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ABSTRACT

We study the angular momentum evolution of binaries containing two white dwarfs (WDs)

which merge and become cool helium-rich supergiants. Our object is to compare predicted

rotation velocities with observations of highly evolved stars believed to have formed from such

a merger, which include the R CrB and extreme He stars.

The principal case study involves a short-period binary containing a 0.6-M⊙ carbon–oxygen

(CO) WD, and a 0.3-M⊙ He WD. The initial condition for the angular momentum distribution

is defined by the orbital configuration where the secondary fills its Roche lobe.

Since mass transfer from the secondary is unstable, the WD breaks up on a dynamical time-

scale. After accreting some mass, the primary is assumed to ignite helium and evolve to become

a yellow supergiant with a He-rich surface. We assume conservation of angular momentum to

compute the initial angular momentum distribution in a collisionless disc and subsequently in

the giant envelope. At the end of shell-helium burning, the giant contracts to form a WD. We

derive the surface rotation velocity during this contraction.

The calculation is repeated for a range of initial mass ratios, and also for the case of mergers

between two helium (He) WDs; the latter will contract to the helium main sequence rather

than the WD sequence.

Assuming complete conservation of angular momentum, we predict acceptable angular

rotation rates for cool giants and during the initial subsequent contraction. However, such stars

will only survive spin-up to reach the WD sequence (CO+He merger) if the initial mass ratio

is close to unity. He+He merger products must lose angular momentum in order to reach the

helium main sequence.

Minimum observed rotation velocities in extreme helium stars are lower than our predictions

by at least one-half, indicating that CO+He mergers must lose at least one-half of their angular

momentum, possibly through a wind during shell-helium burning, but more likely from the

disc, following secondary disruption.

Key words: stars: chemically peculiar – stars: evolution – stars: rotation.

1 I N T RO D U C T I O N

Following Webbink (1984), Saio & Jeffery (2002) have demon-

strated that the most probable origin for extreme helium stars is a

stellar merger in a binary system containing a carbon–oxygen (CO)

and a helium white dwarf (WD), although some may originate in

systems containing two helium WDs (Saio & Jeffery 2000). In the

first case, the product ignites helium in a shell at the surface of the

CO core and expands to become a helium-rich supergiant. After the

helium-burning shell burns outwards through most of the helium-

⋆Present address: Institute of Astronomy, The Observatories, Madingley

Road, Cambridge CB3 0HA.

†E-mail: kng22@cam.ac.uk (KNG); csj@arm.ac.uk (CSJ)

rich surface layers, the star contracts to become a WD. In the second

case, the helium-ignition again occurs in a shell at the core–envelope

boundary, but then burns inwards, lifting the electron-degeneracy in

the helium core. When the helium-burning flame reaches the centre,

the star essentially becomes a low-mass helium main-sequence star.

A criticism occasionally heard (but, to our knowledge, not yet

written) is that the products of such mergers should have a very high

angular momentum and thus should be observed as rapid rotators.

While general arguments suggest that this should not be a problem,

it seemed appropriate to investigate the question more rigorously.

Previously, Saio & Jeffery (2000, 2002) examined the evolution

of the internal structure of stars, following two types of WD merger.

In this paper, we focus on the evolution of the angular momentum

distribution from binary progenitor to final WD. We aim to set limits

on the predicted rotation velocities of the merger products.

C© 2006 The Authors. Journal compilation C© 2006 RAS
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1382 K. N. Gourgouliatos and C. S. Jeffery

2 A N G U L A R M O M E N T U M : G E N E R A L
C O N S I D E R AT I O N S

The final mass of systems that become extreme helium stars does

not appear to exceed 0.9 M⊙ (Saio & Jeffery 2002). Assuming

tidal locking for the progenitor binary, we conclude that the orbital

angular momentum is dominant. We already know that angular mo-

mentum will be removed by gravitational radiation on a time-scale

that depends on the initial separation of the binary and will lead to a

decrease in the orbital separation (Chau 1978). For binary WDs that

have a period of a few hours and an initial separation of ∼1011 cm

∼2 R⊙, the time needed to merge is less than the Hubble time.

Thus, we expect a significant fraction of existing close WD binaries

to merge. Because of orbital decay, at some point the secondary fills

its Roche lobe. The orbital period at this point can be determined

from the separation and is approximately 3 min. Subsequently, mass

starts to transfer from the secondary to the primary. All the trans-

ferred mass cannot be accreted on to the primary because of the Ed-

dington limit. The mass transfer is unstable because of the inverse

mass–radius relation for WDs. Hence, the secondary will break up

and form a thick disc round the primary on a dynamical time-scale.

For such systems, this is very short and of the order of the orbital

period.

To begin with, we assume conservation of total mass. This

has been demonstrated for the early evolution of WD mergers

(Segretain, Chabrier & Mochkovitch 1997; Geurrero, Garcı́a-Berro

& Isern 2004), but not for the later stages of their evolution. In order

to determine the characteristics of the angular momentum profile

of the disc, we use two quantities, specific angular momentum and

angular momentum density, defined in Section 3. The conservation

of total angular momentum is a plausible assumption. In addition,

we assume conservation of angular momentum for every single par-

ticle (or fluid element). Thus, the discussion reduces to an idealized

collisionless model.

This is a conservative assumption, which effectively reduces to a

worst-case scenario. In the collisionless model, the transfer of angu-

lar momentum is slow compared to the dynamical time-scale and,

hence, it does not have important effects. The opposite assumes a

model in which collisions are important, producing a viscous disc.

The problem of angular momentum transport in a viscous disc has

been approached already (Lynden-Bell & Pringle 1974), where it

was shown that ‘the angular momentum is steadily concentrated onto

a small fraction of the mass which orbits at greater and greater radii

while the rest is accreted onto the central body’ on an approximately

dynamical time-scale. The problem for the viscous disc approxima-

tion is that the accretion rate for the surviving WD then becomes

very high and it is not clear whether subsequent evolution will lead

to the assimilation of this mass or its complete ejection by radia-

tion pressure. Consequently, we have started with the collisionless

model to see whether it, too, faces major obstacles.

Using the above assumption, we propose an angular momentum

distribution profile for the disc. In the purely collisionless model, as

will be shown, the inner radius of the disc is approximately twice

the radius of the primary. The intervening gap will prevent accre-

tion. In real systems, random collisions will broaden the angular

momentum profile. We will simulate this by applying a Gaussian

smoothing function, where the width of the Gaussian may be con-

sidered a representative of the frequency of the collisions. Note that

this procedure does not change the total angular momentum of the

system.

Since the disc was created from the decomposition of the sec-

ondary, which was a helium WD, helium will be its dominant con-

stituent. Following Saio & Jeffery (2002), after a small quantity

(0.004 M⊙) of helium is accreted by the primary, helium-ignition

occurs at the base of the accreted layer. This energy source forces

the star to expand to become a giant. Models indicate that the radius

of the giant will be two orders of magnitude greater than that of the

disc, initially about 60 R⊙.

A simple model for the angular momentum distribution in the

giant can be obtained by assuming that each cylindrical element in

the disc forms a spherical shell conserving its angular momentum.

In order to describe the density profile of the giant, we assume it to

consist of a degenerate core, that is the CO WD, and a convective

envelope. In the fully conservative case, the final mass of the convec-

tive envelope is equal to the mass of the initial disc, and hence of the

helium secondary. Therefore, we can describe an angular velocity

distribution for the star.

Following calculation of the angular velocity distribution in the

giant merger product, we investigate how contraction affects the

rotation. After helium-burning is completed, the stars will contract,

and hence rotate more quickly. The question is whether or not their

rotation will approach the critical breakup velocity and what the

consequences might be.

For the CO+He WD merger, we investigate three possible cases.

In the first case, the central region rotates as a rigid body and the

angular velocity profile of the envelope depends on the initial con-

ditions, meaning the disc angular momentum distribution. In the

second case, 25 per cent of the convection zone near the surface,

as well as the central region, rotates as a rigid body, whereas there

is differential rotation in the intermediate region. In the third case,

we examine the case of completely rigid body rotation. This should

be the ultimate equilibrium state, since no shear torques occur that

could lead to angular momentum transfer (Lynden-Bell & Pringle

1974; Pringle 1981); however, it is not likely to be achieved, since

it is a slow process.

Using the above assumptions we will model the angular momen-

tum evolution of a binary which consists initially of two WDs. For

the structure of the WDs, we will adopt the models described by

Chandrasekhar (1958). For the principal calculation, we will con-

sider the primary to be a CO WD with mass 0.6 M⊙ and radius

0.013 R⊙ and the secondary a helium (He) WD with mass 0.3 M⊙
and radius 0.021 R⊙ (Vennes, Fontaine & Brassard 1995; Panei,

Althaus & Benvenuto 2000). In addition, we will consider CO+He

binaries with masses of 0.7 M⊙ + 0.2 M⊙ and 0.5 M⊙ + 0.4 M⊙,

in order to see the dependence, if any, of the angular velocity on

the initial mass ratio. We also compute appropriate quantities for a

number of He+He WD configurations. Finally, the results of these

calculations are compared with observed angular velocities in ex-

treme helium stars.

3 O R B I TA L D E C AY TO RO C H E L O B E

According to the General Theory of Relativity, two orbiting masses

M1 and M2 with a separation α will radiate angular momentum at a

rate (Landau & Lifshitz 1958):

J̇

J
= −

32

5

G3

c3

M1 M2 M

α4
, (1)

where G is the gravitational constant, c the speed of light, and M =
M1 + M2 is the total mass of the system. Due to angular momentum

loss, their orbits will decay. The total angular momentum of a tidally

locked system will be

Jtot = J o
1 + J s

1 + J o
2 + J s

2 , (2)

C© 2006 The Authors. Journal compilation C© 2006 RAS, MNRAS 371, 1381–1389
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Angular momentum in merged white dwarfs 1383

where the superscripts ‘o’ and ‘s’ refer to orbital and spin angular

momentum, respectively, and the subscripts 1 and 2 refer to the

primary and the secondary, respectively. We can express the orbital

angular momentum in the frame of reference of the centre of mass:

J o
tot = M1 M2

√

Gα

M
, (3)

where M is the total mass of the system. Spin angular momentum

can be expressed as

J s
tot = (I1 + I2)ω, (4)

where ω is the angular velocity and I refers to the moment of inertia.

Moments of inertia can be evaluated from the density profile of the

stars. However, some distortions may occur that alter it slightly

(James 1964; Tassoul 1978). The angular velocity is given by

ω =

√

G M

α3
. (5)

Substituting angular momentum expressions from equations (3) and

(4) and differentiating with respect to α, we obtain the following

expression:

J̇

J
=

(

M1 M2

2(Mα)1/2
−

3Itot M
1/2

2α5/2

)

×
(

M1 M2α
1/2

M1/2
−

Itot M
1/2

α3/2

)−1

α̇. (6)

As the orbit decays, the equipotential surface surrounding the two

stars (Roche lobes) shrinks until one component exactly fills its own

lobe. The Roche lobe radius is given by (Eggleton 1983):

αL =
0.49q2/3

0.6q2/3 + ln(1 + q1/3)
, 0 < q < ∞ (7)

where q is the ratio of the mass of the primary to the mass of the

secondary.

For the 0.6 + 0.3 M⊙ system defined above, the secondary will

fill its Roche lobe when the orbital separation is 0.067 R⊙. From

equations (1) and (6), we can estimate the orbital decay time-scale.

Assuming an initial separation of 1.5 R⊙, which corresponds to an

orbital period of 5 h, we obtain a time-scale of 4 × 109 yr, which is

less than a Hubble time. We note that observations of an increasing

number of such close binary WDs (Paczynski 1990; Marsh 1995;

Napiwotzki et al. 2005) are commensurate with estimated merger

rates (Iben, Tutukov & Yungelson 1996; Nelemans et al. 2001).

4 D I S C F O R M AT I O N

When the secondary fills its Roche lobe, it disintegrates and its

remnants form a disc. We will use the assumption of angular mo-

mentum conservation to determine the mass distribution in the disc.

First, we construct two useful quantities for the distribution of angu-

lar momentum in the secondary. The first is the angular momentum

per unit mass, hereafter specific angular momentum, which will

be expressed as dJ(m)/dm, assuming the system shows cylindri-

cal symmetry. Since we generally assume a collisionless model,

this quantity remains constant throughout the problem, unless some

mass is lost. The other quantity is the angular momentum contained

within a distance r from the centre of the system, hereafter angular

momentum density, and will be expressed as dJ(r)/dr. It depends

strongly on the geometry of the problem. When the secondary fills

its Roche lobe, it expresses the angular momentum contained in a

thin slice of the star at a distance r from the rotation axis of the

Figure 1. The specific angular momentum dJ/dm. It remains constant

throughout the problem, since we examine a collisionless model.

primary. The slice lies perpendicular to the radial vector that points

from the centre of the primary to the centre of the secondary. In the

case of the disc, dJ/dr expresses the angular momentum carried by

a thin cylindrical shell of radius r. In the case of the giant star, it

expresses the angular momentum carried by a spherical shell at a

distance r from the rotation axis of the star.

From the definition of angular momentum, a particle of mass dm

that lies at a distance r from the primary and moves at an angular

velocity ω has angular momentum

dJ = r 2ω dm. (8)

Integrating the specific angular momentum over mass and the an-

gular momentum density over distance, we obtain the total angular

momentum of the system. For our example conditions, it is 4.5 ×
1050 erg s and remains constant throughout the evolution of the sys-

tem, unless some mass is lost. We can easily obtain from the orbital

elements the angular velocity of the secondary, when α = αL, to

be ω = 0.0346 rad s−1. The density of the secondary can be ap-

proximated by a polynomial function that fits the data given by

Chandrasekhar (1958) for the structure of WDs. Hence, we can de-

rive the specific angular momentum (Fig. 1) and the angular momen-

tum density (Fig. 2) for the system immediately before disruption

of the secondary.

After disruption of the secondary, a disc is formed. Since the disc

is supported by gravity, we assume it to be Keplerian. Therefore, the

angular velocity distribution can easily be determined to first order,

ignoring the self-gravitating effects of the disc itself:

ω(r ) =

√

G M1

r 3
. (9)

The angular momentum for a particle of mass m, performing

circular motion of radius r, is J = mωr2. Particles that carry less of

the angular momentum at the binary stage lie at the front surface of

the star (i.e. face-on to the primary). The angular momentum of these

particles will determine the inner radius of the disc. In our case, this is

rin = 0.022 R⊙. We can use the same argument for the outer radius of

the disc. In that case, we evaluate the angular momentum of a particle

at the rear surface of the secondary. We conclude that it is rout =
0.305 R⊙. If we take into account the self-gravitating effect of the

mass stored in the disc, the outer radius is decreased by 30 per cent

to rout = 0.203 R⊙, whereas the inner radius will remain unaffected.

This may be shown by a first-order approximation. Assuming that

C© 2006 The Authors. Journal compilation C© 2006 RAS, MNRAS 371, 1381–1389
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Figure 2. The angular momentum density dJ/dr at the Roche lobe stage.

We can see that most angular momentum is carried at a distance slightly

farther from the centre of the secondary (0.067 R⊙). This is because dJ/dr

is proportional to the mass contained inside a slice of the star and to the

square of the distance. This product has a maximum at 0.069 R⊙ from the

centre of the primary.

a particle of unit mass carrying angular momentum J lies in the

gravitational field of a mass M, then at radius r, the attractive force

is GM/r2. Including the gravitational field of a disc of mass m,

the central force on the test particle, now at radius r′, is G(M +
m)/r′2. Since J is constant, the ratio of radii (for m = 0.3 M⊙,

M = 0.6 M⊙) is r′/r = 2/3. In higher order, the geometry of the disc

must be considered, but this does not affect the angular momentum

calculation.

Whether we use the first or the second approximation for the

angular momentum density will have no effect on our final results for

the rotation of the giant star, since the specific angular momentum

does not change. The choice only affects the angular momentum

density at the disc stage (Fig. 3).

During the formation of the disc, collisions may take place. These

will broaden the angular momentum distribution, in particular to

scatter material into the region r < rin. Angular momentum will

also be transferred to outer parts of the disc which will become

more extended. In order to simulate the effect of these collisions, we

convolve the angular momentum functions (dJ/dr) with a Gaussian

of width σ = 0.005 R⊙/
√

2, where the width of the Gaussian may

be taken to represent the overall efficiency of the collisions. The

resulting density distribution demonstrates that only a very modest

collisional redistribution of angular momentum is required to bring

disc and star into contact (Fig. 3).

5 G I A N T S TAG E

Following disc formation and providing that gas has been scattered

to r < rin, helium will be accreted from the disc on to the surface

of the former primary, which becomes the degenerate core of the

merged star. Saio & Jeffery (2002) adopted an accretion rate of

roughly half the Eddington rate. After ∼0.029 M⊙ is accreted, a

helium flash occurs. This leads the star to expand and form a yellow

giant. The expansion is rather rapid and lasts for only 200 yr. The

radius of the giant initially reaches ∼60 R⊙. This stage of evolu-

tion may correspond to some hydrogen-deficient carbon giants and

the coolest of the R CrB stars (Saio & Jeffery 2002). The radii of

some models do exceed this value, so we surmise that the surface

Figure 3. The angular momentum density dJ/dr of the disc. Angular mo-

mentum is spread in a more extended region than it was at the Roche lobe

stage. If we take into account the self-gravitation of the disc, then its size

decreases, but the total angular momentum cannot change. Since we have a

collisionless model, no mass is scattered closer to the star than rin = 0.22 R⊙.

The spin angular momentum of the primary has been neglected, since it is

three orders of magnitude smaller than the angular momentum of the disc.

The dotted line corresponds to the convolution of dJ/dr with a Gaussian

with σ = 0.005 R⊙/
√

2.

rotation will be lower than that deduced here. However, assuming a

conservative distribution of specific angular momentum, spin-down

during expansion and spin-up during contraction should lead to a

similar final result.

Our objective is to predict the angular velocity profile for such a

giant. In order to model its density profile, we expect it to consist

of a degenerate core and a convective envelope. Using tables from

Chandrasekhar (1958), fitted with a fifth-order polynomial, we ap-

proximate the envelope as a polytrope of index n = 3/2 and express

the density as a function of r that fits the numerical results of the

Lane–Emden equation for n = 3/2 (Mohan & Al-Bayaty 1980). We

assume that initially no angular momentum is transferred between

the various parts of the star. Therefore, we first make the approxi-

mation that the outside surface of the star will form the outside shell

of the star, whereas the inner parts of the disc will stay near the core,

and that there is no change in the specific angular momentum.

However, it is also possible that helium-shell ignition occurs be-

fore the disc has been fully accreted, so that the material which was

accreted first becomes the surface of the expanding giant, whereas

the disc survives for sometimes inside the giant envelope. Subse-

quent accretion, or the disintegration of the disc, feeds mass into

the interior of the giant, close to the core–envelope boundary. We

will examine this case as well, assuming that the outer layer of the

giant, with a mass equal to the burning shell, comes from the inner

part of the disc and the remainder of the envelope comes from the

disintegration of the disc and obeys cylindrical symmetry.

We neglect differential rotation within a shell, so a thin spherical

shell of mass dm at a distance r from the centre of the star rotates as

a rigid body with moment of inertia

I =
2

3
r 2 dm. (10)

The choice of cylindrical shells, rather than spherical, is made

primarily on grounds of mathematical simplicity. There is some

evidence (e.g. the Sun) that rotation may be a function of latitude –

possibly suggesting cylindrical symmetry. It will be seen, however,

C© 2006 The Authors. Journal compilation C© 2006 RAS, MNRAS 371, 1381–1389
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that the difference between the extreme cases of rigid-body and

differential rotation is sufficiently small that the choice of geometry

in the latter is unlikely to be important.

We examine a number of cases.

Case 1: rigid core + differential envelope

The first case involves two regions including a central region con-

taining the degenerate core and a shell of the star’s envelope of

width 0.045 R⊙, performing rigid body rotation. Assuming that the

core rotates with the original angular velocity of the primary WD,

this is the critical radius for rigid-body rotation. Beyond this, the

envelope is assumed to rotate differentially according to the angu-

lar momentum distribution determined by the disc stage (Fig. 4).

The outer boundary to the region of solid body rotation is chosen

in order to avoid the possibility of having a rotational velocity that

exceeds the orbital velocity at this point. This scenario predicts an

angular velocity on the outer layer of the star of 1.15 × 10−7 rad s−1,

corresponding to an equatorial surface velocity veq = 4.95 km s−1.

There is a slight discontinuity between the two regions described

above. It can be considered as a surface of infinite gradient dω/dr.

In such a case, the transfer of angular momentum will be very fast

and the discontinuity will vanish. This will be the initial stage in the

giant’s angular momentum evolution (Fig. 5). Fig. 6 shows the ratio

of centrifugal force to gravitational force as a function of radius.

This drops rapidly outside the core, so rotation should not signifi-

cantly affect the structure of the envelope, although it may produce

a slightly ellipsoidal star.

Case 2: rigid core + transition layer + rigid envelope

In the second case, we divide the star into three regions: the first

is the core and a thin layer that rotates as a rigid body as before,

the second region lies between 0.045 R⊙ and 45 R⊙, where the star

rotates differentially as before, and the third region lies between

45 R⊙ and the surface. This boundary was chosen arbitrarily in

order to represent a case someway between the extremes discussed

in cases 1 and 3. We expect that near the surface, convection may be

strong enough that mixing will cause these outer layers to rotate as

a rigid body (Fig. 7). Therefore, the angular velocity for the surface

and the outer convection zone is 1.27 × 10−7 rad s−1, corresponding

to veq = 5.33 km s−1. There is also a slight discontinuity at the

Figure 4. The angular momentum density dJ/dr of the convective envelope

of the giant.

Figure 5. Logarithmic plot of the angular velocity ω at the giant stage as a

function of the distance from the rotation axis. The central region rotates as

a rigid body, whereas angular velocity falls with distance from the axis.

Figure 6. The ratio of centrifugal force to gravitational force as a function

of radius for case 1. The plot shows only the differentially rotating stellar

envelope.

45-R⊙ boundary of δ ω = 1.2 × 10−8 rad s−1. This represents an

intermediate case, since angular momentum is transferred within

the star.

Case 3: rigid body rotation

The third case to consider is that of rigid body rotation for the whole

star. Shear torques may transfer angular momentum outwards from

the core to the outer layers and thus make them move faster, whereas

the inner layers will rotate more slowly. Rigid body rotation is the

equilibrium state, since it is the lowest-energy state for an object

with determined angular momentum (Lynden-Bell & Pringle 1974;

Pringle 1981) and contains no shear torques that will transfer angu-

lar momentum. However, this equilibrium is not achieved by real

stars even on very long time-scales, as illustrated by the Sun. It is

unlikely to occur on the very short time-scales and very low-density

envelopes under consideration here. Nevertheless, it represents an

important limiting case in which most of the angular momentum

is carried in the outer layers of the star. We can easily evaluate the

moment of inertia for the giant star by integrating equation (10)

C© 2006 The Authors. Journal compilation C© 2006 RAS, MNRAS 371, 1381–1389
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Figure 7. The angular velocity ω of the disc, in the second scenario. The

central and the intermediate region rotate as in the previous case (Fig. 6);

however, there is a layer at the outer part of the convective envelope that

rotates as a rigid body. There are two slight dicontinuities at the boundaries

of the three regions.

throughout the star to obtain Igiant = 2.85 × 102 g cm2 M−1

⊙ R−2

⊙ .

From conservation of angular momentum, we find that Jgiant =
4.71 × 10−5 erg s M−1

⊙ R−2

⊙ . Therefore,

ωgiant =
Jgiant

Igiant

, (11)

which is 1.64 × 10−7 rad s−1 corresponding to veq = 7.1 km s−1.

This case represents the fastest rotation of the surface layers and

sets an upper limit for the observed rotation velocity.

We conclude that the equatorial surface velocities do not depend

strongly on the details of the model. Using the above argument,

we can define an upper limit on the angular momentum that cor-

responds to rigid body rotation. Any velocity observed should be

less than this limit. We have not taken into account any losses of

angular momentum due to mass ejection. Such phenomena will lead

to lower angular momentum and therefore lower angular velocity.

In the polytropic density profile, we have neglected any term from

rotation; this gives a good approximation, since the linear velocity

of circular motion due to the gravitational field of the star at a ra-

dius equal to the giant star radius is 53 km s−1, or about one order

of magnitude greater than the velocities we found. In addition, any

distortion caused by rotation will increase the moment of inertia of

the star and decrease the angular velocity, supporting the statement

that rigid body rotation of a spherical body represents the maximum

possible equatorial surface velocity.

Case 4: rigid core 0.87 M⊙ + differential envelope

The fourth case can be considered as a combination of cases 1

and 3. During evolution as a giant, the helium-burning shell eats

up the envelope, so the core mass increases, while the core radius

remains virtually unchanged. Conversely, the envelope retains the

same radius but a drastically reduced mass. We consider a final

configuration in which the envelope mass is 0.03 M⊙. The moment

of inertia of the core increases but cannot exceed 1.4 × 10−5 g cm2.

Even in this case, no more than 15 per cent of the total angular

momentum can be stored in the core before the core reaches its

breakup limit. Therefore, the envelope will have to rotate about 30

times faster than in case 1.

Such rotation is extremely fast and seems implausible; at least,

it is not observed. The problem is that, to be conservative, angular

momentum must be transferred into the core at the same time as

the envelope is ingested. However, once the core reaches breakup

velocity, the transfer of angular momentum becomes impossible,

so the momentum must stay in the envelope, creating a paradox.

Interestingly, this parallels the case for the viscous disc (Lynden-Bell

& Pringle 1974) in which angular momentum is expelled outwards

as mass migrates inwards.

This calculation therefore strongly suggests that if stable shell-

burning giants are to be produced by WD mergers, then a large

fraction of the total angular momentum must be dissipated from the

disc before it is accreted on to the primary.

While this case is the most interesting and realistic of the four

considered, it has presented a paradox for the transfer of angular mo-

mentum from the envelope to the growing core. The consequences

of this deserve more attention than we are currently equipped with

to explore.

6 H O M O L O G O U S C O N T R AC T I O N

Having considered the angular momentum distribution of a star as it

evolves from a WD binary through to being a giant, we next consider

the angular velocity distribution following shell-helium extinction

and the subsequent contraction at constant luminosity towards the

WD cooling track.

Since the core is degenerate, we need to consider only the evo-

lution of the envelope, which we will consider to contract homolo-

gously. A simple model can be developed by assuming that the star

rotates as a rigid body (case 3).

However, no crucial differences will be found if we assume dif-

ferential rotation, as demonstrated in the previous section. The only

effect would be to find lower surface equatorial velocities. In or-

der to become a WD, the star needs to reduce in size by a factor

of ∼2 × 10−4. Leaving the core unaffected, while the star shrinks,

we evaluate the angular velocity and the equatorial surface velocity

corresponding to this rotation. We plot the angular velocity (Fig. 8)

and the ratio of the linear equatorial rotation velocity, veq, to the

linear velocity of a particle moving on a circular orbit, vorb, at the

surface:

λ =
veq

vorb

(12)

Figure 8. Logarithmic plot of the angular velocity ω as the star contracts

by a fraction β = R0/R. R0 is the radius of the giant before contraction.
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Figure 9. The ratio of the velocity due to rotation to the velocity of the

circular orbit on the surface of the star, λ, as a function of β which is the

contraction factor for three pairs of masses of the progenitors; from top to

bottom: 0.7 M⊙ + 0.2 M⊙, 0.6 M⊙ + 0.3 M⊙ and 0.5 M⊙ + 0.4 M⊙.

Contraction cannot continue if λ approaches unity. In order to become a

WD, the star needs to contract by a factor of about 5 × 103. We can see

that for progenitor masses of 0.5 M⊙ + 0.4 M⊙, contraction can reach the

WD radius, whereas for the other two cases angular momentum needs to

be removed. The dotted line corresponds to the model of a merger with

progenitor masses of 0.6 M⊙ + 0.3 M⊙ where 50 per cent of the secondary

mass is lost.

(Fig. 9, middle curve). The quantity on the horizontal axis is the

ratio β of the radius of the giant, R0, to the radius during contraction,

R. The moment of inertia decreases with the square of the radius,

which will lead the star to rotate faster (Fig. 8). Note that contraction

implies increasing β.

Problems occur when the rotation velocity approaches or exceeds

the value of velocity for a circular orbit (λ � 1). Thus, when the

star contracts to ∼0.007 times its initial radius, the two velocities

become equal and the star cannot shrink anymore, unless some an-

gular momentum is lost. At this point, the velocity is of the order

of ∼102 km s−1. This is much lower than the speed of light and

relativistic effects may be ignored.

7 A N A N G U L A R M O M E N T U M P RO B L E M ?

So far we have examined a fully conservative scenario from the

Roche lobe stage and onwards for a 0.6 M⊙ + 0.3 M⊙ binary.

However, much energy is ejected at the breakup of the secondary.

Some of this energy may be deposited in the disc as thermal kinetic

energy, whereas some material of high angular momentum is likely

to leave the system, although the maximum possible mass lost has

been shown to be small (Han & Webbink 1999).

We therefore examine whether the contraction of the giant can

proceed conservatively if some mass (and hence its associated spe-

cific angular momentum) is ejected. Although this is contrary to our

initial assumptions and previous numerical results (Segretain et al.

1997; Han & Webbink 1999; Geurrero et al. 2004), this mass ejec-

tion is treated as taking place during the phase of disc formation.

This approximation avoids numerical complications which are be-

yond the scope of this paper, but allows us to obtain a rough estimate

of the resulting configurations when mass loss is taken into account.

We have solved the problem for the cases where 1, 5, 10, 25

and 50 per cent of the mass of the secondary is ejected during

the merger process. In all cases, the giant cannot contract to the

radius of a WD. Fig. 9 includes the case in which 50 per cent of

the mass of the secondary is ejected. In this test case, two-thirds

of the total angular momentum is removed, since particles carrying

more angular momentum are more likely to escape. λ reaches unity

when β ≈ 1000, which means that the star can reach a small size

(10−3 times its original), but not less than five times the required

WD radius.

In order to investigate the role of the initial conditions, we have

solved the problem for various relative masses of the WD binary

components. We have plotted the ratio of the equatorial rotation

velocity to the surface orbital velocity (λ) for progenitor binaries

of 0.7 + 0.2 M⊙ and 0.5 + 0.4 M⊙ in addition to the test case of

0.6 + 0.3 M⊙ (Fig. 9). When λ � 1, contraction cannot proceed. We

see that for mass ratios nearer to unity the star can contract to WD

size without the need for additional angular momentum loss. This is

expected, since such systems need to lose more angular momentum

before the secondary star fills its Roche lobe. This is because the

WD radius varies inversely with mass, so more massive WDs will

have smaller radii and will fill their Roche lobes later. Close orbits

involve less angular momentum, of course, and their products will

rotate more slowly.

Therefore, conservation of angular momentum does present a

problem for the WD merger model in most, but not all, cases. The

problem arises either during helium-shell burning, when angular

momentum has to be transferred to the envelope to avoid the core

reaching breakup velocity, or during contraction, when the surface

reaches breakup velocity.

8 H E L I U M+H E L I U M W H I T E DWA R F
M E R G E R S

The case of merger between two helium WDs is initially identical

to that of the CO+He merger (Saio & Jeffery 2000). After shell-

helium ignition, the star expands to become a giant, and the envelope

is capable of storing substantial angular momentum. However, the

star evolves to become a helium main-sequence star on a short time-

scale (Iben 1990). The case is analogous to the CO+He merger

which must spin-up during contraction to become a WD.

We have calculated rotation rates for helium main-sequence stars

arising from a number of initial configurations. The final configu-

ration is an n = 5/2 polytrope with overall dimensions given by

Paczynski (1971).

Table 1 shows the run of the moments of inertia I, total angular

momenta J, and angular and linear equatorial rotation velocities (ω,

vrot) for a series of initial configurations (M1, M2). The predicted

values for vrot are very high and, in most cases, substantially exceed

the critical orbital velocity at the surface (vorb). Clearly, such stars

cannot exist and it is necessary to find a mechanism for expelling

angular momentum at an earlier stage. In this case, losing some

angular momentum at the breakup of the secondary when it fills its

Roche lobe is likely, since the total mass of the binary and the binding

energy is lower. In addition to this, less massive WDs have larger

radii and fill their Roche lobe earlier. This will enable mass carrying

angular momentum to escape the system earlier.

9 O B S E RV E D ROTAT I O N R AT E S

Observations suggest modest rotation velocities for extreme helium

stars. Measurements of the projected rotation velocity veq sin i for

10 objects have been obtained by fitting line profiles to absorp-

tion lines in the optical spectrum (Table 2). For small values of

C© 2006 The Authors. Journal compilation C© 2006 RAS, MNRAS 371, 1381–1389
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Table 1. Theoretical predictions for the rotation of helium main-sequence stars produced by He+He WD mergers for various combina-

tions of initial masses.

M M1 + M2 I J ω vrot vorb

(M⊙) (M⊙) (10−3 M⊙ R2⊙) (10−5 erg s M−1
⊙ R−2

⊙ ) (rad s−1) (103 km s−1) (103 km s−1)

0.5 0.3+0.2 1.16 2.53 0.044 3.2 0.95

0.5 0.4+0.1 1.16 1.71 0.030 2.2 0.95

0.7 0.4+0.3 3.18 3.83 0.012 1.2 0.96

0.7 0.5+0.2 3.18 3.18 0.010 1.0 0.96

Table 2. Projected rotation velocities for extreme helium stars.

Star Teff log g veq sin i R ω sin i Reference

(K) (km s−1) (R⊙) (106 rad s−1)

FQ Aqr 8750 ± 300 0.3 ± 0.3 20 ± 5 136 ± 96 0.22 ± 0.17 Pandey et al. (2006)

HD168476 13 500 ± 500 1.6 ± 0.25 25 ± 5 23 ± 13 1.6 ± 1.0 Pandey et al. (2006)

LSS 99 15 330 ± 500 1.9 ± 0.25 30 ± 5 16 ± 9 2.9 ± 1.7 Jeffery et al. (1998)

HD124448 15 500 ± 500 1.9 ± 0.25 4 ± 5 16 ± 9 0.38 ± 0.5 Pandey et al. (2006)

LSS 4357 16 130 ± 500 2.0 ± 0.25 45 ± 5 14 ± 8 4.9 ± 2.8 Jeffery et al. (1998)

LS II + 33◦ 5 16180 ± 500 2.0 ± 0.25 45 ± 5 14 ± 8 4.9 ± 2.8 Jeffery et al. (1998)

V1920 Cyg 16 300 ± 900 1.7 ± 0.25 40 ± 5 23 ± 13 2.6 ± 1.5 Pandey et al. (2006)

BD + 10◦ 2179 16900 ± 500 2.55 ± 0.2 18 ± 5 6 ± 3 4.7 ± 2.5 Pandey et al. (2006)

LSE 78 18 000 ± 700 2.0 ± 0.1 20 ± 5 15 ± 3 2.0 ± 0.7 Jeffery (1993)

DY Cen 19 500 ± 500 2.15 ± 0.1 20 ± 5 13 ± 3 2.4 ± 0.8 Jeffery (1993)

veq sin i, these may have been overestimated because of the diffi-

culty of deconvolving instrumental and rotation broadening profiles

in the observed spectra. Table 2 also gives the measured values of

Teff and log g. By assuming a core mass–shell luminosity (Mc–Ls)

relation (cf. Saio & Jeffery 1988), the latter may be combined to

estimate both a mass and a radius for the extreme helium stars.

Hence, we can obtain the projected (minimum) angular rotation

velocity ω sin i. We can normalize the relative radii by assuming a

minimum Teff,0 before contraction at constant luminosity, and hence

derive β = R0/R = (Teff/Teff,0)2. We have adopted Teff,0 = 5000 K,

the value at which post-merger giants commence their contraction

(Saio & Jeffery 2002). A different value would impose a horizontal

offset on to Fig. 10, which demonstrates an overall increase in ω sin i

with increasing β (and hence with increasing Teff). It is interesting

that the maximum slope represented by these data corresponds to

the spin-up of a homologously contracting star, ω ∝ R−2, as theory

predicts.

The projected rotation rates are all smaller than the maximum rate

predicted by theory assuming complete conservation of angular mo-

mentum through the WD merger. Assuming a random distribution

of inclination angles, the average rotation rates should be π/4 times

the maximum rates. The observed rates are less than one-third of

the maximum rate. This implies that at least half of the angular mo-

mentum must have been lost, either during the merger process or

while the star was a cool giant, for example, in a wind.

The minimum rotation rate as a fraction of breakup velocityλmin =
veq sin i/vorb can also be checked using the same estimates for radius

(Fig. 11). All objects are currently slow rotators (veq sin i for FQ Aqr

is probably overestimated for the reasons given above).

In other words, the observed rotation rates for extreme helium

stars are consistent with homologous contraction of the envelope at

constant luminosity. They are not consistent with complete conser-

vation of angular momentum during the WD merger. With angular

velocities less than one-third the predicted rates, the likelihood of
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Figure 10. Projected angular rotation log ω sin i as a function of relative

inverse radius β for extreme helium stars. The dotted line represents a ho-

mologous contraction, that is, ω ∝ 1/R2, and the solid line represents the

maximum theoretical rotation rate shown in Fig. 8.
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Figure 11. Projected angular rotation as a fraction of breakup velocity, λ,

as a function of relative inverse radius β for extreme helium stars.
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breakup as these stars contract towards the WD phase is much re-

duced compared with Fig. 9.

1 0 C O N C L U S I O N

Assuming that angular momentum is strictly conserved within the

system, we have calculated the rotation velocities of stars produced

by the merger of WD binaries over a range of interesting initial mass

ratios and possible outcomes. These include evolution through the

giant phase, and subsequently towards either the WD or the helium

main sequence. We have demonstrated that while it may be possible

to produce the initial giants, the star (or its core) will spin-up as

material is processed into the core or as the overall star contracts

towards either of the compact configurations. This spin-up would

be high enough to cause breakup.

More critically, the rotation velocities predicted under total con-

servation of angular momentum for post-giant objects are greater

than those observed in the putative CO+He merger products, the

extreme helium stars, by a factor of �3.

Therefore, for the merger model to work, the star must lose angular

momentum at some point in its evolution. The most likely time

for this to occur is following formation of the disc after breakup

of the secondary. In order to assume total conservation of angular

momentum, it was necessary to assume that this disc is collisionless,

but that assumption would also prevent the accretion of material on

to the primary.

In fact, the completely opposite assumption must be considered.

Lynden-Bell & Pringle (1974) argued that, in a viscous disc, angular

momentum will be transported outwards while mass is transported

inwards, on the viscous time-scale τ visc ≈ R2/ν, where R is the

disc radius and ν the viscosity. The latter is approximately (1/3)cs

H, where cs is the sound speed and the scaleheight H ≈Rcs/vc, vc

being the Keplerian velocity for a circular orbit at radius R having a

period PR . Rearranging, we obtain τ visc ∼3R/vc(R/H)2. If we take

the disc radius to be approximately four times the WD radius, R ∼
4 Rwd, and the disc scaleheight to be twice the WD radius, we obtain

vc ≈ 6R/PR and τ visc ∼ 2PR ∼ 500 s. Such a mechanism provides a

very efficient sink for the angular momentum, but poses a problem

for the mass, which will be dumped on to the surface of the WD at a

rate far in excess of the Eddington rate (ṀEdd). Although accretion

rates significantly higher than ṀEdd may be accommodated in a

non-spherical geometry, for example, by accretion at the equator

balanced by radiation in the polar axis, the disparity here seems to

be insurmountable. Mass must be stored somewhere in the system

where it is not supported by hydrostatic forces.

A hybrid solution might derive from a mechanism suggested first

by Lynden-Bell & Pringle (1974) and explored again by Popham

& Narayan (1991). This considers how material from an accretion

disc would spin-up the accretor (note, this is a true accretion disc,

and not a disrupted secondary). When the accretor reaches critical

velocity, it interacts with the disc, actually spinning-up the disc. If

this were to happen, then we could get momentum back into the

disc, propagate it outwards and eject it from the outer edge of the

disc.

A more detailed study of the dynamics of the binary disruption,

disc formation and subsequent accretion is therefore warranted.

Some progress has been made with smoothed particle hydrody-

namics (Benz et al. 1990; Segretain et al. 1997; Geurrero et al.

2004); calculations have dealt principally with the dynamics of the

secondary disintegration and subsequent disc formation, and give

useful insight into the disc heating and mass distribution, that is,

no explosion and negligible mass loss from the system. However,

none goes far enough to establish the long-term outcome during and

following disc accretion.
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