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Rans Modelling of Intermittent Turbulent Flows Using Adaptive
Mesh Refinement Methods
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This paper investigates the modelling of intermittency in turbulent jet flows using the
Reynolds-averaged Navier-Stokes flow field solutions, coupled to the solutions of the
transported probability density function (PDF) equation for scalar variables, obtained using
a finite-volume method combined with an adaptive mesh refinement algorithm applied in
both physical and compositional space. The effects of intermittency, y, on the turbulent flow
field are accommodated using a k-gs-y turbulence model as well as being applied in the
mixing model embodied within the transported PDF equation. Different mixing models are
also considered for use with the latter transport equation, including the linear mean square
estimation and the Curl and Langevin approaches. Results are compared with the
available experimental data on a jet flow with good agreement obtained.

Keywords: Reynolds-averaged Navier-Stokes; transported PDF; finite-volume; adaptive
mesh refinement; intermittency

1. Introduction
Turbulent shear flows with free boundaries display an intermittent character, where the flow
rapidly alternates between rotational and irrotational states. Intermittency can be thought
of as an indicator function that has a value of unity when the flow is turbulent and zero
when it is non-turbulent, i.e. it represents the fraction of time during which a point is inside
the turbulent fluid.

The intermittent behaviour of flows is influential in many processes of practical
relevance, including mixing, combustion, pollutant emissions and aeroacoustics. For
example, the safe and efficient operation of many combustion devices is critically
dependent on ignition occurring in regions of the flammable flow, which contain significant
intermittency. Enhancing the performance of these devices, and improving their safety, in
particular, relies on a better understanding of both the intermittent flow and the ignition
process.

The majority of turbulence models currently in use were derived for fully developed
flows, and hence cannot be expected to perform accurately in free shear flows where the
outer regions are contaminated with irrotational flow. Intensive research efforts have been
devoted to developing more general engineering models of turbulence in recent years,
although their predictability remains largely dependent on flow configuration. The
development of more accurate and broadly applicable models of turbulence can, however,
be accomplished by accommodating intermittency effects within these models. A good
example of this is seen in the round jet/plane jet anomaly [1], where the inclusion [2] of
intermittency effects within a conventional k-¢ turbulence model was demonstrated to
resolve this anomaly. In these, and many other free and wall-bounded flows [2], the
inclusion of intermittency effects, therefore, helps to generalise existing turbulence models,
and provide more accurate predictions of the velocity and scalar fields of interest in the
applications noted above. Such intermittency-based models are also required in order to
predict boundary layer transition.

This paper describes an investigation into the modelling of intermittency in turbulent
flows using solutions of the transported probability density function (PDF) equation for
scalar variables obtained using a finite-volume method combined with an adaptive mesh
refinement (AMR) algorithm. A simple test case is considered involving the mixing of a



single scalar within a turbulent jet flow. Olivieri et al [3] have previously demonstrated the
application of an AMR finite-volume technique in physical and compositional space, with
the latter permitting solution of the transported PDF equation. This contrasts with more
conventional approaches, which are based on the use of finite-volume methods in
physical space, and Monte Carlo methods in compositional space for solution of the PDF
equation. The latter work [3] also demonstrated that, for small numbers of scalar variables,
AMR provides improved accuracy, run times and ease of use over alternative Monte Carlo
approaches. The effects of intermittency on the turbulent flow field have been
accommodated in a conventional Reynolds-averaged Navier-Stokes (RANS) approach using
the k-e-y model of Cho and Chung [2], with the influence of y on the PDF included via
the mixing model embodied within its transport equation. This contrasts to the earlier
approach of Kollmann and co-workers [4-7], which used a finite-difference approach to
solving the PDF transport equation coupled to a closure scheme based on conditional
zone-averaged moments, rather than the Reynolds averaged moments used in the present
work.

AMR is now a well-established technique. The earliest applications were to two-
dimensional shock problems [8, 9], with later extensions including three-dimensional
problems [10] and implementation on parallel computers [11]. The advantage of AMR
is that it can use error estimates to adaptively increase numerical grid resolution to
meet accuracy requirements in specific parts of physical space, and conversely reduce
resolution in regions of the flow where few changes are taking place. The approach
offers particular advantages for transient problems with travelling discontinuities, such as
shocks. Previous work by the authors [3] has also extended this technique to compo-
sitional as well as physical space. In some classes of problems, CPU and memory
requirements can be reduced over those for a uniform grid by as much as a factor of one
hundred [12].

2. Mathematical modelling

2.1 Fluid flow equations

The flow was computed from the mass and momentum conversation equations for turbulent
flow, closed using a k-g-y turbulence model [2], using the thin shear layer approximation in
cylindrical symmetry together with the parabolic approximation for steady flow [13]. It is
assumed that the turbulence is statistically two-dimensional, stationary, axisymmetric and
non-swirling. The descriptive equations are as follows:
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Here U and v are the mean velocities in the z and r directions, and o, , 0, and o,

are the Prandtl numbers for k, ¢ and y, and the superscript tilde denotes density-
weighted averaging. Due to the thin shear layer approximation, only the &-component of
the mo- mentum equation is employed. The turbulence energy dissipation rate equation
involves a modification to its source term, this being the term shown in square
brackets. The Galilean invariance I" used in modifying this source represents the amount of
intermittency entrained by the interaction between the mean velocity gradient and the
intermittency, per unit volume of the fluid field. When the flow intermittency is small,
small-scale eddies in the flow are relatively inactive and the turbulence kinetic energy
is dissipated slowly. If intermittency is large, then small eddies become embedded in the
large straining eddies in the interactive shear layer between the turbulent and
irrotational zones. The T parameter, therefore, indicates how much of a source or sink
of dissipation is occurring due to the entrainment of more-irrotational fluid at the
particular point under consideration. The turbulent viscosity u and the Galilean
invariance I" are given as follows:
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where U is the total flow velocity vector. Note that for the thin shear layer approximation |U
» U. The final expression provides a transport equation for vy itself. The first term on the
right-hand side of this equation describes the bulk convective spatial transport due to
turbulent flow, while the other terms on the right-hand side contribute to the source term,
which describes the mean rate of entrainment of non-turbulent fluid into the turbulent zone.
The source term of this equation represents the main part of the Cho and Chung model [2].
Pressure is assumed to be constant, which avoids the need for a Poisson equation solver,
and as will be demonstrated in Section 4, this is a good approximation for the considered
jet flow. It is also unnecessary to solve the continuity equation because the density can be
calculated from the average of the mass fraction < w, > of each species a:

N

= by = -

— E (3)
w=]

Pu

2

= |

where p,, is the density of a fluid comprising only species a.

2.2. Scalar PDF equation

As this work concerns non-reacting turbulent flows, the PDF equation employed only
involves the use of a passive scalar, which is the mixture ratio w. This means that N =1
and w, = w for the compositional space of a single species, and that in Equation (3) the
realisation of the scalar from the compositional space w is < w >. Hence, for a pure fuel
flow, < w >= 1 and for a pure oxidant, < w >= 0. Equation 3 can therefore be rewritten

as
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where < w > and (1- < w >) are the local mass fractions of fuel and oxidant at a point in
physical space r and at time ¢, and p,,., and p,,, are the respective densities of the fuel and
the oxidant. The expression for the transport of the mass-weighted PDF, P (r, w; t), for a
single species w in the absence of chemical reaction and with no advection of the PDF in
the z direction (in line with the parabolic assumption), and with the thin shear layer
approximation applied, can be written as
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Here, o, is the Prandtl number for the turbulent diffusion of P. Equation (5) is based on
the full scalar PDF transport equation for chemically reactive flows [14].

2.3. Molecular mixing

The molecular mixing term in Equation (5) has a number of models available to represent
its effect, with the simplest being the linear mean square estimation (LMSE) method [14]. If
the standard model is modified to take into account the effect of y, the expression for the
LMSE mixing becomes
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Here Cp, € and k are the ratio of the scalar to mechanical turbulent time scales, the viscous
dissipation rate of turbulence kinetic energy and the turbulence kinetic energy per unit mass
[14]. The justification for implementing y in Equation (6) in this way is due to the fact
that the magnitude of y has a direct bearing on the molecular mixing only and not on the
other terms given in Equation (5). Similar reasoning was used previously by Kollmann and
Janicka [7].

There are other possibilities for this term: the coalescence/dispersion or Curl model [15,
16] and the Langevin model [14]. However, the Curl model is computationally expensive
because it involves an integro-differential equation. In Olivieri et al [3], application of the
basic version of the Curl model was considered. In the present work, a modified Curl model [7,
17] that preserves P is considered as a source term, and not an advective term, for the
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Again, y is incorporated in a similar way in the mixing model as it was with the LMSE
model. Later on in Section 4 the two models are compared with experimental results as a
way of assessing the accuracy and effectiveness of each approach.

Higher order molecular mixing models, such as the Langevin model [14], unfortunately
failed when applied to bounded scalars. Other approaches involving binomial models,
such as that of Valino and Dopazo [18], have been suggested as a way of avoiding this
shortcoming. However, although the model has been shown to work well for PDFs of single
scalars with fixed bounds, it is not squarely applied with multiple scalars. Therefore, only
the LMSE and the modified Curl models [17, 19] are applied to predict intermittency in
the flow considered below, given the authors’s ultimate interest lies in extending the work
described herein to ignition processes and combusting flows.

2.4. von mises coordinates
It is a standard practice [13] to write Equations (2) in terms of the von Mises coordinates,
(y, 2), which automatically satisfies mass conservation:
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The turbulent viscosity u and the Galilean invariance of the scalar I are also to be
redefined as follows:
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These equations are simply evolution equations, with z playing the role of the time-like
coordinate. If we apply von Mises coordinates to the PDF, Equation (5) becomes
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The last term in Equation (11) represents molecular mixing as is the case with
Equation (5).
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3. Numerical method

3.1. Finite-volume scheme

Equation (10) contains only diffusive fluxes, while Equation (11) contains both advective
(the LMSE molecular mixing term in the PDF equation) and diffusive fluxes. For the
modified Curl mixing model case, Equation (11) has only diffusive fluxes, with a source
term for the molecular mixing term itself. In order to construct a numerical scheme, physical
space is discretised with mesh spacing Ay, and composition space with mesh spacing Aw.
For the fluid quantities, mean quantities in a cell at z =z, are defined as follows:
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where q is one of (I, k, g y). For the PDF, a mean value at z = z,, is defined by averaging

over both physical and composition space:
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where Aw is the volume of a cell in single species composition space. The index j refers
to the cell in composition space over which the integration is performed. Given the flow
variables at z =z, their values at z = z,,, can be found from an explicit finite-volume
approximation to Equations (10) of the form
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where f/, f are approximations to the fluxes at the left/right edges of the ith cell and s; is an
approximation to the source term. Also,
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An approximation that is of first order in A z is obtained if values at z, are used to compute
the fluxes and the source terms. The source terms can be calculated from the mean values

in the cell. In order to compute the fluxes, approximations to the flow variables and r at the
cell edges are required. The flow variables can be computed from simple averages,
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The radius at the cell edges is obtained using the trapezoidal rule to integrate Equation (8)
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This gives a simple recurrence relation for the ri. The flux for quantity g is then given by
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where . is calculated from the flow variables at the cell edge. As this is a central difference
approximation to diffusive terms, the resulting scheme is of second order in Ay . The
procedure for P is similar, and involves no advection because the flow is non-reacting, apart
from the minor advective effect due to molecular mixing. With the LMSE approximation, the
effective advective velocity in composition space is

eCp
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The PDF is then updated via
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where (AP )p is the increment due to the diffusive term in physical space. A first-order
upwind approximation is obtained by setting the flux at a cell face to
wh foraw =0
(wP) = (20}
wP! fora =0,
where P,n and P,n are the values in the cells on the left- and right-hand side of the cell face.

Here w is evaluated at the centre of the cell face. For the molecular mixing case involving
the Curl model, Equation (19) is rewritten such that

P+l = PP+ (AP), + 25 @1
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where §; is an approximate source term representing the modified Curl molecular mixing
model, evaluated at the compositional cell centre w = w; with the expression given in
Equation (7) using numerical integration. The numerical scheme presented so far is of
second order in Ar, but of first order in Az and Aw. In order to make it of second order in
all variables, we first use the first-order scheme to compute an intermediate solution,
f"*", at the half-step z,,,, = (2, + z,,4)/2. These values are then used to compute the

fluxes and source terms for the flow variables, which are subsequently used to update them
through a complete timestep i.e.

@ =g + (Ag) Y, (22)

where (Ag)™"# is computed using the values at the half-step.



The same is done for the flow terms in the PDF equation, but in order to obtain second-
order accuracy in Aw, a better approximation to the advective fluxes in composition space is
required:

ap\"TY? l n+1/2 A2 a2 n+1/2 2
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dw /; Aw
where av(a, b) is a non-linear averaging function and the subscripts / and r denote values
in the neighbouring cells on the left- and right-hand side. It is essential to use a non-linear
averaging function here because Godunov's theorem [20] tells us that a scheme that is of
second order everywhere will generate oscillations where the solution changes rapidly. This
applies in this case if the PDF approaches a delta-function, but if it is smooth, then one can
use a simple average.

The gradients given by Equation (23) are then used to obtain a better approximation to f
at a cell face. For example, for a cell face the values of f; and f. to be used in Equation (20)
are given by
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where i and j are the cells on the left- and right-hand side of the face. The final solution at
z = z,,, is then obtained from Equation (19) using these values of P,and P,. This is
essentially the same scheme as that described in [21] for compressible flow. Although it is
not as accurate as some schemes for linear advection, it is robust and simple to implement.

3.2. Adaptive mesh refinement
Unlike most AMR approaches, e.g. [8-12], in the present work, refinement is on a cell-by-
cell basis instead of being organised into patches. This provides a more efficient grid at
some increased cost of integration. Figure 1 shows how this works in two dimensions for a
thin region, such as a shear layer that requires high resolution. A hierarchy of uniform grids
Go -+ Gu is used so that if the mesh spacing on Gy is (Ay, Aw), then it is (Aw/2", Aw/2" ) on
Gy. Grids Gy and Gy cover the whole computational domain, but the finer grids need only
exist in regions that require high resolution. The grid hierarchy is used to generate an
estimate of the relative error by comparing solutions on grids with different mesh spacings,
and the grid is then refined if this error exceeds a tolerance E; and de-refines if it is less
than E,. Refinement also occurs in z so that if the step on Gy is Az, then it is Az/2" on Gh.
The integration algorithm is recursive and is described by a pseudo-code for the
integration of grid G, over its z step. From the pseudo-code given below, the procedure
integrate(0) performs integration on all grids through one Gy grid z-step, Az up to a
maximum of Lyax possible levels of refinement. This process is shown schematically in
Figure 2 for four grid levels. From the figure it can be seen that a coarse grid solution at the
advanced time is available whenever a fine grid is integrated. This coarse grid solution
provides a space—time interpolant that is used to impose the boundary conditions on the
fine grid at a coarse-fine grid boundary.
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Figure 1. Grid refinement at a region requiring high resolution (represented by thick black curve).

In the merge(n) operation, the solution in the cells on G, that are refined is replaced by
the volume average of the solutions in the G,,, cells that it contains. This ensures that the
solutions on all grids are consistent.

procedure integrate(n){ Integrate G, et
step(n) Advance G, by one z-stepAz/2
if(n < (Lpax )){ Finer grids exist
while (z, < z,_.\ ){
integrate(n+1)  Integrate G, to G, z
z, =z, +Az/2" Increment G, z by Az/ 2"

n

} end of while loop
regrid(n) Compare solutions on G, and
G,., — decide G, refinement
merge(n) Project G,,,, solution onto G,,
} end of if block
return
} end of procedure integrate(n)

The simplest way to apply AMR to the system considered would be to treat it as a
problem in N + 1 dimensions (r and the N dimensions in composition space). However, this
would mean that if a cell is refined in one dimension, then it is also refined in all the others.
This would not be very efficient because there is no reason why physical and composition
space should be refined at the same place. For example, near the centre-line of a jet close
to the source orifice, there might be very little variation with r, but P could be very close to a
delta-function, which would require a high degree of refinement in composition space (as
seen in Figure 8(a) and (b)).
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Figure 2. Integration of a four level grid.

In order to allow different levels of refinement in physical and compositional space, a
complete composition space hierarchy is associated with each physical cell on every
grid level. The number of levels of refinement of the composition space in a particular
physical cell is then determined by the accuracy requirements for that particular cell. So,
for example, the maximum number of grid levels will be used in composition space if P
is close to a delta-function, whereas a smaller number of levels will be used if it is
smooth.

Table 1. Parameters used in the computations.

Levels of adaptation 4 (physical space), 4 (compositional space)
No. of coarse cells 30 (physical space), 25 (compositional space)
Turbulence model constants C,6=0.09,C,=01,0C, =144,C, =1.92

C, =0.1,C,, =16, C,, =0.15, C,, =0.16
C, =4,0, =1,0. =1.3,0, =1,0, =1

Nozzle diameter (d) 0.00526 m

Jet density 1.8638 kg m™3

Co-flow density 1.1964 kg m™3

Initial jet velocity 1/7 law with T =69.89 m s~ ! on centre-line

Width of computational domain 10 nozzle diameters




4. Results and discussion

In order to verify and validate the modelling strategy described above, a series of qualitative
and quantitative tests have been made involving the mixing of a single passive scalar in a
non-reactive jet. All calculations are based on the experimental work of Schefer and Dibble
[22], who studied a non-reacting propane jet in a co-flowing air stream. The parameters
of the problem are given in Table 1. The first set of tests makes a qualitative appraisal of
the effect of y on the transported PDF P at a point 20 jet diameters downstream, while
the second set of tests investigates how well different molecular mixing models perform
compared with the experimental data [22].

4.1. Effect of intermittency on the transported PDF

The distribution of the PDF P against the passive scalar w is given in Figure 3 at z/d = 20
and for a number of radial locations. Each distribution of P was derived from the
compositional space associated with a particular physical space region, and represents the
different evolutionary changes in P at a particular downstream location due to the influence
of the momentum change in the physical flow field and local molecular mixing effects. All
results shown in this figure were derived using the LMSE mixing model.

On the axis of symmetry at r/d = 0 (Figure 3(a)), the distribution of P is approximately
Gaussian because the flow is fully turbulent. With increases in radial distance, the PDF
evolves until at r/d =1.68 and r/d =2.16 the distribution is clearly bi-modal due to the
intermittent nature of the flow, as described previously. These PDF distributions are
comparable with those predicted by Kollmann and Janicka [7], with the latter authors
and the current approach including the influence of y in the scalar dissipation terms,
and not in the turbulent transport of the PDF terms. The present approach differs from
that of Kollmann and Janickas [7] in terms of the method used to determine y, as has
been indicated in Section 2, where in this work it is obtained through the solution of the
conservation equations, rather than through the zone-averaged stress equation approach.
In Kollmann and Janicka [7], and Pope [23], the PDF distributions are therefore the sum of
continuous and singular contributions. By using the approach of Cho and Chung [2] to
calculate y, as employed herein, the sub-division of the PDF is unnecessary. This avoids
the need for complex functions that the dissipation terms of [7] and [23] involve. In the case of
the LMSE molecular mixing model, it also provides a very simple and computationally
inexpensive method of incorporating the effects of intermittency. With the modified Curl
mixing model, results for which are not shown here but later in Figures 6 to 9, the complex
integro-differential function given in Equation (7) offers no greater benefit in terms of
accuracy, and in fact is computationally prohibitive, particularly for multi-scalar modelling.
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Figure 3. Effect of the intermittency on predictions of the scalar PDF at z/d =20 and at different radial
positions: (a) effects y included; (b) no effects y included (solid line r/d = 0, dashed line r/d = 0.834,
dotted line r/d =1.276, dot-dashed line r/d = 1.68, dot-dot-dashed line r/d =2.16); (c) and (d) show, at
two scales, effect of varying Cp on PDF at z/d =20 and r/d = 1.68 (dot-dashed line C, =0, dotted
line C,=2.0, dashed line C, =3.0 and solid line C, =4.0).




Figure 3(b) shows results for the PDF derived without the effects of y included in the
expression for (0P/ot)mm . As a result, the distributions of P from each compositional
space associated with the physical domain at different radial positions across the jet do
not take on a bi-modal shape at any location and, as will be seen later, fail to predict
experimental [22] observations. Also, in the results of Figure 3(a), not only is the influence of
the inclusion of intermittency clearly observable on the PDF but, as will be seen later, its
influence in modifying the PDF is also subsequently fed back to the flow equation solutions
as the coupled physical/compositional space method proceeds with the next Az step.

In Figure 3(c), and at an expanded scale in Figure 3(d), the impact of Cp is
investigated for a particular PDF distribution from Figure 3(a), i.e. at r/d = 1.68. A value of
Cp=4.0is used in all the results discussed below because such a value was found to give
the most accurate predictions in comparison with experimental data. As this value is
reduced, the variance naturally increases until at Cp = 0 there are no longer any molecular
mixing effects involved in the calculations. At this point, the second term from Equation
(11) is responsible for the two spikes at either end of the axis for the passive scalar w as
shown in Figure 3(d). Pope’s [14] considerations of scalar dissipation indicate that it is not
possible for Cp to be universally constant, with the latter work considering variations of this
constant between 0.6 and 3.1. From what has been discussed so far, the value of Cp
clearly has a significant bearing on the accuracy with which the scalar second moments
are determined.
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Figure 4. Comparison of the measured and the predicted axial velocity and rms of normal stresses
along the centre-line of the jet (symbols — experimental data [22], solid line — predictions).
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Figure 5. Comparison of the measured and the predicted radial distributions of axial velocity, and rms
of normal stresses and shear stress at different axial locations ( symbols — experimental data [22], solid
line — predictions).
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Figure 6. Comparison of the measured and the predicted mixture fraction and rms of mixture
fraction fluctuations along centre-line of jet (symbols — experimental data [22], solid line — predicted
using LMSE with y included, dotted line — predicted using LMSE without y included, dashed line —
predicted using the Curl mixing model with y included).
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Figure 7. Comparison of the measured and the predicted radial distributions of mean mixture fraction,
rms of mixture fraction fluctuations and intermittency at various axial locations (symbols — experimental
data [22], solid line — predicted using LMSE with y included, dotted line — predicted using LMSE
without y included, dashed line — predicted using the Curl mixing model with y included).
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Figure 8. Comparison of the measured and the predicted distributions of the scalar PDF at different
locations along jet centre-line: (a) z/d = 5.2; (b) z/d = 7.1; (c) z/d = 10.8; (d) z/d = 15.0; (e) z/d = 30.0 and
(f) z/d = 64.0 (symbols — experimental data [22], solid line — predicted using LMSE withy included, dotted
line — predicted using LMSE without yincluded, dashed line — predicted using the Curl mixing model with

yincluded ).

Figure 9. Comparison of the measured and the predicted distributions of the scalar PDF at z/d = 30
and at different radial locations: (a) r/d =0; (b) r/d =2.0; (c) r/d =2.3; (d) r/d =2.6; (e) r/d =2.9 and (f)
r/d = 3.2 (symbols — experimental data [22], solid line — predicted using LMSE with y included, dotted
line — predicted using LMSE without y included, dashed line — predicted using the Curl mixing model
with y included).



4.2. Effect of intermittency and molecular mixing model on jet flow
predictions

Figures 4 to 7 compare predictions of the model described with mean and turbulent flow
quantities measured by Schefer and Dibble [22], and Figures 8 and 9 comparing the PDF
distributions along the jet centre-line and also radially within the jet. Results are shown for
predictions based on the LMSE molecular mixing model, with the effects of intermittency
included and excluded to allow an assessment of its impact on the mixing field, and for the
modified Curl mixing model with intermittency effects included. The predictions given for the
velocity field and for intermittency, in Figures 4, 5 and 7, are applicable to all the mixing
models considered, and are based on solutions of the full k-&-y turbulence model [2].

Figures 4 and 5 demonstrate reasonable agreement between predictions and
observations for the velocity field, and the approximation of constant pressure used in this
work appears justifiable in view of these results. Predictions of the normal and shear
stresses shown in these figures, in particular, could be improved further with the
application of a second moment turbulence closure, coupled to a transport model for the
intermittency, as has been previously demonstrated by Alvani and Fairweather [24]. The
current results are, however, comparable to those obtained in [25] by the latter authors
when using a k-&-y turbulence modelling approach. The various mixing models considered
had little effect on the results given in these figures.

Figures 6 and 7 show results for the first and the second moments of the passive scalar
at various locations in the flow field. In both the figures the scalar means < w >, shown as
@, predicted that using the various mixing models are comparable throughout the flow
field, apart from the radial profile at z/d= 50 in Figure 7, where predictions obtained
using the LMSE model with intermittency effects included are clearly superior. Overall,
however, the calculated @ agree reasonably well with the experimental data. This is not the
case for the scalar second moments, Vo' , however, where predictions obtained using the
LMSE and the Curl models clearly differ. The results presented in these figures indicate
that the LMSE model with ¢ effects included provides the most accurate predictions over
the majority of the flow field. As well as being less accurate, the modified Curl molecular
mixing model also proved to be much more computationally expensive because of its use
of an integro-differential equation. The predictions derived using the LMSE approach, with
and without intermittency effects included, also confirm the importance of intermittency
modelling, with results derived with y effects included clearly superior over the majority of
the flow. The intermittency results in Figure 7 also demonstrate reasonable agreement
between predictions of the k-e-y model and Schefer and Dibble’s data [22]. The present
results, obtained using the LMSE approach with intermittency effects, compare favourably
with those of Alvani and Fairweather [24, 25], who used a similar k-&-y turbulence model
coupled to a prescribed PDF [26], as opposed to the transported PDF method used in this
work.

Figures 8 and 9 give results for PDF distributions throughout the flow field. In
Figure 8, which gives results along the jet centre-line, where intermittency effects are
negligible, all the models employed give roughly the same distribution for P of the passive
scalar. The results indicate that by 10.8 jet diameters downstream the flow is fully turbulent, as
the PDF distributions have become Gaussian in nature. By 64 diameters downstream the
distribution is tending towards a delta function, indicating that the flow is still turbulent but near
to a fully mixed state. Over all the locations considered, predictions of the LMSE and the Curl
models are comparable.

In Figure 9 the scalar PDFs are considered at various radial locations at a fixed
distance downstream of 30 jet diameters. The LMSE and the Curl models, which include
intermittency effects, are seen to differ in distribution, but both indicate bi-modal states at
certain radial locations, in line with the data. When y is not included in the LMSE mixing
model no bi-modal state is apparent. Overall, predictions derived using the LMSE model
with y included agree most closely with the experimental data, and qualitatively reproduce the
evolution of the PDF from near Gaussian, to bi-modal, and ultimately close to a delta
function associated with the co-flow state with increasing radial distance.



5. Conclusions

A novel solution method for the fluid flow and the scalar transported PDF equation with
the effects of intermittency included has been described. In contrast to the conventional
solution methods that employ the Monte Carlo approaches to solve the transported PDF
for scalar variables, the present work is based on a finite-volume scheme combined with
an AMR approach in both physical and compositional space. The method has been used
in a number of test calculations that involve a simple mixing flow, with the effects of
intermittency on the turbulent flow field accommodated using a k-¢-y turbulence model, as
well as being applied in the mixing model embodied within the transported PDF equation.
Different mixing models have also been examined.

The investigation has demonstrated that the computationally inexpensive LMSE
approach, with intermittency effects included in the molecular mixing model, can achieve
reasonable accuracy in modelling intermittent turbulent jet flows. Use of the alternative
mixing models, such as the modified Curl approach, proved to be more expensive
computationally and less successful in predicting the available data. Application of LMSE
both with and without the effects of intermittency included clearly demonstrates the
superiority of predictions derived with the effects of intermittency applied in the mixing
model.

Overall, the AMR approach, applied in both physical and compositional space, has
also been demonstrated to provide an efficient means of solving the fluid flow and the
transported PDF equations. In physical space, the technique is capable of providing high
accuracy numerical solutions at a fraction of the computational cost of what would be
required using a uniform meshing approach. In compositional space, it permits solution
of the transported PDF equation with reasonable run times, in contrast to uniform mesh
approaches which are not practical due to their prohibitive computational cost. From the
results presented herein, and those of [3], it may be concluded that the AMR approach
provides an attractive alternative to the Monte Carlo-based methods for solution of the
transported PDF equation. However, problems remain when applying either technique to
large numbers of scalars due to the resolutions required [3] to obtain accurate solutions.
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