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ABSTRACT

The frequency-domain . theory of linear systems, including the root locus, is generalised
to nonlinear analytic systems. The spectrum turns out to be a subbundle .of a fibre bundle
attached to the state-space of the system. We shall approach the problem via the Lie series
and on the way show how to apply local Lie series solutions to generate a Lyapunov function
for a nonlinear stable system. Moreover, a numerical method for computing the spectrum of a
nonlinear system will be given and a number of examples will illustrate the method.

Research Report No 696

1. Introduction

~ The frequency-domain theory of linear systems is well known and widely applied in control
systems engineering. A spectral theory for nonlinear input-output systems also exists by iden-
tifying kernels of the Volterra series and using a multi-dimensional Laplace transform. However,
the theory is not particularly easy to apply because of the multi-dimensional nature of the fre-
quency responses. (See [1,2.3].) In this paper we propose a single variable frequency-domain
theory which can be applied to real systems and which directly generalises the linear theory.
In the case of nonlinear oscillations (such as the Van der Pol oscillator) the theory gives the
expected spectrum (i.e. an infinite number of poles on the imaginary axis) and we shall prove
a stability theorem for certain systems with poles in the left-half plane.

We begin with a discussion about Lie series and show, as an example of the application of
the theory, how to determine Lyapunov functions for a stable system. In the following section
we shall define the frequency-domain theory for nonlinear differential equations and in the final
section we show how to extend the theory to nonlinear systems with inputs and generalise the
linear root locus to nonlinear systems. The choice of the parameters in the root locus will be
made by an optimisation technique.

2. Lie Series

Consider the nonlinear differential equation
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We can find a local representation (in infinite-dimensional space) of the solution in the following
way. Define
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Then
gi=gradg; - f = Lygi = gi+1-

Hence, if we introduce the infinite vector G = (g1, g2, -)*, we obtain the system

G =AG, G(0) =Gy (2.2)
where
o 1 0 ---
B T 0 ss:
& = 0 1
i.e. A is the left-shift operator [4], and the initial value Gy of G is given by
Go = (*TD: Lf‘Tlmzro-» (L_f)2$|zzmo= e ) . (2.3)
- Since .
1t 5 -
At 1 £ &
B = 2 (2.4)
I 4 5
we see that ‘
o0 tz )
z(t;20) = (G = (eMGohr =Y 2.—1(Lf)t$ (2.5)
=0 =10

which is simply the Lie series solution of (2.1). (Here we denote the solution of (2.1) through
xg by z(t;xg).) The Lie series is simply the Taylor series of the solution x(t;zg) in ¢ (and z).
For each z, the solution e*!Gy will therefore be valid only up to the radius of convergence of
the Taylor series of z(f; zg) with respect to t. Hence the general solution will be given by

.’E(t) _ {(BAtleAtg . E,Atk) GD}

1

where t,+- - -, = t and ¢; <radius of convergence of the solution z(t; Z) where = {(e’“*’“ e e’”’“) Go}
Remark Note that although

eAtleAtz - eAik - EA(tl'i'"'tk)

as an operator on 2, it is not true on the space of Taylor monomials. Of course, if z(t; o) has
infinite radius of convergence in ¢, then
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3. Application to Lyapunov Functions

We can use the Lie series to find a Lyapunov function for a stable system. The idea is based

on the following result:
Lemma 2.1 If the solutions of the system

.’,E=f(I) f(0)=0

are asymptotically stable in a region R and satisfy

1 |
|zt z0)|| = O (m) forallz € R ast — oo (3.1)

for some integer p > 0, then

VO = [ letol d, e B

is a Lyapunov function for the system in R for any g > p.
Proof By condition (3.1), the integral exists and V'(£) > 0 for £ # 0 and V(0) = 0. Also, if
z, = z(t1;€),t; > 0, then, by the group property of solutions,

ve) = [ llsse)l®
= [ leeiPa+ [ ot ) a
> [ et 1 a
= [ st + ) a
= [7 llatts atts €)1 d

= V(z)

and so V' decreases along trajectories. O ‘
Of course, to apply the above result we need the solution of the system. However, the Lie series
gives an expression for the solution inside the radius of convergence. Hence we propose the
approximation
T
Vi) = |

for some g, where T is less than the radius of convergence of the Lie series. In some cases,

when T' is small, we may require a number of Lie series expansions about several points along
the trajectory. Thus, put

2q
dt

1

> ()

1
rarik

il

m t?ﬁ )
Folin) = Z ( }:c)
1i=0
and define

Plt;z) = =z
Paltiz) = PallBalli--;Paltse)--3), k=1




The approximate Lyapunov function now becomes
T . T 5
V) = [ IPalt)d+ [ 1Palt Paltsa)[dt +--
0 0
N T 9
= Zf | Bts PG 2))|| it
k=00 '

where N + 1 is the number of Lie series expansions used (see the diagram below).

P"f[r;xn] =P TP _Mxg)

2
Pm[T;xn] P F'm[T; Pm[T;xO]]
,,-””.ﬁf L/-"’/. B ow
(—
XU X[EXU] ___b______,__,.-f

True solution and Lie series approximations
Example 2.1 Consider the system

Tf = T5

. - 3
Ty = —T1]— T+ I

Then we obtain the approximate Lyapunov functions shown below:
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x1
Approximations to a Lyapunov function for the above system
Example 2.2 The time-reversed Van der Pol oscillator

Ztl = 3??—.1‘71—232

3..':‘) = I

has the following approximations:

n




%2 0+

-0.5¢

Approximate Lyapunov functions for inverse Van del Pol

Example 2.3 A third order system is also shown below:

i‘l = I?_I‘I_IQ_IS
Ty = 1
i‘3 = —I3
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Approximate domain of attraction for a third order system
4. Exponential Representation of Solutions and the Frequency Do-
main
In this section we shall consider the representation of the equation
= flx) , o) = 24 (4.1)

in the frequency domain. In order to develop a frequency domain theory we shall assume that
all solutions are exponentially bounded:

|z (t; zo)| < Me*

for some M and w, so that we can define their Laplace transforms. Let X (s;z) = £(z(t; z0)).
Then we define the spectrum of the system (3.1) to be the zeros of

To justify this definition we first consider systems for which the Lie series has infinite radius of
convergence. Then,




X(s;zg) =

i pr (Ly) (4.2)

We may write this in symbolic form

R (8 Hy) = (S lLf) Tg.

Note that, in the linear case ¢ = Az, we get

Xlsng) = ios:“ (Dt ) 20
= :I — A)lxy,
and so 8 (s 20) .
5—1"0_ = (s — A)

Of course, in general the Lie series does not always converge for all ¢ > 0 and so we cannot
use (3.2) to obtain the frequency spectrum. In certain cases one can use the method of Fourier
series, however. Suppose that the system has a limit cycle through zg. Then, if the period of
oscillation 1s 7" we can write, for example,

QATt e Qk”rt

Z by sin

1(t; o) Z a, cos (4.3)

where %% a2 + Yo, b < oo, with similar representations for zy,- - -, Zp.

Lemma (3.1) The spectrum at zo of a system with a periodic orbit of period T" through zg
consists of an infinite sequence of poles on the imaginary axis at the points :i:z"kr 1<k <oo.
Proof From (3.3) it follows that the poles of z1(¢; zg) can occur only at the pcnnts m o Ll 2“ and
clearly all these values are poles of z;(t; zo). Since S-5°,a; + > ooy 52 < oo, the fllll(‘thll

oo
SiCo Z

exists in the sense that the right hand side converges on all compact subsets of C\ Uy {2 I}_D
Note, however, that it is not necessary for a system to have its singularities in the left nalf
plane for stability. For example, the equation

5&=~%~$,:§(0)21,i¢(0)=0

has solution Jy(t) (the zeroth order Bessel function) and

1

L(Jo)(s) = "




This is a function which is analytic on C apart from on a cut joining —¢ to 7. The main result
for applications of this theory is, of course, a sufficient condition for stability. Clearly arbitrary
distributions of poles strictly in the left half plane do not imply stability. For example,

S

_ s (W)
= € ZT
k=0 :

and so
. oo 4k
L(e )—kggm

and the right hand side can be approximated by rational functions with £+ 1 poles at s = —2.
In fact, we have the following result:

Theorem 4.1 Suppose that the analytic function F(s) has a finite number of isolated singulari-
ties each of finite multiplicity (which may include cuts ) in any compact subset of C and assume
that they are all contained in some strict left half plane, i.e. {z: Re(z) < —e} for some ¢ > 0.
Moreover, suppose that for all sufficiently small neighbourhoods N of oo there exists a function
G(s) with the same principal as F(s) in N (and only those poles) and g(t) = (L7'G)(t) — 0
as t — oco. Then f(t) = (L7'F)(t) - 0 ast — oo.

Proof Consider the function F'(s) on the Riemann sphere, as shown below.

Choose a neighbourhood N of co and a function g as in the statement of the theorem. Then,
(1) = (LTF)()

— F std st
/;} (s)e*ds + /;kF(S)e ds

k=1
where C' C N and each +; is strictly in the left half plane and surrounds a pole (or cut) of

F'(s). By Runge’s theorem [5], we can approximate F' in C\{N Ui I';} by a rational function,
where I';, is the interior of ;. Hence,

M

M
£t) = g(t) +Z[’ Rs(s)eds + L (F(s) — Rs(s)) eds




where |F(s) — Rs(s)| < 6 for any 6 > 0, and so
IF()] < lg(t)] + p(t)e™™ + Ke™*

as t — oo. Here, p(t) is some polynomial function, o, 8 > 0 and K = 6M max{length(y;)}.0

5. Evaluation of the Spectrum of a Nonlinear System

We have defined the spectrum of a nonlinear differential equation
by the roots of the determinant of the matrix

90X (s; zo)
8330

which requires a knowledge of the Laplace transform of the solution of the equation. (Note
that we can also obtain this matrix as the Laplace transform of the solution of the variational

system

8f($(t, :EO)) (I))
0z
We can only use the Lie series directly if it converges for all time and even then a closed form for
the Laplace transform of the solution is likely to be difficult to obtain. Here we shall introduce
- an algorithm to find rational approximations to X (s; zg) for systems of the form

d =

= Az + f(z,t), z(0) =z

where f is a polynomial function in the z variables with coefficients bounded in t and f(0,t) = 0
for all t > 0. The algorithm is simply

XO0(s) = (sI—A) "z
X(s) = (sI— A7 (mo+ L(f@N(E),1) i1 (5.1)

where

=) = £7Y(x T (s)).
It is clear that each X[!(s) is a rational function of s, since f is a polynomial. If we show that
the sequence of functions X(s) (or zl!l(¢)) converges in some sense, then we will have obtained
a rational approximation to X (s;zqg). We shall consider the case where A is stable (similar

arguments applied to systems with solutions multiplied by e~ for some a > 0 will cover the
unstable case; or alternatively use weighted L? norms). Thus,

o < e

for some positive constants M,w. We shall prove that zl?(¢) converges in L?[0, co] under certain
conditions on f. First we show that this will imply that X (s) converges in H? i.e. the Hardy
space of functions F' which are analytic in the open right half plane and satisfy

. 1/2
!:SUP(Q‘R’)_l / |F(€ + iw)\zdw} & o
£>0 —oe 0
1




Lemma 4.1 Suppose that the sequence of functions z[(¢) given by the iteration procedure (4.1)
converges in L?[0,00] where f is a polynomial function. Then the sequence XU(s) converges
in H2.

Proof As stated above, each function X[(s) is proper and rational, since f is a polynomial.
For such functions it is well known that

HXU](S}“ == [(z'n)_l [D; |X!j](iw) |2dw] 1/2

and so by Plancherel’s theorem we have

=) — 2t = [ xt(s) — XT(s)]

L2[0,00]

HQ

which shows that XU(s) is a Cauchy sequence in H*.0
To show that the sequence z!!(t) converges in L?[0, 00] it is enough to prove that the map

z— Fr=L" ((sI — A)Hzo + [l(f(:r,t)))

maps a bounded closed set of L2[0,00] to itself where it is a contraction, by the contraction
mapping theorem. Note first that since f is a polynomial in = with f(0,t) = 0 we have

If(z, D)l < p(z)llz|| , for all ¢
\f@t) - f@ 0l < aley)le—yl , for allt
for some functions p(z), ¢(z,y) and we assume that p(z) < v, ¢(z,y) < n for ||z|| £ 6. Hence

. Hf(SE(),t) - f(y(')at)”Lg[D,oo;R“] =7 HI() - y(')”LQEO,oo;R“]
for z(-),y(-) € B(0, §; L]0, oco; R™]) N L?[0, 00; R™]. Now,
Fo = L7((sI— A (zo + L(f(2,1)))
t
= eMlzy+ [ e £ (z(7), 7)dT
0
so that, if z € B(0, §; L*=[0, co; R"]), we have
172l oo opey < M llzoll + 2.
Hence if N
M ||zl + = < 6
w

then F maps the closed subset § £ B(0,6; L>[0, 00; R"]) N L]0, 00; R™] N Cyy (0, 00; R™) into
itself where Cy, (0, 00; R™) is the set of continuous functions z with z(0) = zg. To prove that F
is a contraction on this set note that

|Fe = Fylls = || ((sI— ATL(f(2,8) — £7 ((s] = AT L(F (v, 1))
L7 [(sT = A7 (L (f(2,1) = F(y,1))]

1
|

— |[ e e, n - s, )
|

8

Is

5

—wi

IA

e 1f (. t) = F (Y, )| 120 oo (DY Young's inequality)

A
g |
H
=l

- y”L'—’-[O,oo;lR“}
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and so, if n < w, then F is a contraction. Hence we have proved
Theorem 4.1 If A is a stable matrix with

He/-li” < Mefwt
and f(z,t) is a polynomial function satisfying

@l < vlall , for llell <6
If(z.t) = F ol < nlle—yl , for [lzll =8

and
Mllzol| + L <6, n<w
w

then the set of rational approximations given by (4.1) converges in H? and the limit is the
Laplace transform of the solution of

i = Az + f(z,t) , z(0) = zo.0
Examples Consider the time-reversed Van der Pol oscillator:

: 3
T, = —Ta+ 22y —T1

:iZQ=(1?1

The algorithm above gives the poles shown below:

Sf+
g+ +
1+ + +
al
1+ + + +
21
1 + ¥ + +
Im O+
1+ + + + +
Al
I+ + + +
.41
1+ + +
B+ +
Lo
e

Re
Poles of the Time-Reversed Van der Pol Oscillator

The corresponding approximations to the solution are shown below:
12




Approximations to the Solution

6. Feedback Systems

Consider now systems of the form
&= f(z,u) , 2(0) = zo (6.1)

We shall develop a nonlinear root locus theory, so we shall assume that u is a rational function
of z. The reason is that, in the linear case, we use a linear feedback in the state z and so in
the nonlinear case the feedback will, in many cases, be an analytic function of z which can be
approximated arbitrarily closely by a rational function. Thus, we put

_ Djkope’ i’ ¥
= va——
Do a’
where i = (i1, ,i,), [i| =414 -+in and ' = 2} - - - zin. Substituting this into (5.1) we have
: YL e
i=f xﬂ— . z(0) = 2o (6.2)
Zijio 357!

Let o(pi,q;;0 < |i| £ K1,0 < |j| € K3) = o(pi, g;) € C denote the spectrum of the system (5.2)
as defined above. Then we define the root locus of (5.2) to be the set

Z = Upi»f.i'jg(pia Qj)-
13




If u is constrained so that |u| < Umax, then p; and g; must belong to some parameter set =, ie.

|’LL\ S Umax iff {pi:Qj} S

and we denote the constrained root locus by

Z = Ups,CIjGEG-(ph q.i)'

m

If a system satisfies the conditions of theorem 5.1 for all {p;, g;} € E then it follows that the
following optimisation problem will stabilise the system:

min Re z.
Z€) =
Example 6.1. Consider the control system
i = zp+u(l-—x})
Ty = —Iq
If we choose u = (az; + () then we have the following pole configurations for « = —1 and

= 0,-0.1,—0.2. In the figure, the boxes correspond to roots with 8 = 0, the circles to
B = —0.1 and the diamonds to § = —0.2. The latter gives the most stable configuration for
" < L2 ‘

af o
& o o

24 & o B

o = o o

Im D:- > u] a}
o @ o o

2 i =] s}

I° o o
'4'-*: ) } : ' + g
-0.3 -0.25 -0.2 -Uﬁ1eﬁ -0.1 -0.05 a}

Root Locus with beta =0,-0.1,-0.2
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