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Abstract

A 'frequency domain' approach to the optimal control of
bilinear systems is presented . This is based on a new
representation of the input-output map of the system in terms

of a basis of L2[O,T]




1. Introduction

The theory of linear systems has been developed at different times using one
of two basic approaches - (i) the frequency domain , transfer function method
and (ii) the state space (time domain) technique . These two methods can be
regarded as being equivalent because of the isomorphism between the time domain
and the frequency domain provided by the Fourier transform . This isomorphism
maps L2[0,w] onto L2[—w,wl or more generally from (some) space of distributions
onto another . The Fourier transformed system then éxhibits the frequency
response behaviour of the original system .

In the theory of nonlinear systems it is no longer of much significance what
the response of the system to a sine wave may be , since this response will not
be a sine wave and the original system has no superposition principle , in
general ., However , 1f we consider such a nonlinear system to be defined on a
finite time interval [0,T] (merely for convenience , the infinite time interval
can be considered similarly ) and the inputs belong to tho,T] then each input
may be regarded as an infinite sum of ‘special' functions . For if {e,) is a

1" 121
basis of L2[0,T] , then any input u may be written

=
n
I ™ g
=
(L]

Note , however , that as we have stated above , there is now no 'canonical’
basis since the sine and cosine functions have no special significance for
general nonlinear systems .

If the nonlinear system S is input-output stable in the usual sense , then

S:L2[0.T] 3 L2{0,T] , where S is the input-output map of the system . Thus ,

y = S(w

and so




¥y = Si(ul’UZ""') 1, 1
where
si(ul,uz,‘...) = (S(Eujej).ei>

Ve shall call the sequence {Si)ikl the generalized frequency response of S .
In [1] and [2] we have presented a realization theory based on the generalized
frequency response . This paper will be concerned mainly with the application of
this approach to the optimal control of bilinear systems . The bilinear-
quadratic regulator problem was solved recently [3],[4] with the solution being
given as a power series with tensor-operator coefficients . This solution has
two drawbacks - first it is only valid for sufficiently small initial states and
secondly the tensor-operator valued 'Riccati-like' equations have expanding
dimension making computation very difficult . In this paper we shall show that ,
if we take a finite number of basis vectors , say el,....,ek , then the solution
of the optimal control problem is given in terms of a set of polynomial
equations .

Note finally that there have been other approaches to the 'frequency domain'
behaviour of nonlinear systems ([5-71 ) but these are based mainly on the
Volterra series and the generalized Laplace transform . The method proposed here

is a direct generalization of the linear frequency domain approach , since it is

based on an isomorphism between the 'time' and 'frequency' domains .




2. Notation and Terminology

In this paper we shall denote by LB'D[O,T] the space of square integrable

functions x:00, Tl 4!Rn ; 1.e. the integral

T
J Nxdn 2dt
0
is finite , where ll.ll is the usual Euclidean norm nnIRn . If n=1 we shall write
simply L2IO,T] . If {e,} is a basis of Lz[O.Tl , then there 1s an obvious

i

isomorphism 3’:L2[0.T] 2 ﬂz induced by this basis , where Qz is the usual

space of square summable sequences .

Let ﬂz'n denote the space of square

summable sequences with values inIRn , so that 1f~(§(i)} € Qz'n , Where

§(i)emn , for each i , then

S 2
D) tlg(i)Il o,
i=1
Then 3’ induces an isomorphism Efn:Lz’DEO,TJ ] £2,n given by
N T
Fhe = ¢ 1 xe = (Fx,....,$x0" = xwn
. i 1 n
i=1
where
) = )y, x W)
and
x(t) = (x, (B),....,x_(£)),
1 n

Ve shall then denote the sequence {x(i)} by x . Finally , I will denote the

identity operator without further comment .

which space this operates .

It will be clear from the context on
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3. 'Frequency Domain®' Representation of Bilinear Systems
Consider a bilinear system

m

x=Ax + I uB,x ,  x(0)=x, ¢ R
i=1

R G.1D

defined on the interval [0,T] , where T is arbitrary , but finite . This system
gives rise to an input-output relation given by the well-known Volterra series .
In this section we shall present an alternative representation of the input-
output relation which has a connection with the freéuency domain transfer
function for linear systems . Let

x = h(w (3.2)
denote the inpuf—output relation of (3.1) . Then we require
Lemma 3.1 As a nonlinear operator , h maps LB'mIO,T]an'leO,T] into L2‘mIO,T].
Proof Define the sequence of functions §;(t) by

At
§0<t> = e 'x,

t m
£, = Je“t )L u, (B, §, . (e)ds , 121 .
i —a ] jei-1
0 j=1
Ve can write
nelti ¢ ge®t
for some real constants K,w and so
€ -y B
| . ; i
g, @« S Ke I lug@I-NB Il $,_q(eMas
0 j=1
m
Thus , 1if f= max IIBJH and Y= I sup lu,(t)l , then
1¢j¢n j=1 0¢t¢T 3

wi(t-s)

t
g, e sfoxe PR IS, () ds

¢ @yt gl gz
11 0




by iteration . Hemnce , if x(t) =

§i<t> , then
i

0

n e g

(wtKk ¥Rt

xtH>t € e 1lx0H

and the series is uniformly convergent . It is easy to check that

w
h@w = I &,
1=0

and the result follows . O

Let {ei}iil be an orthonormal basis of L2E0,T] . From (3.1) we have
m t
xt) = et &+ 3 \[ 28 m wisrds |
“ 18754
1=19 0
and by lemma 3.1 , if vel® ™0, 1IN L™ ™ 0,T1 then xe12'®(0,T] and so we can
write
@ ow
u= I u{i)ei , x = I x(i)ei
i=1 1=1
where
uf wan e EQ,n . x 8 xdane Q2,n
Thus ,
@ m t (-] @
I x(e, = eAtxO + 3 5 e Y x(§)e, (s)e, (s)ds .
1=1 0=110 1=1 y=1 ¢ 1 J

Now assume that the basis {ei) satisfies the assumption

5 A(t-s) 2
{A) ‘the functiom % a‘f o e,(s)e, (s)ds ¢ L°10,T] for each 1,
0

Then , under assumption (A) we can write

@« m L] -]
I x(i)ei = eAtxo + I I z E

t
AR, e (idsn. (VB HCT)
i=1 L=1 1=1 §=1

0 1 J ¢ 4

Again , by assumption (A) , we have



t «
A(t-s)
J e ei(s)ej(s)ds = ijkek(t>
k 0
Hence
m © w
x(k) = (&) + I I u (1)B x(J>
£=11=1 J SR
where
E = <eMx 0.8 , (3.3)
00> .
2,n 2,n
1f we define the operator Kw: { 4+ 0 by
m © o
Kwx k) = L I I o u,(i2B, x(j> ) (3.4)
=1 4=1 g=1 HE U0
where u = {u(i)) , ¢ = {x(i)) , then we have

(I-Kwx =& ,

where § = {E(k)) . Hence we have

Lemma 3.2 If u e L2,m then the solution of the bilinear system (3.1) with

input u is given by

x = (I-KwH lE (3.5)

where § and K(u) are given by (3.3) and (3.4) , respectively . O
The 'inverse system' (3.5) can be written in a different way which is
convenient for applications . Ve have

m @ @
I

(Kwx) (k) = I ijku(i)B x(j>
211111
2, n, 2,n
Define the operators Ly 3 l by
E=1
L] ]
(L ) (k) = (Jrlaijk 1x(J) AETIEN JilaijkBmg(J))

Then




®
Kw = I u(l

i=1 i

Hence , by lemma 3.2 we have

«©

p= (1~ T aCiL,y 1% , (3.6)
i 2
i=1
2'”ﬁ 2,nk
In particular , if uePkL 0,T] , where Pk is the projection of L 0,T] onto
the subspace generated by the basis {el,.....ek} » then
5 41
x=(I- Iu@lp £ . 3.7

i=1

Theorem 3.3 If the input u satisfies the inequality

k
I fudiyh ﬂLiH <1
i=1
then we have the expansion
k ¥k k
=4I + L u(i)Li £+ I I u(i)u(j)LiLJ F o wild . (3.8)
i=1 i=1 j=1

Proof This follows directly from the Feumann series . O

Remark In contrast to the Volterra series , which follows from lemma 3.1 and is
valid for usLm'nko,T] y the expansion (3.8) is only valid for sufficiently small
lull . However , lemma 3.1 shows that (3.5.) and (3.7) are valid for

ueLz’nko,T]r\Lm'nko,Tl and so (3.7) is an analytic continuation of (3.8)




4. Application to Optimal Control
The solution of the linear-quadratic regulator problem has recently been
extended to bilinear systems ([31,04]) ., The major drawback with the solution of

the bilinear-quadratic regulator problem is that the feedback control is a
tensorial power series in the state with tensor operator coefficients , the
ranks of which tend to infinity . Hence , even for low-order ﬁpprnximations y wWe
must perform considerable amounts of computation and to increase the accuracy of
the control we must compute tensor operators of higher rank .

Ve can obviate this difficulty by expressing the problem in the 'frequency

domain' . Thus , if we consider the optimal control problem :
. m
x=Ax+ I u,Bx ,
g 174
T
minimize J 2 J Cixt® + nunat
0
then we can write
J =HxtHH 5 n + Hud. )1l 2
L% Pro, 11 1 %o, T3
2 2 2 2
= I Hxry + I ltuddd||
i=1 i=1
= IIxH2 +!iuH2
By lemma 3.2 we have
x= (I—K(n>)'1§
and so
7= cakan i ca-kan ) s nw® .
Hence

Ry = 2 L(I-K(;ﬁ}g )T (I-KT ¥ ) + 2u, (6)
fauj (k) ’Buj 9'9) -




However ,

2 ak@» R = -akwn ™t e a-kw)a-xwn iy

2 ) Pu, (k)
uj(k uj

and so

BRI =-2 Cz—xm)?l_’a (I—K(uncx—xcm)'“_g’)T((I-x(m)'ls ) + 2u, 0

h|
Quj(k) g“j(k)

Also , we have

? Ky =-_9  Ka = -L

'}uj (k> ’Buj (k)

1,k

where

L, . = P(OL
Ik J

and

m
Py : @D, pen
0=1

is the projection on the kth factor . Ve have therefore proved
Theorem 4.1 A necessary condition for u to be an optimal
solution of the bilinear-quadratic regulator control problem

m

x = Ax + I u,Bx
b i1

T
min J = f ( ﬂxuz + Hqu)dt
0

is that u satisfies the equations

u (k) = (=K "L

P a-kan B Taa-ran Tty 4.1

Ik
for 1¢j¢m , 1tk<{(o , where

u

B e
k) = (uJ,ek> y B = <e X518,

J
Of course , we have an infinite number of equations in an infinite number of

variables and so the computational problem is no easier than before . However ,




_10_

since we are considering Fourier series representations of functions , we have
an obvious approximation by applying the projections Pk defined above . Thus ,

we define the operator Kk(n):Lz’n{O,T] 5 12210, T1 by

Kk(n) =P

kK(n)P

k

for each u € PkLz’mIO,T1 . Then we have

Lemma 4.2 The solution of the bilinear system (3.1) (specified in (3.5)) is

given by
lim XF
kqe
where
k k..-1¢ k
x = K E ;
and
R k _ 5 12,n 2,n
u =Pu , g -Pk’g v and  I:P,LS'700,T1 =+ P,L™ 700, T

is the identity map .
Proof Ve have seen that (3.85) is equivalent to the equation

n ® @

x® = M+ I I L wdiiB ey . 9.
2=1 i=1 §=1 “199%
Hence ,
m k k
x@ = O + I L (1)B x(j) + EOM , Y21
£=1 i= 11 10
where
m «© ]
E(P) = % I 1)Byx(§)
2=1 i=k+l j= k+1 L A
Hence
Px= K@ eE+ ax afntek
k Ky 2 K €
where gk =P g , E= ( €(1), €(2),....) . The result now follows from the fact

k=
that I-K(uw)> is invertible , I-Kk(u#) is arbitrarily close to I-K(w) for large k

and Ek is arbitrarily small for large k . O
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1t follows from lemma 4.2 that we can approximate the cost functional J

arbitrarily closely by writing

_ 2 2
Jk- lIkal! + llPkuli

From thecrem 4.1 we have
Corollary 4.3 A necessary condition for u to be an optimal solution of the

approximate bilinear-quadratic control problem

. m
ka =P Aka + iil(Pkui)PkBika
4.2
T
2 2
min J = C NP _xlf + (P ull )dt
k k
0
is that Pku satisfies the equations
_ iy k. .-1 . k. .-1 L k —15
uJ(E.) = =((I Kk(u_)) LJ'Q(I Kk(n )) E‘k) (de! Kk(n )] “'k) 4.3
for 1¢ L¢k , 1¢j¢m . O
Consider the operator-valued function {I-Kk(uF)> in the km variables uJ(E),

1¢ € ¢k,1¢j¢m . This function bas a matrix representation on mnk , the diagonal
elements of which are affine functions of u? . Hence the determinant of this

matrix representation of (I-K (uk)) is a polynomial in u# of order ¢nk . It

k
follows that the equations (4.3) can be written in the form

pl(u (1),....,um(l),....,ul(k),.....um(k)) =0

............... 4.4
pkm(u (1),....,um(1).....,ul(k),....,um(k)) =0

where Py l¢i¢km is a polnomial of order 3nk+l . An explicit expression for Py
is given by

=y (4>p, + ALy A E (Ak§k> ,
where i=(l-1)k+j , and Dk and A, are , respectively , the determinant and

adjugate matrix of the matrix representation of (I-Kk(u¥>)



5. Example

In this section we shall consider the simple example
x=(0 1\x + u(o 0\x , x,=a iy

75 1 1 1

where u(.)eR , x = (xi,xz)Témz » and evaluate the polynomial equations (4.4) in

the cases k=1 , k=2 to illustrate the method . Let T=2n and choose the standard

basis {(1/2m), (1/m)cos t, (1/m)sin t, (1/mdcos 2t, (1/n)sin 2t,....) of L2[0,2ﬁ]
Ve have
A = /e Pt a/pem MR AfEse T g MY
T VT T I T T
and
2n p t
= A(t-s)
aijk _J-o IO e ei(s)ej (s)dsek(t)dt &
Thus ,
2n . t
; Xpqq = —1 e? V" geat
s fo 3
: 2m 0 0
H (5.6 11
8.3 17
Also ,
_ 2% ¢ ~
Fay = 1 e odt = 086
2nVY 0 1479
and
1
Kl(u )

n n
= =
~ ~
- Ll
o S

/——--.._ —~
= - ()]

EC I -

(o]

= | =
N T T
—————

\-_._.-/ /"q-\
= O

= o

\__-—-’

Hence ,
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x(1) = (1f11u<1> —1111(1)’)_1 ( 086
~17u(1) 1-17u (1) 1479

The cost functional in (4.2) becomes

7 & gheF Yt Yl # wiid®

where
P(u) = 1-11u (1) -11u (1) 5 o = 086 ;
=17u{l> 1-17u(l) 1479
Hence ,
T,.-1 T -1
d] =20 (P ")) [dP ") « + u(l)
du (1) du (1)

n

200 T [P la /o111 -1\ P rada | # u
(-17 -17)
=0

when u(l) satisfies the polynomial equation

-(086. 1479) { 1-17u 17u 1-17u 11lu -11  -111\/1-17u 11u \/ 9668

( 1lu 1-11lu )( 17u 1—11u)(—17 -17Y 17u  1-11u /\ 1479
+ u(1-28u)3 =0 .
This has a real root when u=u(1)Z -6.54 .
Now consider the case k=2 , so that the basis of PkLIO,Zx] is

{(1/2m), (1/m)cos t} . Then
Kz(n?) = u(l>/ 11 11 ) + u(2)/ 15 15 u<1>(\15 15\ + u(2) [ 30 30
17 17 23 23 23 23 45 45

u(ly) £ 15 15 \ + u(2)(21 21 u(l) (21 21\ + u@ (42 42

23 23 32 32 32 32 63 63

and




«® [Fa) ) = /986
1479
T 1365
2048
Hence ,
x(l)) -1 5(1))
( @/ = F W lemm/
where 2
Pw =1 - K, w.

2
The cost function becomes

1= tanTe lww + uh? +u@

2

and so

BRI = *2aT(P_1(u))T(\P—1(u) VY P lwa ) + 2u) =0
Buh) Qu(l)

1]
o

B =Pt P L)) (?—1(u) Rp P lwa) + 20@
Qu2) Qu2)

-~

In this case we obtain u(l) = -1.7 and u(2) = -1.95 and it is easily checked
that the cost is reduced .

6. Conclusions In this paper we bave given a 'frequency domain' approach to the
study of bilinear systems and applied it to the optimal control problem . The
method is based on the isomorphism of L2{0,T] with { - , defined by a basis of
L2[0,T] , and the fact that a quadratic cost may be written in the form

J HxH2 + {lull

L°10, T;R™ L

210, T;®™

= “§”e2,n+ Nyl

If we approximate the system in terms of a finite number of basis elements ,

Qz,m

then it has been seen that the optimal control problem reduces to the solution

of a system of polynomial equatioms .

2 oo bUUAl
g T ._, “. ‘:"L.,N,‘J

JIeE Y g

2 -3\ -87
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