc∞ = 0.05, Le = 200, λ = 1 and kE = 0.3. All 
simulations are run on a domain of Ω = [-1600:1600]2 using a maximum of 12 levels of refinement, 
giving a minimum mesh size, h, of 0.78.  This is equivalent, were a uniform mesh to have been used, 
of a mesh size which is 212 × 212. For each parameter set simulations were run over the undercooling 
range Δ = 0.2-0.8. Below Δ = 0.2 growth is very slow leading to excessive computation times while 
above Δ = 0.8 the requirement that W0V/D << 1 is not satisfied. 
 

 
 

igure 2. The dendrite growth velocity (a) and tip radius (b) as predicted by the phase-field model as a 

At ε = 0.020 the results are as previously reported, with the velocity increasing monotonically with 
und

ng the anisotropy strength from ε = 0.020 to ε = 0.015 the effect on the 
rad

F
function of undercooling and anisotropy strength.  
 

ercooling and displaying, to a very good approximation, a power-law dependence with exponent 
≈ 2.3. The radius displays a minimum at intermediate undercooling and subsequently increases at high 
undercooling. This results in an operating point parameter, σ*, which initially decreases with 
increasing undercooling before passing through a local minimum to increase with undercooling. At yet 
higher undercooling σ* passes through a local maximum so at the highest undercoolings studied σ* is 
decreasing rapidly with increasing undercooling. We have previously argued [38] that this behaviour 
can be rationalised if the competition between solutal and thermal control of dendritic growth is 
manifest not in the tip radius, as for instance is evident in marginal stability models of dendrite growth 
[29], but in the operating point parameter, σ*. We also note that in the limit Δ → 0, we find σ* ≈ 0.07, 
in good agreement with [34]. 

If we now consider reduci
ius and velocity is broadly in line with what we might expect. The radius follows the same trend as 

at the higher anisotropy level, but with a larger radius being observed at all undercoolings.  This is to 
be expected as σ* is a monotonically decreasing function of ε. The velocity is correspondingly 
reduced, in line with the expectation that the Peclet number is only very weakly dependent upon ε. σ* 
is reduced at all undercoolings and, like the tip radius, displays the same general form as at the higher 
anisotropy level, although in this case we note that the difference between the minimum and maximum 
values is also significantly reduced.  
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Finally we consider a further reduction in the anisotropy strength to ε = 0.010, wherein a 
significant change in behaviour is observed. If we consider the behaviour of σ* first we observe that, 
in line with expectation, the value of σ* as Δ → 0 is reduced, and as with the curves for ε = 0.020 
and 0.015, the value of σ* initially decreases as Δ is increased. However, for undercooling between 
Δ = 0.4625 and 0.5875 stable dendritic growth was not observed, with the solid nuclei used to seed 
solidification initially developing a preferred four-fold growth morphology but then experiencing a 
bifurcation at the tip which ultimately leads to a tip-splitting instability in the growing crystal. As a 
consequence of this tip splitting instability, in the undercooling range Δ = 0.4625 - 0.5875 neither a 
value for ρ nor σ* could be obtained. At undercoolings above Δ = 0.5875 stable dendritic growth is 
once again established. From the values of σ* either side of this undercooling range it appears that this 
growth instability is consistent with a collapse to zero in the value of σ*. For undercoolings either side 
of this unstable range the measured tip radius appears to be abnormally large, which is also consistent 
with the hypothesised collapse of σ*, with small σ* giving rise to large values of ρ. In the unstable 
growth regime we have not attempted to determine a characteristic growth velocity as the 
instantaneous growth rate is subject to significant fluctuations as the morphology of the tip changes. 
However, once stable dendritic growth is re-established in the high undercooling regime, we note that 
the measured velocities are consistent with a power-law relationship with the same exponent as in the 
low undercooling regime.  
 

Figure 3. Calculated operating point parameter, 
σ*, as predicted by the phase field model as a 
function of undercooling and anisotropy 
strength. At ε = 0.01 stable dendritic growth is 
not observed in the undercooling range 
0.4625 ≤ Δ ≤ 0.5875. Instead a tip-splitting 
instability leads to the growth of ‘dendritic-
seaweed’. It is suggested that remelting of this 
seaweed structure gives rise to the grain-refined 
microstructures observed at low undercoolings.  

 
4. Discussion 
The breakdown of dendritic growth in phase-field simulations of solidification at high undercooling 
has been noted by a number of groups and has generally been attributed to a competition between 
capillary and kinetic anisotropies, with capillary effects dominating at low undercooling and kinetic 
effects dominating at high undercooling. In the case where these anisotropies are oppositely directed, 
doublon or dendritic seaweed morphologies, which are characteristic of growth at low anisotropy, may 
be observed when the competing effects are of similar magnitude. However, we do not believe that 
this is the case here. Firstly, the model has been constructed in the thin-interface limit, wherein the 
choice of parameters adopted here should eliminate all kinetics from the model and, secondly, the 
stable dendritic growth observed in the high undercooling regime has the same orientation as in the 
low undercooling regime (i.e. in both cases the dendrite arms are oriented towards the sides of the 
computational domain, which is the direction of the applied capillary anisotropy). This is inconsistent 
with an oppositely directed kinetic anisotropy which, if present, would result in growth directed 
towards the corners of the computational domain. By setting ε = 0 the model has also been tested at all 
undercoolings considered here to determine whether there are effects resulting from mesh induced 
anisotropy, and this appears not to be the case.  
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For the ε = 0.010 case given in Fig. 3, the maximum in σ* observed at higher anisotropies is quite 
poorly developed, possibly by virtue of being shifted to somewhat higher undercooling than for the 
higher anisotropy simulations. Therefore, in the particular case considered here a second region of 
dendritic seaweed growth was not observed at higher undercoolings within the undercooling range 
considered. This may be an artefact of the rather low Lewis number (Le = 200) used in these 
simulations. In most metals Le is typically of the order 104 while in [38] we report that increasing the 
Lewis results in a more pronounced maximum in σ* and a steeper decline at high undercooling. It is 
currently a matter for investigation as to whether or not such simulations do result in a second region 
of doublon formation, although the simulations become much more computationally intensive as the 
Lewis number is increased due to the multi-scale nature of the problem.  

 
5. Summary and Conclusions 

A phase-field model of model of coupled thermo-solutal growth, constructed in the quantitative 
thin-interface limit has been used to study the solidification of undercooled melts over a range of 
undercoolings and anisotropy strengths. At moderate to high anisotropy we observe dendritic growth 
at all undercoolings. The tip radius initially decreases with undercooling before passing through a 
local minimum beyond which it subsequently increases with undercooling. However, despite studying 
undercoolings up to 0.8 of the hypercooling limit we found no cases in which the calculated radius-
undercooling curve also displayed a local maximum. This is in distinct contrast to marginal stability 
theories of dendritic growth in which the radius should decrease with undercooling at very high 
undercooling. Consequently, if the calculated radius-undercooling curves are typical of the behaviour 
in metals, it is unlikely a simple decrease in the tip-radius below some limit indicative of remelting 
could account for spontaneous grain refinement effects in undercooled alloys. Specifically, although 
the calculated minimum in the radius could give rise to the low-undercooling region of grain-
refinement observed in many alloys (ΔT above  in Fig. 1), it could not account for grain-
refinement at high-undercooling (ΔT above  in Fig. 1), as the radius would be increasing with 
undercooling.  

*
1TΔ

*
2TΔ

We also found that at sufficiently low anisotropy a transition of the form dendritic -> 
doublon/dendritic-seaweed -> dendritic was observed as the undercooling was increased. This can be 
understood by considering the behaviour of the radius selection parameter,  σ*, which we find to be a 
non-monotonic function of the undercooling. At moderate to high anisotropy, after initially decreasing 
with increasing undercooling, σ* displays a local minimum, beyond which it increases with further 
increases in undercooling until, at yet higher undercooling it displays a local maximum. Beyond this 
second stationary point σ* declines smoothly with undercooling. However, as the anisotropy is 
decreased σ* is shifted to lower values until a point is reached at which σ* collapses to zero for the 
intermediate undercoolings for which it had displayed a minimum. It is these regions that correspond 
to the observed instance of doublon or seaweed growth, rather than the growth of dendrites. We 
speculate that it is this transition in growth morphology that gives rise to the observed transition to a 
grain-refined microstructure in alloy melts at low undercooling. Noting the strong similarity between 
the form of the curves for σ* as a function of undercooling as calculated by the phase-field model and 
that for radius as a function of undercooling in marginal stability models of solidification we further 
speculate that grain refinement at high undercooling might be a consequence of a second region of 
doublon/dendritic seaweed growth resulting from a further drop in σ* at high undercooling. This has 
not yet been observed in the model but may exist at high Lewis number.  
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