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Abstract

Of the various transition velocities that delineate flow regimes in multiphase pneumatic

and hydraulic conveying, the critical deposition velocity is important because it separates

depositing and non-depositing flows. However, no distinction has been made between the

dependence of the critical deposition velocity on physical parameters and flow conditions

at low solid volume fractions and in the limit of zero volume fraction, which are distinct

mathematically. Here, the two cases are analysed separately, and a general functional form

in terms of the particle Reynolds number and Archimedes number is proposed that is valid

up to volume fractions of several per cent. An ultrasonic method for determining the

critical value of the particle Reynolds number is presented, and results for four particle

types at several nominal volume fractions (0.5, 1 and 3 % by volume) are combined with a

number of data from the literature. The resulting expressions are found to compare well

with several similar correlations for the critical deposition velocity and other transition

velocities, and, unlike a recent best-fit approach for the pick-up velocity, incorporate an

explicit dependence on volume fraction, to which the critical deposition velocity is most

sensitive at very low volume fractions. Lastly, it is found that the functional forms for the

critical deposition velocity in the literature are unable to reproduce the available data at

higher volume fractions, and a number of suggestions are made for resolving this issue.
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rate of settling onto the bottom of the pipe balances the rate of pick-up from it. In fact, in

one review article, the incipient motion velocity has been categorised as a type of pick-up

velocity, and the minimum-pressure velocity as a type of saltation velocity (Rabinovich

and Kalman, 2011).

In the present study, a method is presented for determining the mean flow velocity

corresponding to zero settled bed depth by extrapolation of experimental data recorded

over a range of bed depths. This particular transition velocity, referred to hereafter as the

critical deposition velocity, Uc, corresponds most closely to the critical velocity or saltation

velocity of Soepyan et al. (2014) and the limit deposit velocity of Peker and Helvacı (2007).
It is the determination of the dependence of the critical deposition velocity on particle and

flow properties that is the main objective of this study.

2. Functional form of critical deposition velocity: review

A standardised form for the critical deposition velocity, based on that for the pick-up

velocity given by Soepyan et al. (2014), can be expressed as follows:

Re = ݂(Ar)݃(߶,߶ ,ܦ,݀, ߩ,௦ߩ , ,(ܥ,ߥ [1]

where Repc is the particle Reynolds number corresponding to the critical deposition

velocity, Uc, such that:

Re = ܷ݀ߥ , [2]

f is a function incorporating the dependence on the Archimedes number, Ar, defined

below; g is that for the remaining flow and particle properties; ߶ is the solids volume

fraction; ߶c is a critical value of ߶, such as that in the moving bed, ߶mb, or the maximum

packing fraction, ߶m; d is the particle diameter; D is the pipe diameter; ɏs and ɏf are the

densities of the solid and fluid phases, respectively; ɋ is the kinematic viscosity of the fluid;

and CD is the drag coefficient of the particles. The maximum packing fraction � i.e. the

maximum possible volume fraction that can be occupied by settled particles in a bed � was

not referred to in any of the models described by Soepyan et al. (2014), but is posited here

as a parameter that is very likely to influence the form of g, as described later. Lastly, the

Archimedes number is defined as follows:



5

Ar =
݃݀ଷ(ܵ െ ଶߥ(1 [3]

where gn is the acceleration due to gravity (not to be confused with g in Equation [1] and

elsewhere) and S is the specific gravity of the particles, such that:

ܵ = ߩ௦ߩ . [4]

Rep can therefore be regarded as the ratio of inertial to viscous forces on a particle, and Ar

the ratio of gravitational to buoyancy forces. The particle Reynolds number, Rep, and the

Archimedes number, Ar, were chosen by Soepyan et al. (2014) �because they include some

of the most significant forces for particle transport�.

The functional form given in Equation [1] differs from that suggested by Rabinovich and

Kalman (2011), which is as follows:

Re௧כ = ܽ(Arכ) [5]

where Re௧כ and Ar* are modified versions of Rept and Ar that take into account volume

fraction, pipe diameter and particle sphericity/shape, with the subscript �t� in Rept

representing a general transition value of Rep, of which Repc (critical deposition value) and

Repp (pick-up) are examples; a and b are arbitrary coefficients.

At this point, it is necessary to identify an important distinction that has not generally

been upheld in the literature, namely that between the functional form of g at low values

of the volume fraction, ߶, and in the limit of zero volume fraction, i.e. as ߶ ՜ 0. That these

two regimes are strictly mathematically distinct has a number of important implications

for the subject of critical velocity correlations of the kind expressed in Equation [1], as will

be explained in the remainder of this study. Hereafter, the subscript �0� is used to indicate

the value of a function or parameter in the limit ߶՜ 0. For example, the particle Reynolds

number at deposition in the limit of zero volume fraction is as follows:

Re = limథ ՜ Re . [6]

It is necessary to specify the limit ߶ ՜ 0, rather than the simpler condition ߶ = 0, in this

context because the volume fraction, ߶, is only defined on the interval 0 < ߶ < 1 in liquid-
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solid suspensions: at ߶ = 0, a pure fluid is obtained, while at ߶ = 1, a pure powder/solid.

The critical velocity, Uc, and quantities derived from it, such as Rep, are therefore defined

on the same interval.

The standardisation procedure performed by Soepyan et al. (2014) allowed a large

number of models to be compared directly and ranked according to their ability to

recreate the experimental data available in the literature (a total of 117 data for

horizontal, solid-liquid pipe flow), both before and after �fine-tuning�, that is, optimisation

of parameters. The most important observations and conclusions to be drawn from the

analysis performed by Soepyan et al. (2014) are as follows. Of the three models identified

as most successful before optimisation (i.e. with the values of the model parameters as

given in the original models), none contained a dependence on the particle volume

fraction, ߶. The models were those of Mantz (1977), Rabinovich and Kalman (2007) and
Dey (1999), i.e. models 6, 16 and 42 (and functional forms 3, 10 and 33), respectively, in

the nomenclature of Soepyan et al. (2014). After optimisation, the ten most highly-ranked

models had no or a very weak dependence on the volume fraction, ߶, and several other
parameters. More specifically, five of the ten most successful models reduced to an

identical form, namely:

Re = 7.90Ar.ସଵ, [7]

where it is important to note that Repp0 is the Reynolds number corresponding to the pick-

up velocity, and not the critical deposition velocity, Repc. Soepyan et al. (2014) only

analysed the pick-up velocity, and not the critical deposition velocity, in hydraulic flows,

but the functional form they proposed is adopted in this study, by analogy (Rabinovich and

Kalman, 2011).

Soepyan et al. (2014) used only data in the range 0 < ߶ < 10-4 for their optimisation

procedure, so it is not surprising that the most successful functional forms contained little

or no dependence on ߶. If the �ȟ� operator is used to indicate an increment, then the
relative variation in Repc over a small range can be expressed as ȟRepc/Repc. If the
derivative with respect to volume fraction, ߶, is denoted by an apostrophe, and the

following approximation is made:

Reᇱ =
߲Re߲߶ ൎ οReο߶ , [8]
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then the variation in Repc is as follows:

οRe
Re ൎ ο߶Reᇱ

Re . [9]

Taking �Reᇱ /Reหథاଵ = O(10), as determined later (see Table 3 and the associated text)
and ȟ߶ = 10-4 (i.e. over the range 0 < ߶ < 10-4), then ȟRepc/Repc = O(10-3), i.e. 0.1 %, which
is negligible. This argument applies equally to correlations expressed in terms of Uc, Fr or

other similar measured flow parameters. It would, then, be extremely difficult to

determine the dependence of the critical velocity on ߶ from such low-߶ data alone. It is

with the preceding arguments in mind that the results of the optimisation performed by

Soepyan et al. (2014) � specifically the functional form to which five of the ten most

successful models could be reduced � can be considered as a close approximation to the

regime in the limit of zero volume fraction, i.e. ߶ ՜ 0, for the case of the pick-up Reynolds

number. If the same functional form is assumed to hold for the deposition velocity, which

is the subject of this study, then the following expression is obtained:

Re = ܽAr݃(߶,߶ ߩ,௦ߩ,ܦ,݀, , ,(ܥ,ߥ [10]

where a and b are constants to be determined, as is the functional form of g.

Several putative properties of the functional form of g can be posited from the outset,

based on the available data. These properties, and corresponding constraints for the form

of g, are described below, and the ability of several function forms, many of which are

taken from existing models described in the review of Soepyan et al. (2014), is discussed

later and summarised in Table 4. A schematic representation of the form of g, based on the

relevant literature (Davies, 1987; Gillies et al., 2000; Graf et al., 1970; Kökpınar and Göğüş,
2001; Parzonka et al., 1981; Spells, 1955; Thomas, 1962), is shown in Figure 1.

First, the value of g in the limit of zero volume fraction, g0, should be unity, i.e.

݃ = 1, [11]

so that the following expression is obtained in that limit, by analogy to Equation [7]:

Re = ܽAr. [12]
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Figure 1: Schematic of functional form of gwith respect to volume fraction, ߶.
Experimentally, Repc0 can be estimated by extrapolation of measured data at low ߶ to ߶ =
0. Second, at low volume fractions (i.e. ߶ ~ a few per cent), g varies as follows (Thomas,

1962):

݃ ൎ .ହ߶ߙ + ,ߚ [13]

where Ⱦ = 1, in order that the first condition (Equation [11]) be satisfied. Although the

form of the dependence of g on ߶ (i.e. g (0.5߶ ן is tentative, it can be seen in the results

section that the fit is very good (and certainly better than a g ߶ ן dependence). The value
of Ƚ can then be found by a simple fit of measured data, since it can be shown that:

ߙ = �Reᇱ
Reቤ, [14]

if the substitution p = ߶0.5 is made, such that Repc = Repc(p) in Equation [14]. The

relationship expressed in Equation [14] applies equally to Uc or Frc, for example, as it does

to Repc. Third, g reaches a maximum, g1, at a corresponding volume fraction, ߶1, which can

�be explained on the basis of hindered settling which becomes more pronounced as

concentration increases� (Turian et al., 1987) or �might be related to a relative importance

between long range hydrodynamic interactions associated with settling and the turbulent

energy dissipation due to particles� (Poloski et al., 2010) and implies that:

݃ଵᇱ = ݃ᇱ(߶ଵ) = 0. [15]

Although sometimes approximated as ߶1 = 0.15 (Poloski et al., 2010), ߶1 appears to

g(߶, etc.)

߶0.5
g2

g1

g0

߶10

g0�



9

depend on particle properties and pipe diameter quite strongly, with measured values in

the range 0.05 د ߶ د 0.2 (Parzonka et al., 1981; Sinclair, 1962). Fourth, g tends to an

approximately constant, positive, non-zero value at higher volume fractions (Davies, 1987;

Gillies et al., 2000; Kökpınar and Göğüş, 2001; Parzonka et al., 1981). This is a �soft�
condition, so an appropriate mathematical description would be as follows:

݃ଶᇱᇱ = ݃ᇱᇱ(߶ ՜ 1) ൎ 0. [16]

In general, Ƚ, ߶1, g1 and g2 should be assumed to be functions of the particle and flow

properties. In fact, the value of g2 appears to depend strongly on the width of the particle

size distribution (Davies, 1987; Gillies et al., 2000; Parzonka et al., 1981), and not only the

mean particle size.

Combining Equations [10] and [13], the following for Repc at low volume fractions is

obtained:

Re = ܽAr(ߙ߶.ହ + 1), [17]

where a, b and Ƚ are not known. The determination of a, b and Ƚ for the critical deposition

velocity in horizontal flow of solid-liquid suspensions in pipes is the main objective of the

present study. This objective is separated into two parts: first, determining a and b in the

limit of zero volume fraction by extrapolation of experimental data via Equation [12]; and

second, determining Ƚ by fitting of the same experimental data at low volume fractions via

Equation [14].

3. Method andmaterials

The material properties of the four particle species used in this study are described

Section 3.1; the flow loop and the ultrasonic measurement system and method are

described in Section 3.2; and the method for measuring the settled bed depth and critical

deposition velocity, as well as the bed geometry and other related issues, are described in

Section 3.3.

3.1 Materials and characterisation

Four particle species were used in this study, two glass and two plastic, the physical
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properties of which are summarised in Table 2. They were chosen as they are non-

hazardous and cover a range of sizes, densities, shapes and, therefore, maximum packing

fractions and Archimedes numbers, where the latter is as defined in Equation [3]. The

particle size was measured using Mastersizer 2000 and 3000 laser diffraction sizers

(Malvern Instruments) and the density using an AccuPyc 1300 pycnometer

(Micromeritics).

The maximum packing fraction, which must be known in order that a correction to the

measured bed depth due to ambient sediment can be made, as described in detail in

Section 3.3, was measured manually using standard volumetric flasks and scales: known

volumes were weighed and the packing fraction calculated using the measured particle

densities. To minimise wall effects � that is, the tendency of vessel walls to influence the

measured packing fraction if the vessel�s size is similar to that of the particle diameter � a

mean value for ߶m was taken using at least three flasks of different volumes (50, 100, 250

and 500 ml). No trend in ߶m with flask size was observed, confirming wall effects were not

significant.

Table 2: Physical properties of particle species used in present study.

Particle type

Mean particle

size, d50 (Ɋm) Density, ɏs

(103 kg m-3)

Max. packing

fraction, ߶m

Archimedes

number, Ar Shape

Small glass

(Honite 22) 41.1 2.45 0.619 0.977 Spherical

Large glass

(Honite 16) 77.0 2.46 0.616 6.54 Spherical

Small plastic

(Guyblast 40/60) 468 1.54 0.514 539 Angular

Large plastic

(Guyblast 30/40) 691 1.52 0.512 1680 Angular

It is interesting to note that the measured values of ߶m presented in Table 2 agree well,

broadly speaking, with values given by Brouwers (2006, 2014), e.g. the values for ߶m of

(monosized) two kinds of sand (sphericity = 0.86 and 0.81), �fairly angular� quartz and

�distinctly angular� sillimanite are given as 0.624, 0.574, 0.503 and 0.469, respectively. All

the values of ߶m measured in this study (see Table 2) fall within this range, and the

significance of packing is discussed further in Section 4.1.
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3.2 Flow loop and acoustic measurement apparatus

Based on a number of criteria (cost, portability and ability to operate remotely, ease of

operation and computational requirements), an ultrasonic system was chosen for the

present study, consisting of a UVP-DUO signal processor (Met-Flow, Switzerland) and a

monostatic (i.e. emitter-receiver) transducer (Imasonic, France) of the pencil type with a

circular active face of diameter 5 mm operating at 4 MHz. The transducer was mounted,

perpendicular to the mean flow direction, on a horizontal test section of a recirculating

pipe flow loop (Figure 2) with an inner diameter of D = 42.6 mm; the transducer was in

contact with the flow via a hole drilled through the pipe and mounting. A variable

centrifugal pump was used to control the flow rate, an impeller mixer to maintain a

suspension in the mixing tank (nominal capacity 100 litres, i.e. 0.1 m3) and an

electromagnetic flow meter to measure the flow rate, Q. The flow loop was filled with

suspensions of each of the four particle species listed in Table 2 at several nominal

(weighed) concentrations, ߶w, and run over a range of flow rates. The fluid used in all

experiments was mains water.

(a)

(b)

Figure 2: (a) Pipe flow loop schematic, (b) photograph of probe mounting (colour online); vertical

probe only used. Inner diameter, D = 42.6 mm; entry length, L = 3.2 m.

The mean flow velocity, Uave, was calculated from the recorded flow rate, Q, as follows:

Flow meter

Mixing

tank

Pump

Probes
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ୟܷ୴ୣ = ܣܳ = ,ଶܦߨ4ܳ [18]

where A and D are the cross-sectional area and diameter of the pipe, respectively.

For each particle species, three nominal (i.e. total weighed) volume fractions were used:߶w = 0.5, 1 and 3 %. For all the runs in the main pipe flow loop, n = 2,500 echo data were

taken for each run using the UVP-DUO instrument. The root-mean-square (RMS) of the

instantaneous echo data at each measurement channel was taken using custom-written

MATLAB scripts, and a three-sigma noise filter was applied.

A diagram of the geometry of the measurement points generated by the UVP-DUO system

is shown in Figure 3, in which: r is the axial distance from the active face of the transducer;

r0 and rmax are the minimum and maximum measurement distances, respectively; w is the

width of each measurement channel; s is the separation between the central points of

adjacent measurement channels; and ɀ0 is the beam divergence angle. The following

values of these parameters were used in the present study: r0 = 5 mm; rmax = 50 mm; w = s

= 0.37 mm; and ɀ0 = 2.16 degrees. Of these, r0, rmax, s and w are adjustable to some degree,

while ɀ0 is not and is dictated by the geometry of the pressure field, and therefore the size

and shape of the transducer, both of which are fixed (Hay and Sheng, 1992; Met-Flow,

2002).

Figure 3: Schematic diagram of measurement points. Distance to centre of measurement channel,

i.e. distance to nominal measurement point, is r; distance between measurement points is s; width

of each measurement volume is w. Minimum and maximum distances are r0 and rmax, respectively.

Beam divergence angle is ɀ0.

3.3 Critical deposition velocity: measurement method

The method used to determine the critical deposition velocity relies on measurement of

Probe

r

Measurement
volumes

Minimum
distance, r0

Maximum
distance, rmax

w

s

ɀ0
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the depth of settled beds of particles along the bottom of the pipe. This section begins,

therefore, with a description of the geometry of settled beds, followed by a description of

the acoustic method used to measure bed depths and a derivation of a correction to the

bed depth to account for ambient suspended particles. A cross-sectional diagram of the

flow and bed geometry is presented in Figure 4. The variables R and D are the radius and

diameter of the pipe, respectively (R = 21.3 mm, D = 42.6 mm); h and H are the bed and

flow depths such that:

ܦ = ݄ + .ܪ [19]

The variables Aflow and Abed are the cross-sectional areas occupied by the flow and the bed,

respectively, such that:

ܣ = ୠୣୢܣ + .ϐ୪୭୵ܣ [20]

Figure 4: Diagram of flow and bed geometry. H and h are fluid and bed depths, respectively; R and D

are pipe radius and diameter; Ʌ is angle subtended by bed at pipe centre; and c is chord length (i.e.

bed width at top of bed). Aflow and Abed are cross-sectional areas occupied by flow and bed,

respectively.

The width of the top of the bed, c, is a chord such that:

ܿ = 2ඥ݄(2ܴ െ ݄) = 2ܴ sin(2/ߠ), [21]

where Ʌ, the angle subtended by the bed at the centre of the pipe, is:

Ʌ

h

H

D

R

Abed (bed area)

Aflow (flow area)

c
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ߠ = 2 cosିଵ ൬ܴ െ ݄ܴ ൰. [22]

The cross-sectional areas occupied by the bed, Abed, and by the flow area, Aflow, are then:

ୠୣୢܣ = 1

2
ܴଶ(ߠ െ sinߠ), [23]

ϐ୪୭୵ܣ = ܣ െ ୠୣୢܣ = ܴଶ ߨ െ 1
2
ߠ) െ sinߠ)൨. [24]

At high flow rates, the particulate phase remains fully suspended and no vertical

concentration gradient exists. At intermediate flow rates, a concentration gradient

develops, and a saltating or moving bed forms along the bottom of the pipe. At low flow

rates, some or all of the bed is stationary and a shear layer, spanning some or all of the

pipe diameter, exists above it. In the presence of a shear layer a significant proportion of

the ultrasonic energy is absorbed before it reaches the stationary part of the bed (i.e. the

lower, immobile part of the bed), whilst at very low flow rates (at which the bed is mainly

or wholly settled and the shear layer is very thin or non-existent) the top part of the bed

acts as a simple reflective surface. The root-mean-square of the echo profile � referred to

here as the echo amplitude � was found to reach a maximum at a certain distance from the

probe. This distance was assumed to correspond to the top of the stationary bed or shear

layer, depending on the flow regime.

The echo amplitude, E, is recovered by the UVP-DUO instrument from the root-mean-

square of the received voltage, V, thus:

(ݎ)ܧ = ௗܸܰ(ݎ)
5

= 3.28 × 10ସܸ(ݎ), [25]

with Nd = 214, where Nd is the digitisation constant applied by the UVP-DUO instrument to

the voltage data (i.e. 14 bytes per datum), and the factor of 5 arises because the range of

received voltages is set by the instrument to ±2.5 V.

To illustrate this method, the echo amplitude profiles at three flow rates are shown in

Figure 5. In run 1, the flow rate was very high (Q = 3.61 l s-1): the particles are fully

suspended and the first peak (at measurement channel 111) corresponds to the position

of the lower pipe wall and run 1 could therefore be used as a reference run. In run 2, at an



15

intermediate flow rate (Q = 0.856 l s-1) a shear layer is present, the top of which

corresponds to the peak in echo amplitude at channel 62. Lastly, the pump was turned off

in run 3 and the moving bed and suspended sediment were allowed to settle; in this case a

peak in E was observed at the top of the bed, at channel 84. The distances between

channels 62 and 111, and between channels 84 and 111, were then the thicknesses of the

shear layer plus the stationary and moving parts of the bed (18.13 mm) and settled bed

(9.99 mm), respectively.

It is clear from Figure 5 and the preceding description of the method that determination of

the shear layer thickness would require a significant amount of interpretation. At very low

flow rates (i.e. below the threshold for incipient particle motion), it would be expected to

tend to zero. On the other hand, at very high flow rates, the entire cross-section will

effectively be occupied by a shear layer. To preclude the possibility of encountering such

ambiguities, no attempt was made to determine the shear-layer thickness in this study.

Instead, only the settled-bed thickness was measured using �stop-flow� runs, in which the

flow was stopped once the bed had reached an equilibrium depth, as described below, and

then a correction for ambient suspended solids that would be present in corresponding

�with-flow� runs was applied.

Figure 5: Echo amplitude showing peaks at three flow rates. Run 1 (solid line): high Uave, fully

suspended (peak at measurement channel 111); run 2 (dashed-dotted): heterogeneous flow with a

shear layer (peak: 62); run 3 (dotted): stop-flow run, Uave = 0, with settled bed (peak: 84).

The experimental procedure for each set of runs was as follows:

1. A mass of solids was added to the mixing tank corresponding to the nominal volume
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fraction, ߶w, and the mixer and pump turned on to generate a fully suspended flow

throughout the flow loop.

2. The pump was turned to a low flow rate for several minutes, in order that a thick,

stable, plane bed was generated along the horizontal test section, which was built

from transparent pipe. As in all runs, the stability of the bed was determined by

inspection of the echo amplitude, E, and bed depth over time.

3. The flow rate was increased incrementally (ȟQ γ 0.1 l s-1), causing erosion to the top
surface of the bed and a decrease in bed depth. The flow structure was allowed to

reach an equilibrium state over several minutes, and then the pump was turned off

and the ambient suspended sediment allowed to settle. The settled bed depth was

recorded during each of these stop-flow runs.

4. The preceding step was repeated until no bed was visible along the test section.

The initial (and final) position of the particles during each measurement run is on the

lower pipe wall, stationary, with the pump turned off. The critical deposition velocity

corresponds to that mean flow velocity at which no bed would be present, were the pump

turned on, after a bed depth correction corresponding to the ambient concentration of

suspended solids has been subtracted

To summarise, the distance to the opposite pipe wall is found using a reference run, which

provided a calibration distance for calculating the position of the active face of the probe

relative to the inner face of the upper pipe wall. In practice, this meant the flow rate had to

be high enough that that the sediment was fully suspended and a settled bed (the top of

which would act as a reflective surface itself) was not present. The settled bed thickness

could then be calculated in a simple fashion in subsequent runs, as described above and

illustrated in Figure 5.

Because the bed depths were measured during stop-flow runs, it was necessary to apply a

correction, Ɂh, to the bed depth to account for sediment that settles when the flow was

stopped but which would remain suspended if the pump were turned on. To calculate this

correction, it was assumed that the volume fraction occupied by the suspended particles,߶, which is calculated directly from the physically sampled volume fraction, ߶s, is equal to

the area fraction occupied by the suspended particles when they settle. A further, trivial

simplification � that the bed surface width, c, is constant within the depth increment Ɂh �

was also made such that the following expression, which also incorporates the maximum

particle packing fraction, ߶m (which was measured using the method described in Section

3.1, the results of which are presented in Table 2), can be written:
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߶݄ܿߜ = .ϐ୪୭୵ܣ߶ [26]

where only Ɂh is unknown, and was calculated via Equation [26]. The uncorrected and

corrected bed depths, huncorr and hcorr, are related as follows:

݄୳୬ୡ୭୰୰ = ݄ୡ୭୰୰ + ݄ߜ [27]

The results of this technique for all four particle species over a range of flow rates and

nominal volume fractions (߶w = 0.5, 1 and 3 %) are given in the following section.

4. Results and discussion

The method used to determine the critical deposition velocity is illustrated in Section 4.1

with a number of examples of the variation of bed depth versus flow velocity, one for each

particle type. How these measured critical velocities were used to determine the

coefficients a, b and Ƚ in Equation [17] is described in Section 4.2. An estimation of the

overall experimental error associated with the method is given in Section 4.3, and some

suggestions for extending the relationship between Repc and ߶ to higher volume fractions
are given in Section 4.4

4.1 Critical flow velocity: examples

Four examples are shown below of the bed depth results, before and after the correction

for ambient suspended sediment, described in Equations [26] and [27], was applied.

Figure 6 shows Uave versus h in the case of the small glass particles (Honite 22) at a

nominal volume fraction of ߶w = 0.5 %; Figure 7, Figure 8 and Figure 9 show the

corresponding results for the large glass particles at ߶w = 3 %; the small plastic particles

(Guyblast 40/60) at ߶w = 0.5 %; and the large plastic particles (Guyblast 30/40) at ߶w = 3

%, respectively. Using the method described in the preceding section, the critical

deposition velocity was found by extrapolating the measured values of Uave to zero bed

depth, i.e.

ܷ = ܷ௩(݄ = 0). [28]

The upward �tails� observed at higher flow velocities in some of the plots arose because all

data were included up to and including the flow velocity at which no bed was observed by
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eye through the transparent pipework of the test section, for completeness. (The bed

depth would be expected to level off at even higher flow velocities.) It is suggested that, in

future, more data points could be excluded to remove these tails and thereby obtain more

linear trends in the plots of bed depth, h, versus mean flow velocity, Uc. However, no

general method for doing so is presented here and it is left as a subject for further study

since the most appropriate exclusion of data will be specific to a particular application.

Figure 6: Bed depth, h, versus mean flow velocity, Uave, with small glass particles (Honite 22) at

nominal volume fraction of ߶w = 0.5 %.

Figure 7: Bed depth, h, versus mean flow velocity, Uave, with large glass particles (Honite 16) at

nominal volume fraction of ߶w = 3 %.

It is also important to explain that the correction for ambient suspended solids had a

greater relative effect on the calculated bed depths at lower nominal concentrations (e.g.
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maximum bed depth is of the order of a fewmillimetres, to the small effect on a run at ߶w =

3 % in Figure 7, where the maximum bed depth is of the order of tens of millimetres)

simply because the bed tended to be much thinner in lower-concentration flows. The

correction in absolute terms was very similar in all cases (i.e. up to a fewmillimetres).

The essence of the method is that bed depths were measured during so-called stop-flow

runs � i.e.with the pump turned off � so that all suspended sediment settles onto the lower

pipe wall. The correction accounts for the proportion of the settled bed that would not be

present, were the pump turned back on. This method was devised to avoid ambiguities

relating to the shear-layer thickness. The negative value arise because, above the critical

flow rate, no bed is present. Therefore, applying a correction for a small bed thickness that

is caused by sediment that would otherwise be suspended during a with-flow run

sometimes produces a negative value. A negative value effectively means that no bed

would be present, were the pump turned on.

The zero-bed-depth method is what could be called a �bottom-up� method, i.e. the flow

rate is increased incrementally until the bed is eroded to nothing. A �top-down� method

could be used (and, in fact, was tested), in which the flow rate is decreased incrementally,

but the critical flow rate at which a bed begins to form would be (and was, when tested)

much more difficult to determine. With the method presented here, there is an

unambiguous point at which no particles remain in the bed, and that point is determined

by extrapolating to zero bed depth.

Figure 8: Bed depth, h, versus mean flow velocity, Uave, with small plastic particles (Guyblast 40/60)

at nominal volume fraction of ߶w = 0.5 %.
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Figure 9: Bed depth, h, versus mean flow velocity, Uave, with large plastic particles (Guyblast 30/40)

at nominal volume fraction of ߶w = 3 %.

A related issue is that of the maximum particle packing fractions given in Table 2. As

discussed in Section 3.1, the measured values of ߶m compared well with some values given

by Brouwers (2006, 2014) for several types of mineral particles. However, because the

values given in Table 2 were measured with dry particles in air, and because the effect of

buoyancy in real, wetted, settled beds in the flow loop means that the packing fraction in

that case may be slightly lower, it is reasonable to conclude that the dry values may not be

conservative. That is, the beds in the flow loop may have been more loosely packed, and so

the corrections that were made to h may have been underestimated; more conservative

estimates of Ɂh would lead to even greater linearity in the corrected plots of h versus U

(examples of which are given in Figure 6 to Figure 9). In fact, both the measured dry

values and real wetted values would be expected to fall somewhere between the random

loose packing (RLP) and random close packing (RCP) limits, the former somewhat closer

to the RCP and the latter somewhat closer to the RLP.

The measured values of the critical deposition velocity, Uc, are plotted versus the square

root of the nominal volume fraction, ߶w, in Figure 10 for all four particle types, according

to Equation [13], using data collated at nominal volume fraction of ߶w = 0.5, 1 and 3 %

(including additional runs not shown in Figure 6 to Figure 9 for brevity). At such low

concentrations, Uc is proportional to the square root of ߶w. Linear fits to the data are also

shown, and it is clear that the measured values of Uc followed the expected trends,

increasing with both concentration and Archimedes number (see Table 2). It is also

important to note that this point that the goodness of fit for the ߶௪.ହ dependence shown in
Figure 10 was much better (R2 = 0.861, 0.995, 0.993 and 0.999 for small glass, large glass,
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small plastic and large plastic, respectively), than for a wߖ dependence (R2 = 0.792, 0.974,

0.969 and 0.989), which strengthens the case for the choice of functional form given

tentatively in Equation [13].

߶௪.ହ
Figure 10: Limit deposition velocity, Uc, versus nominal volume fraction, ߶w, for four particle

species. Linear fits shown, for estimation of Repc0 and Ƚ (see text).

4.2 Determination of functional coefficients

With reference to the critical deposition velocities shown in Figure 10, the critical

deposition velocity in the limit ߶ ՜ 0, Uc0, was estimated by extrapolating the measured

values of Uc to ߶ = 0, via Equation [6], then converted to Repc0 via Equation [2]. The values
of Ƚ for each particle species could also be computed from the intercept and gradient of

the fits, via Equation [14]. The literature was searched for data suitable for comparison

against, and compilation with, the data generated in the present study. The following

selection criteria were applied, with justifications given in each case:

1. At least three data points at several volume fractions must be available, to ensure a

reliable fit and accurate extrapolation to ߶= 0.
2. The data must be at low volume fractions, i.e. no more than a few per cent. It is not

possible to be more specific, as the range over which Equation [13] is applicable is

expected to depend on the particle and flow properties.

3. At least two particle size data, and preferably the full size distribution, must be

available, so that the distribution is known (in the former case) or can be

inferred/approximated (in the latter), e.g. using a normal or log-normal fit. A
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consistent method for the parameterisation of the width of particle size

distributions has been given by Thorne and Meral (2008).

4. The data must be specifically deposition velocity data, defined as that at which the

particle phase is fully suspended, rather than for, say, the pick-up or saltation

velocity.

Although the maximum packing fraction, ߶m, is expected to be an important parameter in

any universal expression for Repc, it is not included in the criteria above because it can, in

general, be estimated from the available size distribution data using a suitable model

(Brouwers, 2014; Hao and Riman, 2003; Ouchiyama and Tanaka, 1981; Sudduth, 1993).

There is a very large amount of critical deposition velocity data available in the literature,

perhaps running into thousands (Oroskar and Turian, 1980; Soepyan et al., 2014; Turian

et al., 1997). However, very few could be found that satisfied the four criteria given above.

Those that did are summarised in Table 3, along with the four data from the present study.

All are plotted in Figure 11. Table 3 is intended to serve as the basis for a larger database

of similar data.

Figure 11: Variation of critical particle Reynolds number in the limit of zero concentration, Repc0,

versus Archimedes number, Ar. Closed diamonds: present data; open diamonds: all data given in

Table 3. Solid line: fit to present data; dashed line: fit to all data in Table 3. Dashed-dotted (lower)

line: pick-up (Repp0) correlation of Soepyan et al. (2014), Equation [7].

When plotted and fitted to the form of Equation [17], the resulting relationship between

the particle Reynolds number corresponding to the critical deposition velocity and the
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points obtained during the present study, all of which are given in Table 3 and are shown

in Figure 11, is as follows:

Re = 14.8Ar.ସହଶ(1 + 4.93߶.ହ). [29]

The corresponding expression for all the data shown in Table 3 (including those obtained

during this study) is:

Re = 12.4Ar.ସଽଷ(1 + 8.91߶.ହ). [30]

By comparing Equations [29] and [30] to Equation [7], it is clear that the expressions for

the deposition velocity derived in the present study yield consistently higher values than

for the pick-up velocity correlation of Soepyan et al. (2014), as would be expected: the

flow rate necessary to keep all particles suspended (i.e. the critical deposition velocity)

exceeds that necessary to cause a particle to move from rest (i.e. the pick-up velocity).

Mean values for Ƚ over the corresponding datasets are given explicitly in Equations [29]

and [30] (Ƚ = 4.93 and 8.91, respectively). However, in general Ƚ should be assumed to be

a function of the material and flow properties, and it is clear from Table 3 that the values

of Ƚ derived in the present study and taken from the literature span an order of

magnitude.

Lastly, the critical deposition Reynolds numbers and their dependence on particle volume

fraction, as measured experimentally in this study, the same data as shown in Figure 10,

are compared against values predicted by Equations [29] and [30] in Figure 12 and Figure

13 for the two glass and two plastic particles, respectively. In every case, it is clear that the

values of Repc calculated according to Equation [29] very closely match the experimentally

determined values, as would be expected: the coefficients in Equation [29] were derived

from those same data. However, the match with the values calculated according to

Equation [30] is not as good, which is also to be expected: as can be seen from Table 3, the

values of Ƚ for the datasets from the present study are all significantly lower than the

average of all datasets (i.e. 8.91). In other words, the datasets taken from the literature

exhibit a stronger dependence, on average, on particle volume fraction.

However, with so few suitable datasets available (seven from the literature, 11 in total), it

is not possible to determine which variables are responsible for the observed scatter in Ƚ,

and by inspection of Table 3 there does not appear to be any trend in conduit diameter,
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particle size or particle density. It is important to note at this point that a significant

proportion of the models considered by Soepyan et al. (2014) include terms for particle

size and density, and extensions of the procedure presented in the present study should

include an analysis of these dependences, although they may be quite weak (O(10-1)).

Figure 12: Comparison of experimentally determined critical deposition Reynolds number, Repc,

versus nominal particle volume fraction, ,wߖ with values predicted by Equations [29] and [30] for

glass particle species. Filled diamonds: this study, experimental; dashed-dotted line: Equation [29];

dashed lines: Equation [30]. Lower set (indicated by brace): small glass particles (Honite 22); upper

set: large glass (Honite 16).

The data compiled in this study are insufficient for any further conclusions to be drawn on

the value of the exponents of the Archimedes number in Equations [7], [29] and [30]. On

one hand, the four new data from this study yielded an exponent of b = 0.452, which is

close to the value of b = 0.41 given by the optimisation procedure of Soepyan et al. (2014)

for a large number (117) of pick-up velocity data, and to the value of b = 3/7 (i.e. 0.429)

found to be most appropriate for a variety of transition velocities for both pneumatic and

hydraulic conveying by Rabinovich and Kalman (2011), suggesting that similar physical

mechanisms are dominant. On the other hand, the value of b derived for all the data

compiled here (b = 0.493) is very close to 0.5 � i.e. a simple square root, suggesting that a

single mechanism may be dominant � and it may be that the exponent tends to this value

once more data are added to the database.

0

10

20

30

40

50

60

70

80

90

0 0.01 0.02 0.03 0.04

R
e p
c

wߖ



25

Figure 13: Comparison of experimentally determined critical deposition Reynolds number, Repc,

versus nominal particle volume fraction, ,wߖ with values predicted by Equations [29] and [30] for

plastic particle species. Filled diamonds: this study, experimental; dashed-dotted line: Equation

[29]; dashed line: Equation [30]. Lower set (indicated by brace): small plastic particles (Guyblast

40/60); upper set: large plastic (Honite Guyblast 30/40).
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Table 3: Physical properties of particle species used in correlation of Repc0 and Ar. Estimates of Repc0 and Ƚ, particle properties and Ar also given.

Source D (mm) Dataset Particle size data (Ɋm)* ɏ (103 kg m-3) Ar Repc0 Ƚ

Graf et al. (1970) 101.6 G-01 d50 = 880 d90 = 1,070 - 2.65 11,000 1,125 2.89

G-001 11,000 1,100 3.04

152.4 BS-01 d50 = 450 d90 = 482 - 1,470 771 1.69

BS-001 1,470 538 5.66

Parzonka et al. (1981) 149 Series 6 d50 = 70 d55 = 75 - 4 10.1 59.5 6.73

Series 8 d50 = 60 d80 = 75 - 3.1 4.45 15.0 29.6

Al-lababidi et al. (2012) 50 Sand d10 = 100** d50 = 200** d90 = 300** 2.65 129 88.6 28.6

Present study 42.6 Small glass d10 = 26.8 d50 = 41.1 d90 = 56.6 2.45 0.977 13.4 6.93

Large glass d10 = 53.5 d50 = 77.0 d90 = 104 2.46 6.54 38.0 3.95

Small plastic d10 = 269 d50 = 468 d90 = 712 1.54 539 276 3.23

Large plastic d10 = 459 d50 = 691 d90 = 966 1.52 1680 386 5.62

* Only two data given where more were not available.

** Estimates, bimodal particle species.
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4.3 Estimation of experimental errors

In order to assess the overall uncertainty associated with the zero-bed-depth method

presented in this study, the relative error in Uc0 was estimated for the four example

datasets shown in Figure 6 to Figure 9. Assuming any errors in Repc0 are due to errors in

Uc, and neglecting all other sources of uncertainty:

dRe
Re =

d ܷܷ =
d ܷܷ . [31]

To find dUc, the data point at the highest flow rate in each dataset was excluded, and the

resulting value of Ucwas found in the usual way by interception with the abscissa; dUcwas

then calculated to be the difference between this value and the nominal value of Uc, i.e. that

calculated with all data included. In this way, the influence of appropriate data selection

could also be assessed. From the four example datasets given in Figure 6 to Figure 9, the

mean value of dRepc0/Repc0 � i.e. the relative error in Repc0 � was found to be 3.8 %.

Gillies et al. (2000) have noted that �deposition velocities are difficult to determine with

precision�, and although the accuracy of the experimental methods used in the five studies

considered by Soepyan et al. (2014) in order to derive Equation [7] for the pick-up

velocity ranged between 0.5 and 3 %, it is thought that the method for measuring the

critical deposition velocity used in the present study � namely, identification of the flow

velocity corresponding to zero bed depth, by extrapolation of experimental data taken

over a range of bed depths � is particularly unambiguous.

With reference to the description of the various layers of multiphase flow, and the

ambiguity in measuring the shear-layer thickness, etc., in the methods and materials

section, it is important to repeat that this ambiguity was largely avoided by measuring the

settled bed thickness instead, then applying a correction for suspended solids.

4.4 Dependence at higher concentrations

The remit of this study was to determine the dependence of the critical deposition velocity

(and the corresponding Reynolds number) on particle concentration in the limit of zero

concentration and at low concentrations up to a few per cent by volume. It is, therefore,

important to note that the form of g at low volume fraction presented in Equations [29]

and [30] only holds at such volume fractions. However, a discussion follows of some
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possible forms of the dependence at higher concentrations: either other terms are present

that become roughly unity at such low concentrations, or the bracketed terms are an

approximation to a more general function that applies to all volume fractions, in which

case the bracketed terms should be assumed to be the first two terms of a Maclaurin

series. Identifying the full range of possible functional forms that approximate to the low-߶ case presented in Equations [29] and [30] is left as a subject for future study. However, a
number of standardised forms, all of which are taken from existing models and most of

which are described by Soepyan et al. (2014) in their review, are summarised in Table 4.

It is clear from Table 4 that none of the functional forms for g satisfy all the conditions

specified in the introduction. Poloski et al. (2010), for example, suggested a form for g of

type 4 with the following coefficient values: k1 = 1, k2 = 1, k3 = 2, k4 = 3.64 and k5 = 1, i.e.

݃ = (1െ ߶)ଶ(1 + 3.64߶). [32]

Their justification for this choice of coefficients is physically realistic and based on reliable

experimental data. However, the resulting form of g satisfies some of the necessary

conditions given in the introduction, but not others. Condition 1 (Equation [11]) is

satisfied, as g is unity in the limit ߶՜ 0, but condition 2 (Equation [13]) is not. Condition 3

is satisfied, as g does indeed reach a maximum (at ߶1 = 0.15), and condition 4 is not

satisfied, as g is zero at ߶՜ 1.

Although the form of g suggested by Poloski et al. (2010) cannot reproduce the behaviour

of g at all volume fractions, it may represent an accurate approximate solution in specific

circumstances: the scope of their study was specifically small, dense particles with narrow

size distributions �which are typical of the minerals industry�. This principle � that simple

expressions may be very accurate in specific circumstances � should be borne in mind

when proposing any functional form for g. It can be seen from Table 4 that none of the

functional forms presented are able to reproduce the observed form of g over the entire

range of volume fractions.
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Table 4: Possible functional forms of g at higher volume fractions. All forms contrived so that coefficients kn are real and positive.

Form

no.

Form type Are conditions 1-4 satisfied if suitable choices for kn are made?* Example(s) of models/studies using this form**

1 2 3 4

1 ݇ଵ߶మ No No No No Thomas (1962); Zandi and Govatos (1967); Bain and
Bonnington (1970); Gruesbeck et al. (1979); Kökpınar and
Göğüş (2001); Almutahar (2006), �initial approach�

2 ݇ଵ(1 െ ݇ଶ߶)య Yes No No No Almutahar (2006), �new approach�

2a ݇ଵ(1 + ݇ଶ߶)య Yes No No No Spells (1955); Almutahar (2006), �new approach�

3 ݇ଵ߶మ(1 െ ݇ଷ߶)ర No No Yes No Oroskar and Turian (1980); Turian et al. (1987)

3a ݇ଵ߶మ(1 + ݇ଷ߶)ିర No No Yes No Rose and Duckworth (1969)

4 ݇ଵ(1 െ ݇ଶ߶)య(1 + ݇ସ߶)ఱ Yes No Yes No Davies (1987); Ponagandla (2008); Poloski et al. (2010)

* Conditions are described in introduction section.

** Majority of examples taken from Soepyan et al. (2014).
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5. Conclusions

The distinction between the critical deposition velocity (and the corresponding Reynolds

number) at low solids volume fractions, and that in the limit of zero volume fractions, was

explored in detail. A novel method was described for measuring the critical velocity, and

expressions for the corresponding particle Reynolds number, Repc0, were derived based on

experimental results and data taken from the literature, with a total of 11 points used.

Significantly, these expressions suggest that some commonly used correlations for critical

flow velocity (and the corresponding critical Reynolds number) are not conservative and

may produce underestimates by a factor of approximately two. Based on the available

data, a square-root dependence of the critical deposition velocity on the particle volume

fraction at low volume fractions (i.e. up to a few per cent, depending on the particle

species) was tentatively assumed. A number of critical deposition velocity data from the

literature were selected according to a stringent set of conditions. These conditions are

intended to ensure completeness of data and to allow for the effect of the particle size

distribution to be included in future analyses.

The error associated with the method presented here was assessed and found to amount

to a few per cent (3.8 %), based on four example datasets, which is similar to a range of

values (0.5-3 %) given in a recent review by Soepyan et al. (2014) for several studies on

the pick-up velocity. It is suggested that this error could be reduced by considering only

bed depths at lower flow rates, which would minimise the uncertainty due to the shear

layer and/or moving bed (if present), the thicknesses of which increase with flow rate

until the solids fraction is ultimately fully suspended so that the concept of a shear layer

becomes invalid, and by using more conservative values for the maximum particle packing

fraction.

It is noted that neither the pipe diameter nor any of various similar length scales such as

fluid depth, equivalent diameter and hydraulic diameter � which, incidentally, all become

identical at zero bed depth � are represented explicitly in Rep or f(Ar). However, it is also

noted that the pipe or conduit diameter is not present in the optimised relationships found

by Soepyan et al. (2014) between Rep and Ar for the pick-up and incipient motion

velocities for liquid-solid and gas-solid systems. Although surprising, this suggests conduit

or flow diameter is not the most important parameter at very low concentrations. On the

other hand, these parameters may be more important at higher concentrations. It should

be reiterated here that the purpose of this study was not to present a physical model of the

critical deposition velocity as such, but rather a framework for determining the



31

coefficients in the relationship between Repc, Ar and ,ߖ whatever the form of that

relationship may be, by following the form of a number of similar relationships presented

by Soepyan et al. (2014) and extending to higher volume fractions than considered in that

study (0 < ߶ < 10-4).
A number of suggestions were made for the functional dependence of the critical Reynolds

number at higher particle concentrations. No satisfactory form was found and the issue is

left as a subject for future study, although it is suggested that extending the dependence to

concentrations above a few per cent will require significant insight into the physical

processes involved, and explicit consideration of the particle shape and both the form and

width of the particle size distribution. It is hoped that the database of 11 data compiled

and presented in this study will form the basis of a larger database that can be used to

predict the critical deposition velocity for suspensions consisting of particles with a wide

range of material properties that are of general engineering interest.

Notation

a Coefficient defined in Equation [12]

b Coefficient defined in Equation [12]

A Cross-sectional flow area, m2

Abed Cross-sectional area occupied by flow, m2

Aflow Cross-sectional area occupied by settled bed, m2

Ar Archimedes number

Ar Modified form of Ar taking into account solid-phase volume fraction, pipe diameter

and particle sphericity and shape (after Rabinovich and Kalman, 2011)

c Chord length of settled bed, m

CD Drag coefficient of solid particles

d Particle diameter, m

d50 Particle diameter, 50th percentile, m

D Inner pipe diameter, m

E Echo amplitude

f Function incorporating dependence of Repc on Ar

Fr Froude number

g Function incorporating dependence of Repc on all parameters except Ar

gn Acceleration due to gravity, m s-2

g0 Value of g in limit ՜ Ͳߖ
g1 Value of g at ߖ = 1ߖ
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g2 Value of g at ߖ = 2ߖ

g2�� Second derivative of g at high ߖ

h Settled bed depth, m

hcorr Correct bed depth, m

huncorr Uncorrected bed depth, m

H Flow depth, m

kn nth coefficient in relationship between g and ߖ

n Number of acoustic samples per run

Nd Digitisation constant

Q Volumetric flow rate, m3 s-1

r Distance from active face of acoustic transducer along transducer axis, m

r0 Minimummeasurement distance from transducer, m

rmax Maximummeasurement distance from transducer, m

R Inner pipe radius, m

Repc Particle Reynolds number corresponding to Uc

Repc0 Value of Repc in limit ՜ Ͳߖ
Repp Reynolds number corresponding to pick-up velocity

Repp0 Value of Repp in limit ՜ Ͳߖ
Rept Arbitrary transitional value of Rep

Re௧כ Modified form of Rept taking into account solid-phase volume fraction, pipe

diameter and particle sphericity and shape (after Rabinovich and Kalman, 2011)

s Separation between central points of adjacent measurement channels, m

S Specific gravity of solid particles

U Axial flow velocity, m s-1

Uave Mean axial flow velocity, m s-1

Uc Critical deposition velocity, m s-1

V Voltage excited in transducer, V

w Width of measurement channels, m

Greek letters

Ƚ Coefficient defined in Equation [13]

Ⱦ Coefficient defined in Equation [13]

ɀ0 Acoustic beam divergence angle, rad

Ɂh Bed depth correction for ambient suspended solids, mȟ Operator indicating an increment

Ʌ Angle subtended by settled bed at pipe centre, rad
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ɋ Kinematic viscosity of fluid phase, m2 s-1

ɏs Density of solid phase, kg m-3

ɏf Density of fluid phase, kg m-3

ߖ Volume fraction of solid phase

cߖ Arbitrary critical solid-phase volume fraction

mߖ Maximum packing fraction of solid phase in settled bed

mbߖ Solid-phase volume fraction in moving bed

sߖ Physically sampled solid-phase volume fraction

wߖ Nominal (weighed) total delivered solid-phase volume fraction

Subscripts

c Critical value

f Fluid-phase value

p Corresponding to solid particle or value at pick-up

s Solid-phase value

0 In limit ՜ Ͳߖ
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