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Balanced models in Geophysical Fluid
Dynamics: Hamiltonian formulation,
constraints and formal stability

Onno Bokhove

Faculty of Mathematical Sciences, University of Twente, The Netherlands

1 Introduction

Most fluid systems, such as the three-dimensional compressible Euler equa-
tions, are too complicated to yield general analytical solutions, and approx-
imation methods are needed to make progress in understanding aspects of
particular flows. This chapter reviews derivations of approximate or reduced
geophysical fluid equations which result from combining perturbation meth-
ods with preservation of the variational or Hamiltonian structure. Preserva-
tion of this structure ensures that analogues of conservation laws in the orig-
inal “parent” equations of motion are preserved. Although formal accuracy
in terms of a small parameter may be achieved with conservative asymptotic
perturbation methods, asymptotic solutions are expected to diverge on longer
time scales. Nevertheless, perturbation methods combined with preservation
of the variational or Hamiltonian structure are hypothesized to be useful in a
climatological sense because conservation laws associated with this structure
remain to constrain the reduced fluid dynamics.

Variational and Hamiltonian formulations of fluid flows are of interest
when effects of forcing and dissipation are of secondary importance, which
is often the case on scales shorter than characteristic damping times or when
nonlinearities remain dominant on longer time scales. Variational or Hamilto-
nian methods form a unifying framework to analyze various fluid phenomena.
Applications of these methods include the systematic derivation and use of
wave-activity conservation laws, classical linear and nonlinear stability theo-
rems, saturation bounds on the growth of instabilities, statistical mechanics
of geophysical fluid dynamics and conservative numerical integration (e.g.
Fjgrtoft 1950; Holloway 1986; Holm et al. 1985; McLachlan 1995; Morrison
1998; Salmon 1988a, 1998; Shepherd 1990, 1994; Vladimirov 1987, 1989).

In geophysical fluid dynamics the above-mentioned approximate or reduced
models are generally called balanced models because certain types of waves
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have been eliminated relative to ones present in the original “parent” dy-
namics; e.g. an incompressible fluid is balanced relative to a compressible
one because sound waves have been eliminated through the constraint of
incompressibility. Elimination of certain types of waves can often be formal-
ized through scaling, yielding relevant small parameters, and perturbation
analysis. A well known example is the elimination of acoustic waves in the
reduction from compressible to incompressible dynamics in which the Mach
number, the ratio between a characteristic velocity scale and the speed of
sound, is the relevant small parameter. Balanced equations thus result from
singular perturbation methods, or equivalent approaches, which simplify the
equations with essential singular terms and reduce the order (for example
in time) of the system of differential equations. Although a perturbative ap-
proach appears to be most rigorous, one always has to realize that small
parameters are a result of a scaling of the equations. This scaling tends to
be a non-rigorous process, because although there may be a dominant char-
acteristic time or spatial scale in the flow other scales can be excited and
remain present due to nonlinear interactions. As an alternative to a formal
perturbative approach, certain types of waves in the flow may be eliminated
by imposing constraints based on observed characteristics or special insights
in the fluid dynamical behaviour, which in light of the non-rigorous aspects
of scaling often results into reduced systems of similar accuracy as the ones
obtained via formal scaling and perturbation methods. This alternative, ap-
parently less accurate, approach for finding constraints goes along with the
observation that the notion of “balance” and the accuracy of solutions of bal-
anced systems (analytical or numerical) hold often surprisingly well outside
the realm of asymptotic perturbation theory. Examples of the numerical ac-
curacy of solutions of geophysical balanced models are found in the context of
coastal dynamics in Allen and Newberger (1993), in atmospheric dynamics in
MeclIntyre and Norton (1998) and perhaps even in surf-zone dynamics where
breaking waves on beaches lead to low Froude number balanced along-shore
currents (e.g. Ozkan-Haller 1997).

The history of numerical weather prediction also nicely illustrates the use
of balanced models (e.g. Daley 1991). The first numerical weather prediction
model was the barotropic quasi-geostrophic equation (see section 3.5 for a f-
plane version), which crudely describes the motion of vortical structures and
Rossby waves (e.g. Gill 1982) in a one-layer fluid. In this model, gravity waves
and acoustic waves have been eliminated or filtered, and the Rossby number
(the ratio of the local Earth’s rotation time scale to the advective time scale)
and aspect ratio (between vertical and horizontal spatial scales and velocity
fields, respectively) are the relevant small parameters used in the approxima-
tion. In the 1960’s the hydrostatic primitive equations (see section 3.2 for a
planar version) replaced the (barotropic and baroclinic) quasi-geostrophic nu-
merical weather prediction models. In these hydrostatic equations only acous-
tic waves have been filtered (except for the boundary-trapped Lamb mode,
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e.g. Gill (1982)); it was nevertheless still necessary to initialize or balance the
data such as to eliminate spurious high-amplitude gravity waves. The con-
cept of balance remains crucial in the initialization and interpretation phase
of numerical weather prediction.

Filtered Equations
Waves
3D compressible

acoustic_ — _ _ _ __ I/(IV)————
hydrostatic
baroclinic I
gravity —— — —
shallow-water
surface I
gravity ==~~~ \ .
ageostrophic
balance
boundary Kelvin *
N )
gravity 3D incompressible
guasi-geostrophic homogeneous

vorticity

Figure 1 Sketch of the fluid systems considered in section 3. Con-
necting solid lines, going down, indicate the approximation route
and Roman numerals the followed approximation approach. I-V
denote various singular approximation methods defined in sec-
tion 2 and 3 while “*” is a regular leading-order Rossby-number
expansion. The left column under the heading “Filtered Waves”
indicates the wave types filtered in the approximation between two
fluid systems (dashed horizontal lines).

Theoretical analysis and numerical process studies of balanced models have
greatly advanced our understanding in meteorology and oceanography and
(nearly) inviscid fluid models are often the first ones to be studied (e.g. con-
sider the analysis of quasi-geostrophic systems in Pedlosky (1987); and the
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analysis of cyclogenesis in various balanced systems in Snyder et al. (1991)
and Maraki et al. 1999). A systematic derivation of reduced models with con-
servation laws has been and is important to understand geophysical flows.
This chapter gives an account of some of the recent progress in deriving these
conservative, geophysical balanced models.

Variational and Hamiltonian formulations, perturbative approaches based
on slaving, and several constrained variational or Hamiltonian approxima-
tion approaches are introduced, and denoted by numerals I to V (Fig. 1),
at first in section 2 for finite-dimensional systems because they facilitate a
more succinct exposition of the essentials. (The more technical mathematical
aspects of infinite-dimensional Hamiltonian systems are not considered here,
see e.g. Marsden and Ratiu 1994.) Section 2 also contains several examples
of finite-dimensional conservative fluid models. It additionally introduces the
powerful energy-Casimir method which can be used to derive stability crite-
ria for steady states of (non-canonical) Hamiltonian systems. In section 3 the
Hamiltonian approximation approaches I-V are applied to various fluid mod-
els (Fig. 1) starting from the compressible Euler equations and finishing with
the barotropic quasi-geostrophic and higher-order geostrophically balanced
equations. The presentation of fluid examples runs in parallel with the gen-
eral finite-dimensional treatment in section 2 which facilitates comparisons.
In addition, I quote or derive stability criteria for all fluid examples. These
criteria are summarized in Table 1 in the summary and discussion.

2 Finite-dimensional systems

Two variational principles, Hamilton’s principle and its related action prin-
ciple, are introduced in section 2.1. This action principle follows from Hamil-
ton’s principle via a Legendre transformation and yields Hamilton’s equations
of motion. Hamilton’s equations open the route to the definition of the more
general Poisson systems in section 2.2. Systematic approximations are in-
troduced in section 2.3 using slaving principles and singular perturbations.
These approximations yield constraints which will be imposed in various but
related ways on variational and Hamiltonian formulations in section 2.4. A
unified abstract treatment combining the derivation of constraints and bal-
anced Hamiltonian dynamics is presented in section 2.5 together with a dis-
cussion of its limitations, which appear so severe that only the leading-order
theory presented in section 2.6 seems to be applicable in practice. Finally, a
review of the energy-Casimir method concerning stability criteria for steady
states of Hamiltonian systems can be found in section 2.7.
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2.1 Variational principles
2.1.1 Hamilton’s principle

The equations of motion for a classical-mechanical system with generalized
coordinates ¢‘(t) and velocities ¢*(t) = dq'(t)/dt as functions of time ¢ fol-
low from Hamilton’s principle (e.g. Lanczos 1970, Arnold 1989, Marsden and
Ratiu 1994)

Alg' + €6¢'] — Alg']

dA[g'] = lim - =0 (2.1.1)
with the action A[q'] defined by
. 1 o
Alg'l= [ dtL(q"d".t) (2.1.2)

to

and its endpoint conditions by dq¢*(ty) = d¢'(t;) = 0, where L is the La-
grangian and ¢ = 1,..., K. The familiar Euler-Lagrange equations appear
when variations in Hamilton’s principle (2.1.1) are performed and when the
endpoint conditions are used to eliminate terms arising after integration by
parts in time. They have the form

4oL _OL (2.13)
dt 0¢®  0¢*

A variety of dynamical systems can be derived from Hamilton’s princi-
ple. For example, mono-atomic fluids consisting of N classical point particles,
each with unit mass m = 1, constitute a dynamical system with (generalized)
positions ¢* and velocities ¢° (for s = 1,..., K = d N and with dimension
d). Its dynamics is given by (2.1.3) for a Lagrangian L = T — V being the
kinetic energy 7" minus the potential energy V of the atoms. Alternatively,
the dynamics (2.1.3) may be considered as the discretization of a continuous
description of a fluid in terms of fluid parcels with unit mass m = 1, (gen-
eralized) positions ¢* and velocities ¢*. (Salmon (1983) uses such a discrete
description of fluid parcels, along with an approximate representation of the
potential energy, to perform numerical integrations of a blob of shallow water.
Brenier (1996) provides another intriguing geometrical model of fluid parcel
motion). More concretely, let us consider the following two finite-dimensional
examples.

Ezxample 1: Dynamics of a particle of unit mass in three spatial dimensions
with position q = (¢*, ¢%,¢*)T = (z,y,2)T (now K = 3) and potential energy
V(z,y, z) follows from Hamilton’s principle as

oV ov ov

== J=— i=—— 2.14

which we recognize as Newton’s equations of motion with a conservative force.
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Ezample 2: Euler-Lagrange equations for Lorenz’s (1986) two-degree-of-free-
dom weather model with two coordinates ¢ = ¢' and Q = ¢* (i.e. K = 2)

G§—bQ+Csin2q = 0, (2.1.5)
(1+b2)Q—bd+§ = 0, (2.1.6)

readily follow from (2.1.1) and its endpoint conditions with Lagrangian

2
1 1 Q2
[—5 C cos 2q+ 5 6—2] (2.1.7)

which is the kinetic minus potential (terms in square brackets) energy. The
coupling parameter between the pendulum (2.1.5) and the harmonic oscillator
(2.1.6) is b, € a small parameter, and C' is proportional to the square of the
(linearized) frequency of a pendulum.

In section 3.1.1 three-dimensional equations of motion for a compressible
fluid are shown to arise from a Hamilton’s principle wherein the Lagrangian
is a functional, i.e. an integral over space.

2.1.2 Action principle

The Lagrangian L(q’, ¢, t) in (2.1.2) is non-singular if the determinant of the
Jacobian of the transformation between the two coordinate pairs {¢*, ¢} and

{¢*, p;} is nonzero (i = 1,..., K), in which conjugate momentum p; is defined
as o
pi = 781/(%; ’t). (2.1.8)
In other words L is convex in ¢. Consequently a Legendre transform
H(¢',pi,t) = pi ¢’ — L(d', ¢',1) (2.1.9)

is well defined (see Lanczos 1970, Arnold 1989, and Marsden and Ratiu 1994;
also for a geometrical interpretation), and the Hamiltonian H is a function
of the ¢*, p;, and t only. ¢*(p;, ¢*,t) is now defined by the extremal conditions
OH/0¢* = 0. Under this transformation Hamilton’s principle changes into the
action principle

t1 .. t . .
5 [Carrig, ¢ =6 [ {pi g — H(q’,pi,t)} —0 (2.1.10)
to to
for variations d¢" and dp; and endpoint conditions dq’(ty) = d¢*(t;) = 0. Its
variations yield N = 2K first-order equations, that is, Hamilton’s equations
d¢ _ OH dp _ OH

= = ——. 2.1.11
dt op;” dt 0q" ( )
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Ezxample 3: The action principle corresponding to Example 1 is
¢ 1
) 1dt{ua':+vy'+wz‘— (5 (u? + v* + w?) +V(x,y,z))} =0 (2.1.12)
to

with u = 0L/0%,v = 0L/0y and w = OL/0%.

Ezxample 4: We may verify that Hamilton’s equations corresponding to the
Euler-Lagrange equations for Lorenz’s (1986) model of Example 2 follow from
the action principle (2.1.10) with N = 2 and Hamiltonian

H:——Cc052q+2( +Q—2—|—(P+bp)> (2.1.13)

in which we have derived momenta p = p; = ¢ — bQ and P = p, = (1+
b?) Q — b ¢ following (2.1.8). Conversely, we may derive ¢, @ from the extremal
conditions L/0p; = 0 with L = ¢ p; — H(q", p;)-

Sometimes dynamical systems do not arise from Hamilton’s principle or
from a related action principle in terms of generalized coordinates and mo-
menta, but rather from an action principle in terms of some variables z.
Consider the action principle

0=3s ; t {an = ) g ™) (2.1.14)

dt
with endpoint variations §z™(ty) = 6z™(t1) = 0, Hamiltonian H, functions
am(2) of z, m=1,..., N and N = 2K. Variation (2.1.14) with respect to Jz"
yields the equations

- dz™ o0H
Ky o = 22 2.1.15
dt ozn ( )
where it is assumed that
R,y = J0m _ Oan (2.1.16)

T 9gn Gm

is a non-singular tensor. If z = {¢*, p;} and

K = ( (I) _OI ) (2.1.17)

then (2.1.14) equals (2.1.10); here I'is the K x K unit matrix. Since K is in-
vertible we may define a tensor J = (K)~! and rewrite (2.1.15) as generalized

Hamiltonian equations

dz . OH
— = JY — 2.1.18
dt 0z’ ( )
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which include the canonical Hamilton’s equations (2.1.11). Since J is non-
singular, transformations {z™} — {¢‘,p;} may be defined, at least locally,
by virtue of Darboux’s theorem (see e.g. Arnold 1989) such that J takes the

canonical form
c 0 I
Je = < 10 ) . (2.1.19)

If global canonical, so-called Darboux, coordinates exist, then (2.1.14) may
be rewritten in the form (2.1.10). Action princple (2.1.2) often provides a
more convenient description than Hamilton’s principle or the canonical action
principle (2.1.10) when (non-canonical) variables z are more meaningful or
when global canonical coordinates are difficult to define.

FEzample 5: An action principle (2.1.14) for Lorenz’s (1986) model is

t do dza
— — — —H} = 2.1.2
5[ dt{x3 0 — w5+ bag) } 0 (2.1.20)

with respect to variations dz = d¢, dx3, dx4, and dx5, respectively, subject to
endpoint conditions d@(tp1) = dz4(tp,1) = 0, and with Hamiltonian

1 1
H=—2Ccos2¢+ 3 (23 + 2% + 22) (2.1.21)

(Bokhove and Shepherd 1996). The action principle (2.1.20) yields Lorenz’s
(1986) model in a reduced format

d dz .

d—f frd ./E3—bx5, d—tg = —CSln2¢,

dz, r5 drs 1y .

7 I I 2 g 20. 2.1.22
dt e’ dt € +6C sin2¢ ( )

Variational principle (2.1.20) is identical to the variational principle (2.1.10)
in Example 4 when we make the identification ¢ = ¢, p = 23, Q@ = €4 and
P= —(375 + b.’L‘g)

A Lagrangian action principle for three-dimensional compressible flows is
derived in section 3.1.2 via a Legendre transform of a relevant Hamilton’s
principle.

2.2 Hamiltonian formulation

The mathematical structure of equations (2.1.18) gives rise to Poisson sys-
tems. Such systems have the form

dF
o= [F, H], (2.2.1)
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where H is the Hamiltonian and F' is an arbitrary function of the variables
z. The Poisson bracket [-, -] is defined by

oF .. 0G
IF,G] 0z~ 0207 ( )
where G is another arbitrary function of z and J is a tensor (here i =1,..., N

for arbitrary N). The system (2.2.1), (2.2.2) is Hamiltonian if and only
if bracket (2.2.2) satisfies the following conditions for arbitrary functions
F, G, K:

(i) skew-symmetry [F, G| = —[G, F],
(ii) Jacobi’s identity [F, |G, K]| + K, [F,G]| + |G, [K, F]] =0, and

(iii) Leibniz’s rule
[FG,K|=F|G,K|+G|F,K|. (2.2.3)

By using (2.2.2) to evaluate (2.2.3) these conditions imply the following con-
ditions, which define a cosymplectic tensor J:

(i) skew-symmetry J¥ = —J7%,
(ii) Jacobi’s identity

ozm +J az—m—i_J ozm

J 0, (2.2.4)

(iii) Condition (2.2.3)(iii) is automatically guaranteed by the form (2.2.2),
because derivatives obey Leibniz’s rule (regarding functionals, see Olver
[1986]).

Jacobi’s identity is often difficult to prove; it is a quadratic identity which
means that in perturbation approaches the various orders get mixed. Sub-
stitution of F = 2' into (2.2.1) yields the Hamiltonian equations (2.1.18).
Note that a cosymplectic tensor satisfying conditions (2.2.4) (i)—(ii) does not
need to be invertible. Poisson systems therefore generalize the Hamiltonian
systems with invertible J which were introduced at the end of section 2.1.2.
Historically, the theory of Hamiltonian dynamics originated in the realm of
classical mechanics, where the following canonical Poisson bracket

pa 0 969K 96 223)

for 2 = {¢*, p;} and with N = 2K even, arises from the canonical equations
of motion (2.1.11) and the corresponding cosymplectic tensor is (2.1.19). The
bracket (2.2.5) satisfies conditions (2.2.3) (i)—(iii). The significance of these



10 Bokhove

conditions led to a generalized definition of Hamiltonian systems of the form
(2.2.1), (2.2.2) for more general, non-canonical, Poisson brackets.

This generalization, however, has important consequences. In contrast to
the Poisson bracket (2.2.5), the bracket (2.2.2) is neither necessarily canonical
nor even-dimensional, and this permits the existence of nontrivial Casimir
invariants C, which are solutions of [C, G] = 0 for arbitrary G. The invariance
of the Casimirs readily follows from this definition since

dC
— =|C,H|=0. 2.2.6
= [C,H] (226)
Casimir invariants span the kernel of the cosymplectic tensor J (Littlejohn
1982) since condition [C, G] = 0 implies that
. o0C
JZ] . = 0 227
029 ’ ( )

and vectors with components OC/02’ thus span the null space of J.

Other invariants of (continuous) Hamiltonian systems are related to sym-
metries of the Hamiltonian through Noether’s theorem (e.g. Lanczos 1970,
Olver 1986, Arnold 1989). When a Hamiltonian is invariant under time trans-
lation conservation of energy ensues, dH/dt = [H, H] = 0, and when a Hamil-
tonian is invariant under spatial translations conservation of momentum en-

sues.
When the cosymplectic tensor J is invertible no nontrivial Casimirs exist
and the conditions (2.2.3) on J can then be translated into linear conditions

on the symplectic tensor K

(i) skew-symmetry K;; = —Kj;,

(ii) Jacobi’s identity . . 3
0K;; 0K, 0Ky,
0zF 07 027

=0. (2.2.8)

Ezample 6: The original model derived by Lorenz (1986), which we encoun-
tered in various disguises in Examples 2, 4, and 5, reads

d$1 n b dIEQ b dl‘g
— = —I9Z To X — =x123—bx1x — =T Z
i 2 T3 25, o 13 1Ts, i 1 T2,
d.ﬁC4 Iy d.’E5 Ta
— = ——= — = —49b ; 2.2.9
dt e’ dt € TOTLT ( )
Its Hamiltonian formulation is
dF
— =|[F, H'] (2.2.10)

dt
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with Poisson bracket (satisfying conditions (2.2.3)(i)—(iii))

oF oG  0G oF oG oG
F = — b — —b
[ ,G] 8961 72 < 8(135 6.1'3) a$2x1 <8$3 8565) +
8Fx 8G_$ oG _laFaG oF —bx%—kbx%—i—l%
0x3 2 0xq ! 0xo €0xy Oxs  Oxs 2 0xq 18x2 €0xy
(2.2.11)
and Hamiltonian
3 1
H':H+§C:5(xf+2x§+x§+xi+x§). (2.2.12)

The Casimir invariant C' = $ (1 + z3) shows why the parameter C' has been
taken constant in previous appearances of Lorenz’s model in Examples 2, 4,
and 5. Note that variable ¢ in Example 5 follows from the polar transforma-
tion z1 = v/2C cos ¢, 25 = /2 C sin ¢.

A Hamiltonian formulation of the four-component version (2.1.22) in Ex-
ample 5, augmented with dC/dt = 0, may be derived from (2.2.10)-(2.2.12)
by a transformation of variables x1,...,z5 to ¢, x3, x4, x5 and C. Derivatives
of functions F' are then calculated from the chain rule

>, OF
sF = S s,
z':zlaxi !
oF oF oF oF oF
= ¢+ — b33+ — = =_5C. (22
6¢ ¢+a$3 $3+am45$4+am5(5$5+8050 (2213)

The new bracket in terms of ¢, x3, x4, x5 and C follows by substituting these
results into (2.2.11), and with (2.2.12) and (2.2.1) system (2.1.22) may be
derived.

Example 7: A very simple non-dimensionalized, three-component model de-
scribing shallow-water flows with radial and time coordinate dependence only,
is the following non-canonical system. Use of (2.2.1) with F' = u(t), v(¢) or
h(t) alternately, with Hamiltonian

H= %(h (u? + %) + h2> —h, (2.2.14)
and Poisson bracket
oF 0G  0G OF 0G oF OF 0G
761=0(G0 30~ 30 50) " o B0~ % Bu (22.15)

yields the equations of motion

du 1 9 dv dh
-~ — Z -1, — =— — = 2.2.1
7 uv+2(u +3v")+h—1, 7 (1 +v)u, oy hu ( 6)
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in which ¢ = (1 + v)/h is the “potential vorticity” and p a dimensionless
Coriolis parameter. The reader may compare the Hamiltonian (2.2.14) and
Poisson bracket (2.2.15) with the Hamiltonian (3.4.9) and bracket (3.4.14) of
the continuous shallow-water equations. In this simple fluid model the radial
velocity is defined by u(t) Ji(r), the azimuthal velocity by v(¢) Ji(r), and the
depth of the fluid by h(t) Jo(r), in which Jy, J; are Bessel functions of the
first kind of zeroth and first order. Ao = 1 is the constant non-dimensional
rest depth. The model may be derived systematically from the (axisymmet-
ric) Hamiltonian formulation of the shallow-water equations, which we will
encounter in section 3.4, and is a Galerkin projection of the nonlinear terms
onto the linear modes (e.g. Tribbia (1981) and Leith (1996)). The Casimir
invariant of this model is C(g) since it obeys [C, G] = 0. The model is inte-
grable because with the two constants of motion H and ¢ the one remaining
equation may always be solved by quadratures.

Hamiltonian formulations for a three-dimensional compressible fluid are
given in sections 3.1.2 and 3.1.3 in Lagrangian and Eulerian coordinates,
respectively.

2.3 Slaving principles and singular perturbations

Constraints often arise from perturbation approaches or physical insights and
can then be imposed on the relevant “parent” variational principles or Hamil-
tonian dynamics in order to derive constrained balanced dynamics. Slaving
principles are a systematic approach to derive constraints formally correct to
the desired order of accuracy in an appropriate small parameter €, which has
arisen after suitable scaling of the relevant dynamical equations.

Let us consider a prototypical system of dimensionless ordinary or partial
differential equations, singular in a small parameter ¢, of the form

% = S(s, f;e), (2.3.1)
0 r
a_{Jr?f — F(s, fio). (2.3.2)

In system (2.3.1), (2.3.2) f denotes O(1) fast variables and s denotes O(1)
slow variables, S(s, f;€) and F(s, f;€) are O(1) nonlinear vector operators,
and T is an O(1) invertible linear operator independent of ¢ and time. For
notational simplicity s, f, S, F, and I" are not written as vectors. Normal-
mode solutions of the form f ~ exp(iw;r) with |wf| > 1, fast time scale
7 = € 't and wy the spectrum of operator I' can often be found for the
linearized version of system (2.3.1), (2.3.2) (Kreiss 1980). On the fast time
scale 7 the slow variables s are unequivocally slow, i.e. 9s/d7 = 0, and s then
projects onto the exact invariant slow manifold of the linearized equations.
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In contrast the fast variables oscillate with O(1) frequency on the fast time
scale. Whether a well-defined time scale separation in the linearized dynamics
remains valid for nonlinear dynamics is questionable. The least one can hope
for is that perturbation methods like a power series of s and f in € yield
asymptotic solutions which define a quasi-invariant slow manifold. On this
manifold, which has the dimensionality of the phase space of s, the motion is
hoped to be devoid of fast oscillations for a finite time when ¢ is sufficiently
small.

In order to write a particular (geophysical fluid) model in the form (2.3.1),
(2.3.2) it is in general necessary to redefine the origin around fixed points of
the system (or to introduce an appropriate basic state for partial differential
equations). In that case s and f are considered to be perturbation variables
and, accordingly, any linearization would take place about s = 0 and f = 0.

It turns out that expansion of both s and f into a power series in e,
s = 500 4+ s 4 . leads to non-uniform convergence when the leading
order dynamics in s(¥) has positive Liapunov exponents (Warn et al. 1995),
an example being two-dimensional incompressible or quasi-geostrophic turbu-
lence as leading-order s®-dynamics. The dynamics for s(V) is linear and grows
without bound when the leading-order dynamics has positive Liapunov expo-
nents, because the homogeneous system for s(!) is equivalent to the linearized
version of the decoupled leading-order system for s() (Warn et al. 1995). Mul-
tiple time-scale analysis seems to offer no alternative when the power series
gets disordered due to the presence of positive Liapunov exponents.

Rather than expanding both variables s and f we will therefore follow
Warn et al. (1995) and assume that the dynamics lies on a nearly invariant
slow manifold given by the slaving principle (e.g. Van Kampen 1985)

f=U(s) — f=f-U(s)=0, (2.3.3)

which may be exactly or only asymptotically valid. A partial differential or
functional equation, the so-called superbalance equation (cf. Lorenz 1980), for
U (s) results after substitution of the slaving principle into the fast equation
(2.3.2) while using the slow equation (2.3.1)

LU(s)  dU(s) '
- = o — F(s,U(s);€)

_au(s)
R

S(s,U(s);€) — F(s,U(s);¢€).
(2.3.4)

Approximate (asymptotic) solutions of this superbalance equation may be
found by substitution of the power series U(s) = U (s) + e UM (s) + ... in
€ into (2.3.4) and evaluation at every order in e: this amounts to a modified
expansion of f into a power series of € only, as a function or functional of s.
Substitution of

s=s, F=fO4er® 4 (2.3.5)
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into (2.3.1), (2.3.2) now yields a hierarchy of balance models. Just like in
(2.3.4), time derivatives of the fast variables need to be evaluated in a special
way:
of ds
ot at

where 7 denotes the derivative of f® = f("(s) with respect to s, before
equating powers of €. The hierarchy of models at different orders is:

O(1/e) : f =0, (2.3.7)

= |79 +e7W

= [TO+eTO ] S6,5e, (236

0(1) : f = €eI'''F(s,0;0), gj S(s,0;0), (2.3.8)
. - . ~10F(5,0,0) ¢ .
O(): f = T 1{F(s,f,e) o T 5(3,0,0)},

0s
5 = S(s, fi€) o) (2.3.9)
O):  f = TPl f;0=TS(s, fi9}| (2.3.10)
O(en)
0s
il S(s, f€) o’ (2.3.11)

where (-)|o(en) denotes inclusion of all powers in € up to and including terms
of order €".

Alternatively, we may also use the e-ordering in the superbalance equation
(2.3.4) to define linear or nonlinear iterative approximations U,(s) of U(s),
e.g. by starting with Uy(s) = 0.

Example 8: The slaving approach is readily illustrated for the Lorenz equa-
tions (2.1.22) or (2.2.9), which may be seen to fit the prototypical format
(2.3.1)-(2.3.2). The slaving ansatz implies that

U4 = U4((]5, ,’133) and U5 = U5(¢,CC3). (2312)

Differentiation of these relations with respect to time and use of the equation
of motion (2.1.22) gives the corresponding superbalance equations

1 au, oU. o0Uy
— U5 = dt4 = 8¢>4 (x3—bx5)—a—30sm2q§,
1 . dUs 0U, oUs
ZU4+bC sin2¢ = dt5_ 8(155 ($3—b$5)—8—3081n2¢ (2.3.13)
Substitution of Uy = U\” +¢U” +..., Us = U(O) +e U5 +...into (2.3.13),

following the outlined expansion procedure gives the leading and first order
results

U =ul” =0, U =-bCsin2g, UM =0, (2.3.14)
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which readily extend to higher order via algebraic manipulations. It is also
straightforward to show that substitution of an expansion of z, and x5, in a
power series of €, into the fast equations gives the same result.

Fluid dynamical examples of these expansion or iteration slaving proce-
dures for the rapidly rotating shallow-water and stratified Boussinesq equa-
tions can be found in Allen (1993), Warn et al. (1995) and in Bokhove (1997).
Slaving principles for compressible barotropic flows and the shallow-water
equations with Mach and Rossby numbers as small parameter, respectively,
are considered in sections 3.3 and 3.5.

2.4 Constrained Hamiltonian formulation

Given a “parent” variational principle we may want to impose constraints on
the parent dynamics. In principle this can be done either by direct substitution
of the constraints into the variational principle, although this may not always
be possible for implicit constraints, or by augmentation of constraints on the
variational principle with Lagrange multipliers (e.g. Lanczos 1970). In either
case one has to ensure consistency and check whether the Lagrange multipliers
can be solved under the newly constructed constrained dynamics. If there is
an inconsistency more, so-called, secondary constraints may arise which need
to be imposed as well, and so forth, but ultimately we arrive either at a case
where constrained dynamics and constraints form a closed system or one that
reveals an inconsistency which suggests that the imposed set of constraints is
ill-posed.

In the previous section we argued that approximation methods based on
slaving principles yield asymptotic constraints in a systematic manner and
this forms hopefully some safeguard against ill-posed constraints, at least for
small values of €. Hereafter we assume that constraints obey their consistency
requirements although this must always be checked.

An example of direct substitution of constraints is presented in section

3.6.3 where ageostrophic barotropic equations are derived from their Eulerian
shallow-water parent action principle.

2.4.1 Lagrange multipliers

Assume we have (asymptotic) constraints of the form f(z) = f—U(s) = 0 (cf.
(2.3.3)). Defining z = {s, f} a constrained form of action principle (2.1.14) is

m

t1 dz ~
0=3 [ at {am(z)W CH4 0] } (2.4.1)

for independent variations 6z and 6\, (%), where \,(t) are Lagrange multipli-
ers. The Lagrange multipliers enforce the constraints at every time ¢ and are
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therefore a function of time. Variation of (2.4.1) with respect to A\, (t) yields
the constraints f" = 0. The invertibility of K guarantees that a constrained
Hamiltonian formulation exists with

dF i -
il [F,H|" = [F,H|— [F, \o f°]
OF OH ofe
07! T (82J * 0z ) (24.2)
or, alternatively,
dF
F, H* 2.4.3
o p (243
with parent bracket (2.2.2) and Hamiltonian
H*=H — )\, fe. (2.4.4)

2.4.2 Dirac’s theory

Dirac’s theory of constrained Hamiltonian dynamics deals with (time-indepen-
dent) Lagrangians L(q’, ¢") that are singular (Dirac 1950, 1958, 1964; Sudar-
shan and Mukunda 1974; for a geometric account see Gotay, Nester and Hinds
1978 and Marsden and Ratiu 1994). Singular Lagrangians may, for example,
arise after scaling and truncation of a non-singular parent Lagrangian. Take
i=1,...K such that N = 2K. Normally, the momenta p; defined by (2.1.8)
are independent, but for a singular Lagrangian a Legendre transformation is
less trivial because the Jacobian

api _ 82L
8¢7 9’ O

(2.4.5)

is singular. This implies that the transformation between the coordinate pairs
{q,4} and {q, p} is singular and the corank of the Jacobian (2.4.5) is, say, N..
Consequently, N, of the K equations (2.1.8) may be expressed in terms of
constraints involving the p’s and ¢’s, e.g. N, = 2 M constraints of the form
fe(p,q) =~ 0 (cf. [2.3.3]). (Isolated singularities do not necessarily inhibit a
global calculation of the Legendre transform, see Sewell (1999).)

The variations of dp; and d¢* are no longer independent because of the con-
straints and the Legendre transformation is non-unique. Independent varia-
tions of dp; and d¢* can nevertheless still be enforced by introducing Lagrange
multipliers A\, (¢) (e.g. Lanczos 1970). The constrained action principle is

ot 0H dp; . OH dq'
0 = /t dt{(_aq dt)(sq +(_6pi+ dt)dp}+

/tzl dt (Aa(t) Sfe(q, ;) + folq', ;i) 5)\(1(75)); (2.4.6)
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where the variations of A,(t) yield the constraints, and where H(¢',p;) =
p; ¢* — L(¢*, ¢*). The equations of motion follow from (2.4.6)

d¢ _ OoH \ Of* dp; _ OH _ Of
dt  Op; “op;’ dt  Og “0qt’

(2.4.7)

and correspond to dynamics (2.4.3) with Hamiltonian (2.4.4) when the bracket
[-, -] is identified with the canonical bracket (2.2.5).

Ezxample 9: Suppose Hamilton’s principle for Example 1 is scaled such that
the term z? (or w?) is O(6?) relative to the horizontal kinetic energy terms.
Hamilton’s principle truncated to O(1) then becomes

tl 1 -2 .9

0= dt {5 (&°+9°) = V(x,y, z)}, (2.4.8)

to
and this Lagrangian is singular since the vertical conjugate momentum f; =
w = 0L/0z = 0. Variation of (2.4.8) with respect to 6z now yields a secondary
constraint 0V /0z = 0. Variation of the constrained action principle

dy dz

t dx
— =7 = _HO + } 2.4.
0=9¢ s dt{u t+v t~|—w ; (z,y, z,u,v) + Aw ¢, (2.4.9)

with the O(1) Hamiltonian
1
HO(z,y,2,u,0) = o (v +v*) + V(2,y,2), (2.4.10)

with respect to A\, u, v, w, x, ¥y, z yields the constraint and constrained dynam-
ics

£z w=o0 ®_, W_, %__ du OV
LEYES Ty w T T w T o
dv oV dw a_v

= — —=[w, HY = A[w,w] = —

— 2.4.11
dt oy’ dt ( )

0z’

respectively, with

and z; = z, u; = u, etc. Notice that —\ has taken the role of vertical velocity.
Consistency requires now that dw/dt ~ 0, yielding the secondary constraint
fo =0V/0z = 0. Consistency of fo = 0 under constrained dynamics (2.4.11)
requires that

dfs

o = P HOT = Al fo,w] =

o?V - o?V Y 62_V
0x 0z Oy 0z 072

=0 (2.4.12)

which determines A and closes the system for a suitable potential V(z,y, z).
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A fluid example analogous to Example 9 is given in section 3.2, where a
singular variational principle for a compressible fluid in Lagrangian variables
emerges after elimination of the vertical velocity in the kinetic energy on the
basis of scaling arguments involving the aspect ratio of vertical to horizontal
velocities. The resulting constrained dynamics are the familiar hydrostatically
balanced fluid equations used in meteorology.

2.4.3 Postulation of constrained dynamics

So-far we have imposed constraints on variational principles and a constrained
bracket will arise in all (consistent) cases. Alternatively, we can postulate
dynamics (2.4.2) with constrained dynamics

dF

—r = [FH] = [F,H] = A[F, fe = [F, H"] (2.4.13)

given a set of constraints (2.3.3) and (non-canonical) Hamiltonian parent dy-
namics (2.2.1) with bracket [F, G]. The symbol “~” in (2.4.13) denotes that
the brackets must be calculated before the constraints (2.3.3) are applied,
following Dirac (1950, 1958, 1964) and Sudarshan and Mukunda (1974). In-
variance of the constraints under the constrained dynamics, i.e. consistency,

dfe . o

0= (2, H - 0 17, 7 (2.4.14)
in principle ensures that the Lagrange multipliers can be solved. Although
we can usually trace all Hamiltonian dynamics back to a variational principle
it may not always be convenient or physically meaningful to do so, in which
case postulating non-canonical constrained dynamics may be useful. Note
that Casimirs C' of the parent bracket [F, G| remain Casimirs for dynamics
(2.4.13).

In section 3.6.2 the ageostrophic barotropic equations are derived from
a postulated constrained bracket with the shallow-water Hamiltonian for-
mulation as parent dynamics. In this case the Lagrange multipliers will be
proportional to the velocity which advects fluid parcels.

Subsequently, it is assumed that for all fﬂ the tensor A, defined by
A% =(f2, ), (2.4.15)

is non-singular, which implies that it must have an even number of compo-
nents. The condition
det |A| #0 (2.4.16)

is a restriction suitable for the elimination of pairs of fast variables. In physical
terms, fast modes refer for example to pairs of acoustic- and gravity-wave
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modes, which may be eliminated by applying constraints. Consequently, one
may introduce the inverse C of the transpose of A. In components C is
written as

Coa [f2, 1] = 67, (2.4.17)

where 07 is the Kronecker-delta symbol, and it follows that C is skew-symme-
tric. Multipliers A\, can now be determined from consistency requirements
(2.4.14) to be

Ao = Csa [f5, HJ. (2.4.18)
The constrained dynamics (2.4.13) thus takes the form
dF ~ ~
E = [F’H] _Cﬂa [f/BaH] [F’fa]

= [F,H] +[F, f*] Cop 2, H]. (2.4.19)
This gives rise to the so-called Dirac bracket
[F,G]" ~ [F,G]+[F,f]Caslf5, Q) (2.4.20)

which may be shown to satisfy the conditions (2.2.3) (i)-(iii) when the bracket
[+, -] itself satisfies these conditions (Dirac (1950)). Any function K (f7) of the
constraints (2.3.3) satisfies [F, K|* = 0, because

0K
of
= [F,K] - [F, f°]&} g—g =0. (2.4.21)

l

[FLK]" =~ [F,K]+[F, f*] Cas [f?, f]

Thus, the result is that for a transformation from {st, f®} to {s/ = s7, fo =
fe®—U*(s) ~ 0} an explicit reduction of the dynamics to the constrained
slaving manifold may be established. After this transformation, one needs
only to refer to functions of § since (2.4.21) renders any reference to the
dependence on f superfluous. Consequently, the variations of H with respect
to fe can be neglected, and one may use H(E,f = 0). Again the original
Casimirs C' are also Casimirs of the Dirac bracket; moreover, the constraints
can be considered as additional Casimirs.

Ezample 10: Direct substitution of the slaving ansatz or constraints (2.3.12)
into the action principle (2.1.20) of Example 5 is equivalent to using (2.4.13)
with Lagrange multipliers \,, which in Lorenz’s model may be eliminated
explicitly. The balanced Dirac bracket becomes

oF 0G  OF 0G

[F,G]* = <% e o a—¢> (1 +egn(6, :1:3)> T (2499)



20 Bokhove

with gr.(¢, z3) defined by

oUs\ 0Uy  0U, 0Us
= —|b 2.4.2
wioa) = ~ (04 50 T TR )
together with the Hamiltonian
1 1
H* = —3 C cos2¢ + 3 (a:g + Uz (¢, 3) + UZ (8, a:3)> (2.4.24)

The bracket (2.4.22) obeys all mathematical requirements by construction for
any Uy(¢, z3) or Us(¢,x3), assuming the denominator in (2.4.22) is nonzero.

The Hamiltonian balanced equations derived from dF/dt = [F, H*]* and
(2.4.22)—(2.4.24) are

dp 1 ou, . U

dt 1+ egn(¢,zs) <x3+U43 z3 +Us 5$3>

diL‘g 1 6U4 6U5

— = - | C 2 U, — + U, . (2.4.25

at 1+ e gn(,73) ( S 20 +Us 5=+ Us a¢> (24.25)
1

2.5 Slaved Hamiltonian dynamics

Rather than first deriving constraints and subsequently imposing these on
a variational or Hamiltonian formulation, it will be shown that a balanced
Hamiltonian formulation arises in one singular Hamiltonian perturbation ap-
proach based on a slaving principle. To use the ideas of slaving principles
and singular perturbations, it will be assumed that the prototypical singu-
lar system (2.3.1), (2.3.2) is Hamiltonian. The linearized Hamiltonian is then
necessarily quadratic in the fast variables f.

A valid prototypical Hamiltonian version of (2.3.1), (2.3.2), but perhaps
not the most general, can be hypothesized to have the form

dF

— = [FH] (2.5.1)

with Poisson bracket

oF oG OF oG 8F oG
F — : B Y
[ ’G] 881 Jss 689 azJSf afa afﬂ staj

OF TH(A ) 9G  OF 4 9G

off € ofe 3fﬂ 7 ofe

1Joint work with T.G. Shepherd.

(2.5.2)
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satisfying skew-symmetry and Jacobi’s identity, and a Hamiltonian H whose
small-amplitude form is quadratic in f¢ at leading order in e:

O0H
of

= Ao [V +era(s, f;¢€) (2.5.3)

for an invertible constant matrix A (the Greek lowercase symbols range from
1,...,2M such that there are an even number of fast variables) and with r, =
O(1). Furthermore, it is assumed that J%, J{7, and Ji¢ = —J% are O(1). All
these definitions and assumptions are in agreement with the O(1)-magnitude
of S and F'in (2.3.1)(2.3.2). The cosymplectic tensor corresponding to (2.5.2)

has the form

Jss Jsf
= : 2.5.4
! (st —FAelJFJff)’ (254)
and the cosymplectic form of the equations of motion is
ds . OH . OH
— = JY— “w—_— 2.5.5
dt Jss Osi + sf afa’ ( )
dfP Fg (A1) 9H 5; OH 0H
— = - JO = g 2.5.6
dt e afe 099 T Ga (2:5.6)

In section 2.3, it was pointed out that the system (2.3.1), (2.3.2) has fixed
points or a basic state corresponding to s = 0, f = 0. Consequently, the
Hamiltonian prototypical system is assumed to have a quadratic Hamiltonian
in f for € — 0. This is not true in general, especially not for non-canonical
Hamiltonian systems encountered in fluid dynamics. However, H can be re-
placed by the pseudo energy P, which will be defined in section 2.7, without
changing the dynamics such that the small-amplitude form of P is quadratic
in f.

In order to construct Hamiltonian balanced models, the slaving principle or
approximations thereof will be considered as the following set of constraints

fo=fr—U%s)~0 (2.5.7)

which may be exact invariants of the full flow. The tensor A defined by

R re(A=y® o gue .. 9UP
AﬂE[faaf’B] = _%+Jffﬂ+ dsi 51’@_
OU® i a5 OU”

J

T = 95 2 (2.5.8)

will be nonzero for sufficiently small ¢, and hence invertible, because both T'
and A are assumed to be invertible. Note that A is then necessarily even-
dimensional. The tensor C defined by the inverse of A is Cg, [f?, f7] = 6.
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Consider a coordinate transformation § = s, f = f — U (s), transforming
the bracket (2.5.2) into

OF 1, 0G  OF (

o5 "* 951 Bst

Q

o aUa) oG

F,G = s ss A~ ~
7, Gl f dsi ) afe

oF (Jﬂj — J3 8U~ﬂ) o of (_rg A" 4 gt
afs \" I 7 g5 ) asi | af8 € 1

B a B . ) a
OUZ g O U jia _ jes al) 96 (2.5.9)
0s’ 0s7 0s’ 0si / df«

and together with (2.5.1) and the Hamiltonian H, the following equations of
motion appear by definition

ds ~ ~ 0H -~ - 0OH
% = [S ,8'7] s~] +[$ ,f ]8f’:’a7 (25]‘0)
dff o - 0H o - 0H
— = [fﬁ,31]£+[fﬂ,f ]afa' (2.5.11)

If the constraints (2.5.7) are (approximately) conserved by the primitive equa-

tions (2.5.5), (2.5.6), then it follows from (2.5.11) that (approximately)
dff . - OH . - 0H
—F = ’B,SJ—~.+ ’3, a—~:0, 2.5.12
PSP o (25.12)

where the notation ~ indicates that the brackets have to be calculated before
the constraints are applied. Using (2.4.17), the expression (2.5.12) may be
rewritten as O O
2~ O [fP, 8] —, 2.5.13
57 slf?, 5] PYe ( )
and after substituting (2.5.13) into (2.5.10) one obtains the balanced dynam-
ics

ds H - - - - O0H
- — i fo B <j ~

dt $j+[8af ]Caﬂ[f 55]8$ja
fe ~ 0. (2.5.15)

[s°, 7] (2.5.14)

Note that, after the brackets are calculated in (2.5.14), the Hamiltonian is
subject to derivatives with respect to § only. The Hamiltonian formulation
which follows from the dynamics (2.5.14), (2.5.15) is

dF

— = |F,H|* 2.5.16

= 1] (2.5.16)
and the cosymplectic tensor corresponding to (2.5.14) gives the Dirac bracket
[-,-]* (Dirac 1950, 1958, 1964; and Sudarshan and Mukunda 1974) we encoun-
tered before } :

[F,GI* ~ [F,G] + [F, f*]Cas[f?, G]. (2.5.17)
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The conclusion is that the slaving approach for a prototypical singular Hamil-
tonian system (2.5.1), (2.5.2) systematically yields the (approximate) Hamil-
tonian balanced dynamics (2.5.16), (2.5.17). Although in the derivation of
(2.5.17) F,G, and H are initially restricted to be functions of § only, it may
be verified directly or via Dirac’s theory that this restriction may be lifted.

A few remarks are useful. First, when the constraints (2.3.3) are exactly
conserved by the full dynamics, then it should be no surprise to us that the
balanced dynamics are Hamiltonian, since the primitive equations are Hamil-
tonian. It is then unnecessary to modify the original, unconstrained dynamics,
as is done in Dirac’s approach, because the unconstrained dynamics do con-
serve the constraints already. The balanced dynamics (2.5.16), (2.5.17) are
than nothing else than a reduced description of the evolution on the con-
strained manifold defined by (2.5.7). Second, the situation is more complex
when the constraints are approximate. In that case, the constraints are not
exactly conserved by the unconstrained dynamics given by the primitive equa-
tions (2.5.5), (2.5.6). When the dynamics is modified by adding additional
forces that constrain the dynamics to the constrained manifold fo ~ 0, the
Dirac bracket is interpreted as a modification of the forces in the full dynam-
ics such that the constraints are conserved exactly by the modified dynamics.
It is the classical way in which Lagrange multipliers are interpreted as the
forces of reaction exerted on account of given constraints (Lanczos 1970).
This modified (Hamiltonian) dynamics thus deviates relative to the original,
unconstrained dynamics. Even when f = 0 initially df /dt, as determined by
the unconstrained dynamics, is not; the difference of the unconstrained and
the modified dynamics will then generally increase in time. Although trajec-
tories of the parent and constrained dynamics with the same initial conditions
are expected to diverge, the constrained Hamiltonian dynamics may preserve
long-term stability and statistical properties better than non-conservative ap-
proximations. Third, further simplifications may in principle be realized by
expansion of the bracket (2.5.17) in a Taylor series in ¢, after expressing the
constraints in a power series in e. It is then tempting to try to truncate (2.5.17)
and the Hamiltonian separately, in such a way that skew-symmetry and most
notably Jacobi’s identity are preserved. In the next section, it is shown that
a leading-order truncation always preserves the Hamiltonian structure.

2.6 Leading-order Hamiltonian perturbations 2

For many, and most notably, continuous systems the construction of a Dirac
bracket is too complicated. Rather than finding the inverse of [f#, f] or an
explicit solution of Lagrange multipliers )\,, these quantities may be solved
for in a perturbative way such that skew-symmetry and Jacobi’s identity are
preserved. In other words, for constraints @ formally accurate to O(e"*!) the

2Joint work with T.G. Shepherd.
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challenge is to find a cosymplectic truncation to O(€") of the Dirac bracket
(2.5.17), since there are no mathematical restrictions on truncations of the
Hamiltonian. If the Hamiltonian is also truncated to O(e"), then the resulting
balanced dynamics can be shown to contain all terms up to O(e") (plus some
higher order terms).

The cosymplectic tensor corresponding to (2.5.17) is

JI = [ 9)4 [5 ICalfe, 5] = T2+ T (261)

It may be seen from (2.4.17), (2.5.8) and (2.5.9) that [3, f] = O(1) and C =
O(€). The leading-order truncation of (2.6.1) is thus

7i — 74
I = Ji

o(1)

, (2.6.2)
o)

which is shown to obey Jacobi’s identity by the following argument.

Consider Jacobi’s identity [F, [G, K|| + [K, [F, G|+ [G, [K, F]] = 0 for the
bracket (2.5.9) with arbitrary functions F,G, K. If F = F(35),G = G(8) and
K = K(8) then Jacobi’s identity is

jk jk
0T 0T

Jz'm 55

iy iF o + cyclic permutations = 0, (2.6.3)

and if F = F(3),G = G(8) and K = K(f) then Jacobi’s identity is

JjK JK Ki Ki ii
J?’ﬂ% + J“faiff + i Jj'f_ajfg +J'SZ”—8J§J§ +
58 Hgm M?af“ 85 9ggm y?af“ fs osm
IE(A-)w dJ
(M*—J'ﬂf) 3= 0. (2.6.4)
€ 1) ofne

Since it is assumed that Jg and J;7 are O(1) (2.6.4) gives at leading order
(8J§§/6f“)|0(1) = 0. Substitution of this result into (2.6.3) then implies that

at leading order
jk
{rpois)
osm

which proves the claim that the truncated leading-order version of the Dirac
bracket is cosymplectic.

+ cyclic permutations = 0, (2.6.5)
o(1)

At leading order, the modified expansion gives f = 0 (cf. 2.3.7), and one
finds 5§ = s, f = f. The balanced dynamics at leading order (cf. (2.3.8)) is thus
cosymplectic when the abstract prototypical parent dynamics is Hamiltonian.
In summary, the leading-order singular Hamiltonian method reduces the orig-
inal bracket (2.5.2) with Hamiltonian H (s, f) to the constrained bracket

OF' .. 9G'

F' G"y = — .
LF% Glo Ost % Qsi

(2.6.6)
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with Hamiltonian H® = H(s,0) (or pseudo energy P(¥)) and F' = F(s), etc.
Higher-order cosymplectic truncations or other simplifications of the Dirac
bracket have not been obtained. O(e) truncations of the Dirac bracket gen-
erally do not preserve Jacobi’s identity automatically since it is a quadratic
identity. We expect therefore that some higher-order terms need to be in-
cluded in order to satisfy Jacobi’s identity, but further research is necessary
to identify these terms.

In section 3 we present two examples of the Hamiltonian leading-order per-
turbation approach: a modified Mach-number expansion of barotropic three-
dimensional compressible fluid equations around a resting basic state of con-
stant density which provides a systematic Hamiltonian derivation of the in-
compressible Euler equations in section 3.3, and a modified Rossby-number
expansion of rotating shallow-water equations which provides a systematic
Hamiltonian derivation of the barotropic quasi-geostrophic equations in sec-
tion 3.5.

2.7 Formal stability
Steady states of the Hamiltonian equations (2.1.18) are solutions z* = Z* of

(2.7.1)

2=Z

Let us consider the stability of these steady states Z. Decomposing z = Z + 2/
into steady state and perturbation component 2z’ we find

i () +0(2"?). (2.7.2)

d(z') ( iy PH 0T 6_H)
dt ? 027 028 = 020 029

When the cosymplectic tensor J¥ is non-singular, (0H/d27)|; = 0. Liapunov
or norm stability (Arnol’d 1989) is now achieved when the Hessian matrix H,,
is sign definite. All eigenvalues of the linearized system are purely imaginary
under these conditions. For Hamiltonians of the form H = % > 2+ V(g
stability is ensured when the second variations 62 H, leading to a Hessian
Hy, =V, are positive definite.

For non-canonical systems with nontrivial Casimirs the stability of steady
states may be established with the energy-Casimir method. The method
is useful when steady states are constrained extremals of the energy, i.e.
Casimir(s) C, are imposed as constraints on the Hamiltonian by Lagrange
multipliers A; such that the pseudo energy P = H(z) + Ay Cx(2) — H(0) —
Ak Cr(0) is extremal at the steady state

oP
| =0. 2.7.
5 | =0 (2.7.3)
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The pseudo energy P may replace H as the Hamiltonian, since Casimirs are
by definition invariants of the flow

dCy

—~ = [Cy,H] =0, 2.74

k= [Ci, H] (27.4)
and is an invariant that is quadratic to leading order in the disturbances z'.

For singular J“ (2.7.2) becomes

21+ 027

Z

d(z) o 8P 8JY aP}
dt {J (2) 027 02¢ + 0zt 029

82P
52797, () + 0. (2.7.5)

Recall that J is in general not invertible. When the second variation §2 P is
sign definite, i.e. Hessian P,, is sign definite, then it follows that the steady
state z = Z is a Liapunov or norm stable solution of (2.1.18) (Arnol’d 1989).
All eigenvalues are either imaginary or zero, the latter corresponding to the
null eigenvectors of J¥(Z), when the Hessian of P is sign definite. Complica-
tions may now arise when J¥ changes rank in which case the number of null
eigenvectors 0C/0z’ changes (e.g. Morrison 1998).

For infinite-dimensional systems the energy-Casimir method proceeds along
similar lines but formal stability, i.e. sign definiteness of the second variation
of functional pseudo energy A = H + C, no longer implies Liapunov or norm
stability but only linear stability. Only formal stability criteria will be con-
sidered in the following fluid examples. More details on Liapunov or norm
stability in fluid systems can be found in Arnol’d (1966, 1989), Holm et al.
(1985), McIntyre and Shepherd (1987), Shepherd (1990, 1994), Marsden and
Ratiu (1994) and references therein.

The invariant P is known in the literature as pseudo energy, free energy or
energy-Casimir invariant, and is by construction a finite-amplitude invariant
which is quadratic to leading order in the disturbances to a given steady state.
The continuum analogue of P is often denoted as wave activity .A. In fluid
systems, for example, basic state and disturbances may be associated with
zonal mean and eddy components.

Example 11: Consider perturbations of the low-order shallow-water system
(2.2.16) in Example 7 around a non-resting (i.e. depth h # 0 or h # 1) steady
state Z = {u, v, h} defined by @ = 0, h = 1—p v—(3/2) 92. The pseudo-energy
invariant is defined as

P(u,v,h;u,0,h) = H(u,v,h)+ C(u,v,h) — H(a,v,h) — C(a,u,h)
= % (h (v +v°)+ h2) —h+C(q) — % <h172 + hz) +h—-C(7) (2.7.6)
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with ¢ = (u+ ) h. The first variation of P vanishes at this steady state when
we choose

oP

0z

with v = @ at the steady state. If we define disturbance quantities in the
usual way, g =g+ ¢, h=h+ h',u =u',v = v+ v'; then P may be recast as

=0 & C()=doM)/dy=-T*@) o) (2.7.7)

1 N @ [C@RY
P = 2T ((h+h)v +vh) +§ (1— i) hQC"(q‘))h +
50+ )+ 500 (¢ = T ) + 0 v k) (278

which is positive definite (assuming h + A’ > 0) when

% <1+ C@l and  C"(q) > 0. (2.7.9)

h2 Cu( Q)

Similar conditions appear later as formal stability conditions for the full
shallow-water and its quasi-geostrophic and ageostrophic balanced counter-
parts in sections 3.4, 3.5 and 3.6, respectively. The principal difference be-
tween (2.7.9) and the shallow-water (balanced model) formal stability crite-
ria is the second term on the right-hand-side of the first (subsonic) inequality
(2.7.9), which is absent in the continuum case, and which may arise because
mass does not appear as a separate Casimir invariant in the vortex model
(2.2.16). (Concerning stability in this vortex model, it may be more conve-
nient to write it in canonical form by treating q as a parameter for given initial
conditions. The dynamics is then constrained explicitly onto the symplectic
leaves labelled by ¢(t) = ¢(0) and is a one-degree-of-freedom Hamiltonian
system with parameter q.)

3 Applications to fluids

In section 2, variational or Hamiltonian formulations of the parent dynamical
system have been changed by imposing constraints on these formulations. It
was argued that these constraints should be chosen systematically based on
perturbative or iterative methods in order to ensure formal accuracy. In ad-
dition, we may thus hope to avoid ill-posed dynamical systems. In particular,
slaving methods and singular perturbations based on the presence of small
parameters in the system were presented as a systematic way to find suitable
constraints. Alternatively, scaling of the parent variational principle and sub-
sequent truncation to the required order could lead to a singular variational
principle. Constrained conservative dynamics were then shown to arise via: (I)
Dirac’s theory for these singular Lagrangians (section 2.4.2), (II) direct sub-
stitution of the constraints in the parent variational principle (introduction
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of section 2.4), (III) imposing the constraints onto this parent principle via
Lagrange multipliers (section 2.4.1), (IV) postulation of Dirac’s constrained
Poisson bracket formulation for a given parent Hamiltonian system (section
2.4.3), or (V) slaved Hamiltonian dynamics and leading-order Hamiltonian
perturbations (sections 2.5 and 2.6).

The Lagrangian or Hamiltonian formulation of three-dimensional com-
pressible fluid equations will be our starting point, i.e. our parent formulation,
in the forthcoming presentation of reduced or balanced Hamiltonian fluid sys-
tems. The diagram in figure 1 outlines the hierarchy of fluid systems consid-
ered here and the roman numerals along the connecting lines indicate which
one of the above approaches is used. Going down in the hierarchy of fluid sys-
tems a reduction of the types of waves supported by each system is apparent as
follows: compressible dynamics support acoustic, gravity and vorticity waves;
hydrostatic and incompressible shallow-water equations support gravity and
vorticity waves, while the ageostrophic equations only support vorticity and
boundary Kelvin (gravity) waves and the quasi-geostrophic equations only
vorticity waves. Each set of constraints thus filters specific types of waves
deemed less important in the physical problem at hand.

Although the applications form a hierarchy, it is possible to start reading
at different points. Study of sections 3.1 and 3.2 is required to understand a
variational hydrostatic approximation. Study of sections 3.1 and 3.3 provides
a Hamiltonian derivation of incompressible hydrodynamics. Alternatively, the
shallow-water equations in section 3.4 can be regarded as parent dynamics for
a Hamiltonian derivation of barotropic quasi-geostrophic dynamics in section
3.5 and ageostrophic barotropic equations in section 3.6.

Apart from a focus on the systematic fashion in which all these systems
are derived, emphasis will also be put on a comparison of formal stability
criteria. For each system these criteria are either stated with reference to the
literature or are derived for novel systems.

3.1 Compressible Euler equations
3.1.1 Lagrangian Hamilton’s principle

The compressible three-dimensional fluid equations will be derived from an
infinite-dimensional extension of the finite-dimensional Hamilton’s principle
(2.1.1) (e.g. Salmon (1988a) and Morrison (1998)).

The analogues of the finite-dimensional generalized coordinates q and ¢ are
the positions &(a, 7) = (&1, &, &), and their time derivatives 0&(a, 7)/0T as
functions of a continuum of fluid-parcel labels a = (a,b,¢)T and time 7.
Hamilton’s principle for this three-dimensional compressible fluid is

% _,
€

55[¢] = 5/ dr LIE, (3.1.1)
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with endpoint conditions
d&i(a, 7o) = 0&(a, 1) =0 (3.1.2)

in a three-dimensional domain D, with ¢ = 1,2, 3. The Lagrangian functional
L is defined by

U (so(@), pl€.2)) ~ 96 (313)

in which U(s, p) is the internal energy, sq(a) the conserved value of entropy
s on a fluid parcel, and p the density defined by

pla,7) = p(é(a, 7),a) = ”O;a). (3.1.4)

Here, the Jacobian 7 between fluid parcel positions &;(a, 7) and fluid labels
a; is given by

T = det ‘%‘ = V.6 Vs X Vs, (3.1.5)

with V, = (0/0a,d/0b,d/dc)T. The Coriolis force is included via the term
R; 0¢; /0T in (3.1.3) with Ry = 0, f(&,&) = z - V3 x R, z the unit vector
in the vertical and Vs = (8/9¢1,0/0&,,0/9¢3)". The reference density po(a)
may be chosen such that p(a,7 = 0) = pg(a). An element of mass dm is thus
defined by

dm = po(a) da = p(¢&,t) d€ (3.1.6)

with time denoted by ¢ in an Eulerian framework. The first step in a variation
of internal energy U is obtained from the first law of thermodynamics

dU =T ds —pd(1/p), (3.1.7)

with T the temperature and p the pressure, as follows: § U = (p/p?) dp since
in label coordinates one has ds = 0. Pressure p is via an equation of state

p=p(s,p) (3.1.8)

related to entropy and density. Further manipulation of the functional

| dano(a) (/6% 60

requires use of (3.1.4), integration by parts and valid boundary conditions
such as no normal flow through solid boundaries.
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The resulting equations of motion are

0%¢, OR, O&; 0
la) 5ot + ola) (g a—gp> 9 = g, —on@hs (319

where Ay, is defined by

98, 06

1
§6pqrejkl Oay, Oay’

Ap; (3.1.10)
with the permutation symbol €,, and p, ¢, = 1,2, 3; together with (3.1.7),
(3.1.8), boundary conditions and initial conditions such as

£(a,0) = a. (3.1.11)

(A detailed calculation is found in Bokhove (1996) with particular emphasis
on incorporating the boundary conditions.) The continuity equation emerges
from (3.1.4) as

dplar)  plan)? (1 0%, o€, 0%,

ar  pla) (2 par Ik 5 Oa; Oay, Oa

(3.1.12)

and the entropy equation is ds¢(a)/01 = 0. Alternatively, (3.1.7) may be used
to derive a temperature-pressure equation

Js _ _. or p.T dp
or  Por P or
in which p, T, specific heat ¢, = T'(0s/0T), and coefficient of thermal ex-
pansion 3. = —(1/p) (0p/0T), are directly measurable quantities.

T =0

3.1.2 Lagrangian action principle and Hamiltonian formulation

In extension to the finite-dimensional case (cf. (2.1.9)), the Legendre trans-
form of the Lagrangian £ in (3.1.3) of the infinite-dimensional compressible
fluid is

Heom] = [ dam; 52— £lg, 52,

— /D dapy(a) {5 [mi*a) — Rir + Ul(s0, p) + 953}(3-1-13)

or
¥

1 2
] = L , . 3.1.14
Hieom) = [ dapla) {5 || + UG He8 ) (311)
The generalized momenta 7} (a, 7) and 7;(a, 7) are defined by (cf. (2.1.8))

5[55,(-5(37)] — pola) [% + Ri| = mfa,7) + ml@) Re

or

mi(a,T) =

(3.1.15)
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The action principle (cf. (2.1.10))

0—5/ dT{/ dar a& —Her, ,]} (3.1.16)

yields Hamilton’s equations (cf. 2.1.11) for the fields &(a,7) and 7*(a, 7).
Alternatively, one can use

025/;1(17'{/D (7r,+po()R)a§Z ’H[{f,,m]} (3.1.17)

A corresponding Hamiltonian formulation is

dF
o = ] (3.1.18)
with bracket
B SF 8G  OF &G SF 6G
7.6 = [ da{es - 55 @@ ans o)
(3.1.19)

(while in terms of the fields &(a, 7) and 7v*(a, 7) the infinite-dimensional ana-
logue of the Poisson bracket (2.2.5) appears), where i = 1,2,3 and €, = €103
is the two-dimensional permutation symbol with h,0 = 1, 2; and with Hamil-
tonian (3.1.14). In addition, thermodynamic equations (3.1.7), (3.1.8), initial
conditions (3.1.11), and suitable boundary conditions are required. If

F=mn(a0,7) = [ dad(a—a)m(ar)

then 0F /ém(a, ) = d(a—ay). Substitution of this result into (3.1.19) together
with the required variations of the Hamiltonian, whose evaluation proceeds
similarly to variation of Hamilton’s principle, yields the momentum equations
in label coordinates. The class of admissible functionals F and G is restricted
to ones for which the continuum bracket (3.1.19) does not involve products
of delta functions.

The infinite-dimensional analogues of (2.2.3) which define a proper Poisson
bracket are skew-symmetry

[F,G] = -G, F], (3.1.20)
and Jacobi’s identity
(7,16, Kl + 16, [K, F]| + [K, [F, 6]l = 0, (3.1.21)

and both conditions are satisfied by (3.1.19).
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3.1.3 Hamiltonian formulation in Eulerian coordinates

After a transformation from Lagrangian label coordinates a to horizontal
and vertical Eulerian coordinates, x = (z,y)T = £ and z, respectively, the
Hamiltonian (3.1.14) becomes

1
’H:/dxdzp{—|u|2+U(s,p)+gz}, (3.1.22)
D 2

where s, p,u = (u,v,w)? are now all functions of x,z and t. Variation of
(3.1.22), using (3.1.7), yields

1
(S’H:/Ddxdz{pu-éu—i-pT(Ss-l- <§\u\2+gz+U—i—]—)> 5,0}- (3.1.23)
p

Variations of the Hamiltonian lead to five independent variations in terms
of s, p,u in Eulerian coordinates as opposed to the six variations in terms of
Lagrangian variables £ and 7r in Lagrangian label coordinates. This reduction
is due to the particle-relabelling symmetry in the Lagrangian Hamiltonian
which leaves the Hamiltonian invariant under those rearrangements of particle
labels a that leave the density (3.1.4), i.e. the Jacobian between label and
coordinate space that appears in the internal energy, invariant. More details
on this symmetry and the associated potential vorticity conservation laws are
found in Salmon (1983, 1988a), and Padheye and Morrison (1996).

Reduction of the Hamiltonian system to this reduced set of new variables
s, p and u is possible because the transformation of the Poisson bracket from
the larger set of original variables & and 7 is closed, i.e. the new bracket is
entirely specified in terms of the reduced set of new variables. The theory of
reduction of a Hamiltonian system based on a symmetry in the Hamiltonian
and the closure property of the Poisson bracket under the transformation to
a variable set of reduced dimension is well known, see for example Sudarshan
and Mukunda (1974), Holm et al. (1985), Olver (1986) and Morrison (1998).

After the reduction procedure we arrive at a Hamiltonian formulation
(3.1.18) of a compressible fluid in Eulerian coordinates (originally recorded
by Morrison and Green (1982)) with Hamiltonian (3.1.22), Poisson bracket

(w+2f) 6F 6G 6F_ 6G 6G_ OF

= [dxdzd T2 2 Y My, P L Ty, 2L

179l /DX z{ o dusu op " ou op "V su
1 5F 8G  6G 6F

and thermodynamic relations, where we have defined vorticity w = V3xu and
gradient V3 = (,, 8y, 9,)". Notice that (3.1.24) is a non-canonical bracket
which satisfies (3.1.20) and (3.1.21) because these identities are preserved
under the reduction procedure (a direct verification of Jacobi’s identity is



Hamiltonian balanced models 33

more tedious). The resulting equations of motion are the familiar compressible
FEuler equations

1
w+ (u-Vi)u+fzxv = —;Vgp—ig, (3.1.25)
pt+ Vs-(pu) = 0, (3.1.26)
st+(u-Vs)s = 0 (3.1.27)

with, e.g., p; denoting the partial time derivative of p.

3.1.4 Formal stability

Formal stability criteria of non-resting fully three-dimensional basic states
have, to my knowledge, not been proven for compressible flows. The static
stability case, however, was considered by Vladimirov (1987, 1989), see also
references therein. For a basic state u = 0, p = po(z) and s = Sp(z) these for-
mal stability criteria include static stability with the Brunt-Viisala frequency

N2 = 4 95 >0, and
cp Oz
o*U
@ = sy >0, (3.1.28)
ap £0,50 ap ds £0,50

where cg is the speed of sound evaluated at the resting basic state.

3.2 Hydrostatic equations
3.2.1 Aspect ratio truncation and Dirac’s theory

Hydrostatically balanced flows arise directly by scaling the Lagrangian £ in
Hamilton’s principle. The term (0&3/07)? in (3.1.3) scales as the square of
the aspect ratio 6 = W/U = D/L relative to other kinetic energy terms for a
vertical velocity and length scale W and D, and horizontal velocity and length
scale U and L. Such a scaling is useful in meteorology where the atmosphere
is effectively a thin layer of the order of 10 £km around the earth relative to
large horizontal flow scales of the order of 100 to 1000 km, so that § < 1.
After truncation to O(1) a modified Hamilton’s principle results

1 0¢, O&p

0=10S5.[&] = (S/TOT1 dr /])dapo(a){[§3—T+Rh(§1’52) or

Usor ) = 96} (321)

with A = 1,2, in which the vertical velocity 0¢;(a, 7)/07 is absent. Variation of
(3.2.1) with respect to §&, with endpoint conditions (3.1.2), thermodynamic
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relations (3.1.7), (3.1.8), initial conditions (3.1.11), and suitable boundary
conditions yields the hydrostatic equations of motion in the form

826}1 aRh 8RJ 85] ap
pola) [w * (agj N agh) a_r] = A g (32.2)
_ Op
0= —As 5a, g po(a). (3.2.3)

Equation (3.2.3) is the hydrostatic balance condition in Lagrangian form. The
system (3.2.2), (3.2.3) along with thermodynamics relations is closed under
suitable initial and boundary conditions because the positions &3(a, 7) may
be obtained from the partial differential equation (3.2.3): by differentiating
(3.2.3) with respect to time 7 and by using the boundary conditions to elimi-
nate the terms 0¢3/07 at the boundary the appropriate boundary conditions
for &3 can be found.

The hydrostatic Lagrangian (3.2.1) is a singular Lagrangian just like the
Lagrangian of the finite-dimensonal system encountered in Example 9. The
succeeding more complicated application of Dirac’s theory of constrained
Hamiltonian dynamics (approach I) may be compared with the one in that
finite-dimensional example.

The Hamiltonian formulation of this hydrostatically balanced system ap-
pears to be nontrivial, since the Lagrangian in (3.2.1) is singular. If the gen-
eralized momentum is defined as in (3.1.15), then the vertical momentum

m3(a, 7) = 0. (3.2.4)

In contrast, for the non-singular case the action principle (3.1.17) is uniquely
defined in terms of the independent variations of the positions &;(a,7) and
momenta 7;(a, 7) of the fluid parcels. In the singular case, however, the vari-
ations with respect to & and 7; are not independent, because the dynamics
is constrained to the manifold defined by (3.2.4). The constrained variational
principle (cf. (2.4.6)) with Lagrange multiplier A(a, 7), which replaces (3.2.1),
has the form

5/ dT{/Dda{[m(a,THpo(a)Ri]w - ’H[fh,wh]}+
/D da)\(a,T)Wg(a,T)} __— (3.2.5)

From (3.2.5) the following constrained dynamics may be derived:

dF
= = [FH = F M) - /D daa,7)[F, m(a,7)],  (3.2.6)
where [-, -] is defined by (3.1.19) and the Hamiltonian by
. 1 Th 2
HEp, ] = /Ddapo(a) {5 [po(a)] + U(so,p) + ggg}. (3.2.7)
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Variation of A in (3.2.5) gives (3.2.4) and variation of Jm3 gives

9€s

5=\ (3.2.8)
The Lagrange multiplier has thus taken over the role of minus the vertical
velocity. (The notation ~ serves as a reminder that the brackets in (3.2.6)
have to be calculated before the constraints are applied.) The bracket [-, -]* in
(3.2.6) does not appear to be skew-symmetric, which is not surprising since
one has to check if the constraint (3.2.4) is consistent with the dynamics
(3.2.6), (3.2.7), such that the Lagrange multiplier may be solved. Dynamical
consistency is reached when

_ 871'3 (aa T)

ot

where (3.1.19) is used to calculate that [r3(a, 7), m3(a’, 7)] = 0. It leads to a so-
called secondary constraint (Dirac 1958, 1964; Sudarshan and Mukunda 1974)
x(a,7) = 0, which is the hydrostatic balance condition (3.2.3) we encountered
earlier. Consequently, the multiplier A(a,7) may in principle be determined
from the consistency requirement for x(a,7), i.e. from

0 ~ [m3(a, 1), H|* = [m3(a,7), H] = x(a,7), (3.2.9)

_ ox(a',7)

0 ot

~ [x(a', ), H] — /D da Ma,7) [x(a,7), m(a,7)].  (3.2.10)
Equation (3.2.10) is an integral equation for A and whether it has a general so-
lution is a delicate question. One expects that [x(a’, 7), m3(a, 7)] # 0, because
of the dependence of x(a) on &. Considering (3.2.8) we may rephrase this
question by asking whether we can find a solution for £; and 0€3/01 by solv-
ing the system y = 0 and dx/07 = 0. Anticipating an extension of (2.4.18)
to the infinite-dimensional case, we assume that one may find a solution for
A of the form

AMa,7) = —z( x(a, T),H]) (3.2.11)

for an appropriate integral operator Z, and the Dirac bracket becomes
7,0l = 17,61+ [ dalFm@nI(ix@n).g).  (3:212)

If one restricts the dynamics to the constrained manifold defined by (3.2.4)
and (3.2.9), then a transformation of variables from & and = to &, &, m,
T, X, and 73 reveals that the reference to functionals of xy and 73 in the
Dirac bracket (3.2.12) vanishes. This is possible because the Poisson bracket
(3.1.19) is fairly simple, because the first constraint (3.2.4) depends on the
momenta 7; only, and because the secondary constraint (3.2.9) depends on
the positions & only. Conceptually at least, we may explicitly restrict the
Hamiltonian to the constrained manifold defined by (3.2.4) and (3.2.9). How-
ever, an explicit solution of £5 may not be available so instead we implicitly
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restrict the Hamiltonian to the constrained manifold. In particular, variation
of H with respect to &5 yields the secondary constraint x, which is zero, and
thus we do not need to work out the variation of &£ with respect to &p,.

Consequently, the constrained dynamics for functionals of the form F =
F (&, ) takes the form

dF

- = o 2.1
o = B (3:2.13)
with Dirac bracket
0F 0G 0F 6G 0F 6G
c — e o o o~ f ) o ¢ _ ¢ _
[f’ g] ~/D da { 56},, 57Th 57Th 56},, + pO(a) (gl gZ) h 57Th (577'0 }
(3.2.14)

where h = 1,2, together with Hamiltonian (3.2.7) restricted to the constrained
manifold, thermodynamic relations, initial and boundary conditions, and con-
straints (3.2.4) and (3.2.9). The bracket (3.2.14) obeys (3.1.20) and (3.1.21),
and is seen to be canonical when f(&1,&) = 0. Of course, the constrained
Hamiltonian formulation (3.2.13), (3.2.14) could have been guessed immedi-
ately from the singular Lagrangian in (3.2.1) or found simply by substitution
of m3 = 0 into (3.1.17). The foregoing then merely illustrates Dirac’s approach.

3.2.2 Eulerian Hamilton’s principle in isentropic coordinates

The Lagrangian Hamilton’s principle (3.2.1) for hydrostatic flows may be
transformed into an isentropic Eulerian Hamilton’s principle by a coordinate
change from label coordinates a, b, c = s and time 7 to isentropic Eulerian co-
ordinates z, y, entropy s and time ¢ = 7 (for incompressible flow in isopycnal
Eulerian coordinates see Holm (1996)) and a transformation from Lagrangian
variables x(a,s,7) to Eulerian variables a(x,s,t) = (a(x,s,t),b(x,s,t))".
(This section is based on Bokhove 2000.) Consider the product of Jacobians
d(z,y,t,s)/0(a,b,7,s) and O(a,b,1,s)/0(z,y,t,s), ie.

Ty Tp T, T Gz Gy G G 1 000

Ya Yb Yr Ys b;c by bt bs _ 0100
0O 0 1 0 0 0 1 0 =loo10l (3.2.15)
0 0 0 1 0O 0 0 1 0 001

where subscripts denote partial derivatives. From (3.2.15) one deduces that

ox - da da* . da*

or = ot TV gk

v =0, (3.2.16)

which amounts physically to advection of fluid label a by horizontal fluid
velocity v = (u,v)? on isentropic surfaces labelled by coordinate s. The
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tensor T is defined by T = da’/0z"*. All indices range from i = 1,2 and care
is taken in their placement. Hence, one finds

t1 [es)
0=06S.a] = 6/ dt dx/ dso(x,s,t)
to Dy SB(X,t)

{(% up(x, s,t) + Rh(X)) u(x,s,t) — U(s, p) — g 2(x, s,t)} (3.2.17)

as Bulerian Hamilton’s principle, in which velocity u” is the economic short-
hand defined in (3.2.16), in which pseudo density

o(x,s,t) = oo(a,s)J(a,b)
_19p(x,s,1) 0z(x,s,t)

with the horizontal Jacobian J(a,b) = 0ya 0yb— 0,b 0ya, in which u, = 6p; w,
and in which variations are taken with respect to fluid parcel variables a. The
domain is a horizontally infinite, closed, or periodic domain, above a mountain
range hg, i.e. z > hp(x). In isentropic coordinates we have s > sg(x,t) and
the maximum horizontal extent of the domain is Dg. In the remainder of
this section reference to the spatial and time dependence of the variables has
generally been dropped.

In the evaluation of (3.2.17) the following expressions, or variations or
time-derivatives thereof, are useful

(T HT% =6, (3.2.19)
(T HE) O (THF) _1yn QU™
S SO = o(rp i (3.2.20)

- dx/oodsa(S(U-l—gz) =
DH SB

- dx /Oodsg&f—l— dx(az—)) dsp. (3.2.21)
Dy sB P

Dy P
Subscripts B imply evaluation at the boundary B at z = hp(x).

The continuity equation expressed in terms of the pseudo density appears
directly from definitions (3.2.16) and (3.2.18)

SB

%—j = % (98_(1: J(a,b)+00 €7 €y, (%) % = —ul %—0 % (3.2.22)
The variation of (3.2.17) with respect to da* and (6a*)p yields

0=4S.[a] = /t:I dt - dx /S:o dso(l 1)} {% + u gz: + u (?;ZL —
ul Zf; + gi\i} sa® + tjl dt . dx { ((Fl)zgii (6a) 5 — (5sB> Byo

—p ((5,2)3 + % (553) —o(T™N} (u, + Ry) (%S—f + v %) ((5ak)B} .

(3.2.23)
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AS

XL

Figure 2 Sketch of the relation between geopotential ¢ = g z and
entropy s variations at an earth’s surface z = 0. so; with s < 51
are two values of an isentropic surface. The resulting relations for
other geometries follow likewise.

where a function

1
By = (5 up + Ry) u — M (3.2.24)

has been defined with Montgomery potential
M=FE+g=z (3.2.25)

and enthalpy F = U + p/p.

The first two boundary terms in (3.2.23) cancel one another with the help
of the following relations

Osp m m m Oa™
dsp = mé(alg) and d(ap) = (0a™)g+ (g)B(SsB, (3.2.26)
in which the variation of a%f = a™(xy,s=sp(x,t),t) is not equal to the

boundary value of the variation of a™(x, s,t). The third and fourth boundary
terms vanish when one uses the relation

0z(x s, t
0=0(z_,, )= %

dsp + ((52(){, s, t))

; (3.2.27)

ZB SB

the first equality in (3.2.27) emerges since z(x, sg(x,1),t) = hp(x) and hence
d z(x, sp(x,t),t) =0 hg(x) =0

and the second one in (3.2.27) follows geometrically from Fig. 3.2.2.

The equations of motion which arise from these variations are thus hori-
zontal advection of the boundary entropy at z = hp(x)
0s B k 88 B

(6a%) 5 - T a5 =0 (3.2.28)
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and the horizontal momentum equations

ky .
(0a%) - ot tu ozxk ozk Y ox™ = Orm

=0. (3.2.29)

Since uy, is defined by (3.2.16) the momentum equations are second order
in time for the fluid labels. It may come as a surprise that the advection
of boundary entropy does not involve the mountain hg. However, at the
boundary one finds in isentropic coordinates that

D(z — hp) _ (&z) Dsg ( )
Dt SB o 88 SB Dt 5B+ M VSZ(:E’ y’ S) SB
D
(v v hB(x)) =0 =58 =0, (3.2.30)

while in Cartesian coordinates one finds that

(88();,;, t) +(

v-V)s(x,zt)+ (v-V)hp(x) wxﬁ@ =0. (3.2.31)

Equations of motion (3.2.28) and (3.2.29) need to be complemented with the
first law of thermodynamics (3.1.7) and the definition of the pseudo density
(3.2.18). The latter two with (3.2.25) imply that

oM
T— E.

With the ideal gas law p = p RT, in which R = ¢, — ¢, is the gas constant or
difference between specific heat ¢, at constant pressure and specific heat c,
at constant volume, equations (3.1.7), (3.2.18) and (3.2.32) can be reduced
to the elliptic equation

M\ /R

(3.2.32)

with reference pressure pgy at 1000 mb and reference entropy sgo. The lower
boundary condition at s = sg(x, 1) is

and the upper one as z,s — oo is T — oo. (Alternatively, an upper strato-
spheric boundary condition of prescribed pressure at s = sy may be specified
as

P = poo (M,)?/ B e=(s=500)/R = . (3.2.35)

With the ideal gas law (3.2.25) becomes M = ¢, T + g z.

A Hamiltonian formulation of the hydrostatic primitive equations in isen-
tropic coordinates may be derived via a reduction to a new, smaller set of
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variables v, o and sg because the Hamiltonian is invariant under fluid parti-
cle relabelling, just like in the compressible non-hydrostatic case, and because
the bracket is closed under the reduction process. More details can be found
in Bokhove (1996).

Via Noether’s theorem conservation of energy may be derived by consid-
ering the invariance of the Lagrangian under transformation ¢’ = ¢ + § ¢(¢),
and conservation of potential vorticity may be derived likewise under parti-
cle relabelling transformations which preserve pseudo density o (e.g. Salmon
1983 and Padheye and Morrison 1996). Thus one has dH/dt = 0. Variation
of this Hamiltonian invariant

o 1
H = / dxdsa{— |v|2+U(s,p)+gz}, (3.2.36)
Dy Jsp 2
the Eulerian version of (3.2.7), yields
0H H 1, o
5—V = 0V, % = §|V| + M, (3237)
OH

1
Lot eo]

583

(3.2.38)

S=sp

The derivation of Casimir invariants from the potential vorticity equation

dq

i} = 2.
5 +v-Vg=0, (3.2.39)
with two-dimensional gradient V and potential vorticity
f+s-
= m, (3.2.40)
o

and continuity equation (3.2.22) needs some care due to the time dependence
in the endpoints of the integral over the entropy coordinate. These Casimir
invariants have the form

C= " dx dso C(q,s). (3.2.41)

Dy Jsp

Preservation in time is shown as follows

% - /dx/ ( C+oC, ) /dxaC|sBa;—f

= —/dx/SdSV- avC)+/dx(aC’v)|sB-VsB
= —/dxv-/wdsav(}
SB

= — /[ din- /Oo dsovC(q,s) =0, (3.2.42)

aDy

where d/ is an infinitesimal line element at the extreme horizontal limits 0Dg.
The last boundary contribution is seen to cancel when there are walls, either
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because at vertical boundaries n - v = 0 or because the integral over s has
identical limits when there are non-vertical boundaries, or for vanishing or
cancelling flows at infinity. Without loss of generality Casimir invariants may
be split into general and circulation components as follows,

C= /dx /SZO dso {C’(q, s) — A(s) q} (3.2.43)

in which the last term may be transformed to yield the circulation at the
boundaries.

(The hydrostatic equations of motion in Cartesian coordinates may also be
derived via postulation of a constrained bracket from the Eulerian Hamilto-
nian formulation (3.1.22)—(3.1.24) of the non-hydrostatic compressible equa-
tions — cf. section 2.4.3.)

3.2.3 Formal stability

From the equations of motion (3.2.22), (3.2.28) and (3.2.29) non-resting basic
states

v=U(x), 0 =3(x), B=B(x), M =M(x), ¢=Q(x), and sg = Sp(x),
with Bernoulli function B = (1/2) |v|> + M, are solutions of the system

0 = U-VSg at s=S5g(x),

0 — Q%% x U+V<% |U|2+M>,

0 = V-(2U) (3.2.44)

and its accompanying thermodynamic relations. After introducing a transport
streamfunction z x V¥ = ¥ U it follows that

QVY=VB (3.2.45)

and that B, Q, Sp are constant along streamlines, i.e. are functions of W.

The Casimir function C(q, s) and parameter A(s) in (3.2.43) may be de-
termined such that the first variation of pseudo energy A = H|[u] + C[u] —
H[U] — C[U] with state variable u = {v, 0, sg} and basic state U = {U, X, Sg}
vanishes at this basic state (cf. (2.7.3)). With Hamiltonian (3.2.36) this first
variation is

SA — /])H/Sdeds{(B+C—qC’q)5a+

(VC'qxi—{—av)-év}—/
D

(Cq—)\)dvxi-VsB}

dx{a(B+C’—/\q)(5SB+

H

+ dln-/oods (Cy— \)ov x 2. (3.2.46)

s=sp 0Dy B
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Hence one finds that

\_/

= _C(Qa S) + Q CQ(Qa S)a
VC(Q,5)x% = —SU=VUx32,
A(8)|(s=smopm) = Col@Q,5)|(s=55,00m)- (3.2.47)

Requirement (3.2.47) may be satisfied at s = sp since contours of entropy
and potential vorticity coincide there for the basic state flow, and at 0Dpy
because no-normal flow implies that the basic-state streamfunction there is a
function of s only. Alternatively, in a semi-infinite domain potential vorticity
may become a function of s only. From (3.2.47) it follows that a solution for

C(v,s) is
(v, s _I/(/ dy

with B = K(Q, s) and for arbitrary k(s). Deﬁnmﬁg disturbance quantities in
the usual way like 0 = X +0', p =11+ p',T =T + T, etc. one derives the
following pseudo energy

B(¥
5) X

) 4 k(s )) (3.2.48)

o0 ' q’ _ i _
A = /DH Sdeds{(E—l—a)/O (17[07(62+7,s)—%(@)]Jr
1 00
—(2+0) |v'|2+0'U-v'}+/ / ,dxds (X +0') E(X+0',s) —
2 Dy SB+SB
/ oodxds{EE(E,s)—i—Ma'}—i—
Dy JSp
/ dx{(pz)
Dy Sp+se

Sp+sp 1 _ _
/D / dxds{§E|U|Z+EBgZB+EC(Q,s) - )\(s)QE} -

,—HBZB-FZBQZBSIB}—

SB+SB
// dxds{ Z—i—a')[U v+ = \v'\Q—i—ZC(Q—i-q ) —

A(s) q] + 50 [UF = SC(Q,5) = A(5) Qa'}, (3.2.49)

in which the subscript in Iz denotes evaluation of II at the steady state
boundary s = Sp and so forth except in sg'. For simplicity only the small-
amplitude limit A4, of (3.2.49) is considered for which the boundary coincides
with an isentrope sy. The result is

00 1
A2 B ~/DH 80 dXdS{Z(E-i-O")

u? 107 ,, 1<R )182

1
2100’ TT3:°P T3 Mo

2

(E+o)v +Ud

P = C”(Q) '2} (3.2.50)

Cp

(use has been made of the ideal gas law). The appearance of terms propor-
tional to o' p’ and p'> in (3.2.50) prevents the derivation of formal stability
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criteria for general moving basic states. Holm and Long (1989) derived formal
stability criteria for hydrostatic, incompressible Boussinesq flows expressed in
isopycnal coordinates by introducing an effective local wavenumber, which in
the isentropic coordinates used here would amount to ¢’/p’, but their criteria
are conditional in that they are dependent on the nature of the perturbations
rather than only on the nature of the steady state.

For a resting basic state formal stability criteria follow from (3.2.50) as

IP N2> (3.2.51)
Cp 2

with positive p for flows (basic state plus disturbance) with a lower isentrope
coinciding with the lower boundary. Condition (3.2.51) ensures static stability.
Formal stability criteria for flows with boundary-intersecting isentropes and
with resting basic states may also be derived (see Bokhove 2000).

3.3 Incompressible hydrodynamics
3.3.1 Slaving principle and Mach number perturbations

We will exemplify the leading-order Hamiltonian perturbation approach V
first by considering a leading-order Mach-number expansion of the three-
dimensional compressible fluid equations with a barotropic equation of state
p = p(p). The starting point in our systematic derivation of a Hamilto-
nian formulation of the three-dimensional homogeneous Euler equations is
the Hamiltonian formulation of the inviscid and unforced three-dimensional
compressible, barotropic equations.

The Hamiltonian formulation of the three-dimensional compressible, baro-
tropic fluid equations is (3.1.18) with Hamiltonian (3.1.22) and bracket (3.1.24)
for a constant value of entropy s. The dynamical variables are thus u and p.
Hereafter we will assume that the domain 2 is closed for simplicity. In par-
ticular, variations of the Hamiltonian ‘H are now

H = /dedz {pu -du + (% lul> + U(p) + %) 5/)}, (3.3.1)

where one has §U = (p/p?) dp from the second law of thermodynamics for
fixed entropy.

The equations of motion arise from (3.1.18), (3.1.24) and (3.3.1) as

dp

o —V3 - (pu), (3.3.2)
ou 1, 1

o = uxw,-Vy (iu)—;v3p(p), (3.3.3)
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with wg = V3 X (u + R) the sum of planetary and relative vorticity, for
suitable boundary condition u-n = 0 on the boundary 02 with normal n, in
addition to the admissibility condition

5G

n-o = 0, on 012, (3.3.4)

for an otherwise arbitrary functional G.
The equations (3.3.3) will be scaled by

u = Vu, t=LWV), x=Lx, U=VU

op ,0p
p = popy=po(l+Map), a9, (3.3.5)

where L is a characteristic length scale, V' a velocity scale, py the basic state
density and pf. the total density. In terms of the vorticity, three-dimensional
divergence D = V3 -u and perturbation density p (dropping the primes), the
dimensionless equations read

88_(;: = —u-Viw—wgD +wg-Vsu (3.3.6)
oD 1
— t 37z VaMer) = —Vs:(u:Vsu) (3.3.7)
ap 1
LTL D = _V,- 3.
TRy Vs - (pu), (3.3.8)

where A = [P7 dvy (1/7) (0p/0v) and Ma = V/¢y is the Mach number. Using
the expansion

Vs A(pr) = MaVsp+ O(Ma?) (3.3.9)
in (3.3.8), we find that the equations of motion have the form (2.3.1), (2.3.2)
with ,
_ [0 V3
P ( )V ) (3.3.10)

when we identify slow s = w and fast f = {D, p} variables. The linearized fast
equations (3.3.7), (3.3.8) yield the familiar wave equation of gas dynamics.
When we transform the (dimensional) bracket (3.1.24) to a non-dimensional
one in terms of the new variables w, D and p the bracket takes the prototypical
form (2.5.2)

F.9) = Adxdz{ﬁiﬁw.[(vgxg)x(vﬂg%

(v25) * (Ve35) - (%o 55) < (72 55) +

(V3 %) X (V3 X %)] + ﬁ (V2 %) % - ﬁ (V2 %) g} (3.3.11)



Hamiltonian balanced models 45

plus boundary terms. To obtain (3.3.11), one has to relate the functional
derivatives with respect to {u, p} to ones with respect to {w, D, p} and sub-
stitute these results into (3.1.24), just like the transformation in Example 6.

The Hamiltonian is
1
H= /dedz (1+ Ma p){§|u|2 + U(pT)} (3.3.12)

and variations of H with respect to the fast variables D and p do not seem to
be linear in D and p, i.e. do not meet the assumptions introduced in section
2.5. We may, however, use the Casimir invariant [ dx K. pr with constant K,
to replace ‘H by a pseudo energy invariant .4 which satisfies these assumptions.
With dimensional (denoted by asterisks) K = —p(po)/po — U*(po) the non-
dimensional pseudo energy invariant becomes

A = /dxdz{l(1+Map) |u|2+1p2+0(p3)}. (3.3.13)
Q 2 2

Variation of (3.3.13) gives
1
0A = / dxdz {‘I’ “dw —xOD+ (p+ 3 Ma |ul?) dp + O(pZ)}, (3.3.14)
Q

which shows that variations of A with respect to D and p are linear in D and
p. In calculating (3.3.14) we have used the following decomposition

pru= (1+ Map)u=V;zx ¥+ Vsx (3.3.15)
such that
Vi x (pru) = V3 x (V3 x ¥), Vs - (pru) = Vix; (3.3.16)

the decomposition of the velocity field into a potential part and a remainder
is unique. The velocity streamfunction vector ¥ has been gauged by taking
V3 - ¥ = 0 (following Benjamin 1984). Boundary integrals arising in the
variation of (3.3.13) cancel after using n-éu = 0,n-V3x =0 and ¥ = 0
at 0€). The corresponding admissibility condition 0G/0w = 0 at 02 can now
be used to eliminate boundary contributions in (3.3.11). These boundary
conditions may be overly restrictive.

3.3.2 Leading-order Hamiltonian perturbations

The Hamiltonian formulation of the leading-order Mach-number perturbation
of the compressible barotropic equations appears when we compare (3.3.11)
with (2.5.2) and use the results of section 2.6. One obtains

dF

dt
1

A = / dxdz = [u®?, (3.3.18)
Q 2

= [F, Aolo, (3.3.17)
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where A, is the O(1) part of pseudo energy (3.3.13), with bracket

o = fof (5 2) - (0 )
_ /dedz{—g'—‘f-V:; x [wa x (v3 x ;s_g)]} (3.3.19)

w

in addition to the constraints
DO =v;.u® =0, p®=0o. (3.3.20)

Boundary terms arising in integration by parts of the first line in (3.3.19)
vanish after using the admissibility condition. The bracket (3.3.19) is skew-
symmetric and bilinear and by construction satisfies Jacobi’s identity. A direct
proof of these mathematical requirements, which guarantee the Hamiltonian
structure, can be found in Olver (1982, 1986). The equations of motion re-
sulting from (3.3.17)—(3.3.19) with

0H,
—— =g 3.21
5o (3.3.21)
are a
a—“t’ — Vs X (e X V3 x TO), (3.3.22)

where u®) = V3 x @ V; . 0 =0, w = —V2¥O and T = on 99.

3.3.3 Formal stability

Although helicity [dxdzw - (u + 2R) is a Casimir invariant, satisfying
[C,G] = 0, it generally does not allow us to remove the first variation of
the pseudo energy at the basic state. To circumvent this problem, Vladimirov
(1987) uses material conservation of a tracer or particle label to establish an
extremum variational principle. He could, however, only establish stability
criteria for flows in which basic state and disturbance are both planar or ax-
ially or helically symmetric. The additional symmetry imposed on the flow,
basic state plus disturbance, often allows additional Casimir invariants to be
introduced which may then be used to derive formal and nonlinear stability
criteria for these symmetric flows (e.g. Shepherd 1991). For flows in a horizon-

tal plane the streamfunction W((2) becomes a function of basic state vertical
vorticity €2 and the formal stability criterion reads

A
g > O (3.3.23)

This criterion corresponds to Arnol’d’s (1966) first stability theorem.
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3.4 Shallow-water equations
3.4.1 Lagrangian and Eulerian Hamilton’s principle

Hamilton’s principle for the rotating shallow-water equations is
T1
0= 5/ dr L (3.4.1)
70

(e.g. Salmon 1985), where Lagrangian

L= /Q da ho(a) {(% %ﬁi + R,-(x)) %ﬁi _yg (% h+ hB>} (3.4.2)

is subject to independent variations of the positions x(a, 7) of parcel labels
a = (a,b)” and of time 7 in a domain €. These equations model the dy-
namics of a thin homogeneous, hydrostatic layer of rotating fluid in which
the dependence on the vertical, label ¢ or spatial z, coordinate has been ne-
glected or averaged over the depth h = hg(a)/J%(x1,x2), with J*(A, B) =
0,A 0y B — 0yA 9,B. The topography is at z = hg(x(a, 7)) and the free sur-
face is at z = hg + h. An Eulerian Hamilton’s principle in terms of spatial
coordinates x, y and time ¢ and fluid labels a(x, t) as variables may be derived
via a transformation of (3.4.1), (3.4.2). Such a transformation is similar to
the one described in detail in section 3.2.2 and yields

t1
0=10Sswela] = 0 \ dt/ﬂdxh(x,t)

{(G e 0+ Ba) w0, 0) — g (50060 + hux)) ], (343

in which velocity u” is the economic shorthand defined by
ox _, 0a da* . Oa’

= =— — = 4.4
V= %r o ot TV ok 0, (34.4)
in which the depth h of the water column can be rewritten as

h = hy(a,b) det |0(a,b)/0(z,y)| (3.4.5)

and in which variations are taken with respect to fluid parcel variables a(x, t).
(Hamilton’s principle (3.4.3) can also be derived from a hydrostatic Eulerian
action principle by direct substitution (approach II) of the constraint p =
constant and by vertical integration of the z-independent velocity vector.)

3.4.2 Eulerian action principle

The generalized momentum corresponding to (3.4.3) (cf. (2.1.8)) is

) 5LC[a o o, Baf
wict) = 28 = B (b (0 O )

5]

= —h (Y7 (um+ B ). (3.4.6)
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An Eulerian action principle (cf. (2.1.10)) follows after a Legendre transform
(cf. (2.1.9)), and may be rewritten in terms of v* and a or in terms of v and
a. One finds either

k

b * aa’ * 1
0=s/ dt{/ﬂdxwkﬁ—ﬂ[wi,a]} (3.4.7)
or

0=s["at { /Q dx [—h (ui + R) (07Y): aa—f] ~ Hlus, ai]} (3.4.8)

to

with the Hamiltonian as Legendre transform
) , 1 .
H[my, a'] = Hlu;, a'] = /de {5 (hui u' + gh?) - gh,hB}. (3.4.9)

Variations of (3.4.8) are taken with respect to fluid parcels a and velocity
v(x,t) and yield the shallow-water momentum

g—‘t,-i—(v-V)v—kfixv = —gV(h+hpg) (3.4.10)

and parcel advection equations (3.4.4), respectively. The continuity equation

oL v.(hv) = 0 (3.4.11)
ot

follows by taking the time derivative of (3.4.5) and use of (3.4.4). All these
manipulations are analogous to the ones for the hydrostatic equations in
section 3.2.2, however, variations of the potential energy g ((1/2) h% + hhp)
in the shallow-water equations are simpler than those of the internal plus
potential energy, U + g z, in the stratified hydrostatic equations.

3.4.3 Hamiltonian formulation

The Hamiltonian formulation of the shallow-water equations (e.g. Shepherd
1990) may now be derived systematically from (3.4.8), (3.4.9) (Sudarshan
and Mukunda 1974, paragraphs starting at pages 132 and 424). The following
brackets emerge in terms of v* and a

IF,6] = /de{é—f oG _oF 5—9} (3.4.12)

da ot Om da

or in terms of v and a

T o A R N Rn)
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Via a reduction or transformation of variables from {#*, a} or {a, v} to {v, h}
(similar to the transformation in Example 6), we find the Hamiltonian for-
mulation (3.1.18) with Hamiltonian (3.4.9), Poisson bracket

[f,g]:/ndx{qi-i'—:x %‘%(V'g)JF%(V'%)} (3.4.14)

and potential vorticity

f 7 .
g= w. (3.4.15)

Variations of the Hamiltonian (3.4.9) give
1
5H = | dx{hv-5v+ (5 \v\2+g(h+h3)> 5h,} (3.4.16)
Q

and the equations of motion (3.4.10) and (3.4.11) follow from (3.1.18), (3.4.14)
and (3.4.16).

Conservation of the Hamiltonian in time is assured since dH /dt = [H, H| =
0 by virtue of the skew-symmetric nature of the bracket and the lack of explicit
time dependence of H. Casimir invariants of the shallow-water equations

C:/dehC’(q) (3.4.17)

with arbitrary function C(-) are solutions of [C,G] = 0 for arbitrary func-
tionals G, but their invariance is also readily checked from the equations of
motion by first deriving the potential vorticity equation ¢/t +v - Vg = 0.
In the next section a dimensionless formulation is needed based on a charac-
teristic velocity scale V', a length scale L, and a mean depth H. For simplicity
we also take f = 1 and consider a doubly-periodic domain 2; problems con-
cerning boundary-trapped Kelvin waves (e.g. Gill 1982), which can be slow
as well as fast in domains large relative to the Rossby radius of deformation,
are thus avoided. With v = V v/, x = Lx' and h = H} one finds, after
dropping the primes and taking hg = 0, (3.1.18) with Hamiltonian

1 2 2}
U= /de{(1+emn) v+ oy (3.4.18)

and Poisson bracket

OF 0G 1 6G _O06F 1 6F _0oG
Gl=[4d {*k-— = AN VA —}, 3.4.19
79l / 7 5VX(5V+€FT(5V V(Sn eF, ov V(577 ( )
where € = V/fL is the Rossby number, F, = f?L?/gH the rotational Froude
number, ¢* = (z-V X v+ 1/€)/h, and n = (h — 1)/(e F,) the departure
from the mean (constant) depth of the fluid. The dimensionless equations of
motion are

a—V—i-v-Vv—i-lixv = —EVn
ot € €
1
@+V-(nv)+ V-v = 0. (3.4.20)

ot eF,
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3.4.4 Formal stability

Formal stability criteria have been derived by Ripa (1983). Steady state so-
lutions v = U(x), h = H(x) satisfy

V-(HU)=0, Q,VU,=VB, (3.4.21)

where HU = 2 x VV,, B = %|U|2 + g H is the Bernoulli function and @
is the steady state potential vorticity satisfying U -V Q,; = 0. Qs and B are
thus all constant along streamlines W, = constant. Linear stability is ensured
when the following formal stability criteria are satisfied

d’C VU,

UPl<gH 2 =2
UEsofl Gqr=vae.”

0, (3.4.22)
and these conditions are derived in a fashion similar to the ones in Example 11.
The first criterion corresponds to a subsonic condition in the sense that the
basic state flow speed needs to be less than the minimim gravity wave speed,
and the second corresponds to that of Arnol’d’s (1966) first stability theorem
and is a sufficient condition for stability for the equivalent barotropic quasi-
geostrophic system which will be derived in the next section.

3.5 Equivalent barotropic quasi-geostrophic equations
3.5.1 Slaving principle and Rossby number perturbations

The Hamiltonian formulation of the equivalent barotropic (“barotropic” now
refers to the lack of stratification, “equivalent” refers to the inclusion of free-
surface effects) quasi-geostrophic equations may be derived in systematic fash-
ion from the shallow-water one by the leading-order Hamiltonian perturbation
approach V. The approach entails a modified Rossby-number expansion of the
shallow-water Hamiltonian formulation, and it is a Hamiltonian version of the
quasi-geostrophic system rederived in Warn et al. (1995).

The prototypical singular form (2.3.1), (2.3.2) of the shallow-water equa-
tions (3.4.20) arises via a transformation of the variables v and A to: the
slow variable quasi-geostrophic potential vorticity (), and the fast variables
divergence D and geostrophic imbalance Y, defined by

Q = V% -F.n, (3.5.1)
D = V.v=V?, (3.5.2)
T = V-V, (3.5.3)

respectively. The streamfunction 1) and velocity potential x arise in the Helmholtz
decomposition of the horizontal velocity

v=zxVy+Vyx. (3.5.4)
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The corresponding equations in prototypical form (cf. (2.3.1), (2.3.2)) are now

%_i? = —J(,Q) - Vx-VQ-QD,
36_1; _ %T — —J(x, V%) — —V 7IVX[*+ V2T (o v) +
2J (Y, by ),
% _ ? = —J(, V) — V- (V2 Vy) +
VQ{J(dJ,n) +V- (an)}, (3.5.5)

where P = V?/Fr — 1 is the Helmholtz operator. After linearising (3.5.5)
and using a normal-mode ansatz the fast variables may be associated with
gravity-wave motion of frequency O(1/¢), while the slow variable is associated
with zero-frequency motion. A transformation of the bracket (3.4.19) in terms
of the new variables yields the prototypical form (cf. (2.5.2))

.0l = [ax{ D [5(0F 0P (0F 07 09, 09

1+eFn"\6D’ 6D 5Q° T ' 6Q
5 5G 6 5 §F 5
+(V5_£) (v +50) - (V55) (55 + 50)

T [(V2 5D> P(?i) <V2 gg) P(ar)] } (3.5.6)

where the boundary terms that arise after several integrations by parts cancel
after usage of doubly-periodic boundary conditions or quiescense at infinity.

3.5.2 Leading-order Hamiltonian perturbations

The approach presented in section 2.6 immediately gives the Hamiltonian
formulation of the barotropic quasi-geostrophic equations. After identifying
(2.6.6) one finds

dF
i [F, Holo, (3.5.7)
B §F 66

[F.Glo = /d QJ((SQ 5@) (3.5.8)

o = _/ dx{|w P+ F ¢<0>2} (3.5.9)
2Jp
in addition to the constraints

DO = v.v® =0 = x© =, (3.5.10)
TO = 0= ¢<°) —n“’) (3.5.11)

Q = VO —F 0 (3.5.12)
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(e.g. Warn et al. 1995). We recall that the slow variable @), now clearly seen
to be the quasi-geostrophic potential vorticity, is not expanded while all the
other (fast) variables are expanded in a power series of €. The streamfunction
is also expanded because it projects on both fast and slow variables except
at leading order. The quasi-geostrophic equations

Q)

il (0) —
5 +J®,Q)=0 (3.5.13)

now readily follow from (3.5.7)—(3.5.12). Although the leading-order Hamilto-
nian approach provides an elegant derivation of the quasi-geostrophic Hamil-
tonian formulation, the question how to include low-frequency boundary Kel-
vin waves remains unanswered. The reason is that the assumed time-scale
separation in the approach is invalid for large (partly) bounded domains be-
cause low-frequency boundary Kelvin gravity waves then appear.

The Hamiltonian H, is again conserved in time and Casimir invariants of
the equivalent barotropic quasi-geostrophic equations have the form

C:/deC(Q). (3.5.14)

3.5.3 Formal stability
Consider a steady state solution .J(¥® Q,) = 0 of (3.5.13). With the energy-
Casimir method formal stability criteria are derived to be
e2c vyo
Q2 VQ, ~
(cf. McIntyre and Shepherd 1987 and references therein).

0 (3.5.15)

3.6 Ageostrophic barotropic equations

A Hamiltonian formulation of higher-order balanced models will be derived
in two ways: (IV) by postulating Dirac’s Poisson bracket for a velocity con-
straint, and (IT) by direct substitution of a velocity constraint into an Eulerian
variational principle of the shallow-water equations. These models have for-
mal accuracy beyond the quasi-geostrophic model and will be denoted as
ageostrophic barotropic equations. In particular, the equations of motion will
be derived for a velocity constraint one order beyond geostrophy, which is
based on a slaving approach. Both approaches find their roots in Salmon’s
(1985, 1988b) work and are variations on recent work by Allen and Holm
(1996) and McIntyre and Roulstone (1996) (see also Bokhove and Shepherd
(1996) in the context of low-order models). The imposed velocity constraint is
systematically derived by applying the modified Rossby-number expansions to
a velocity slaving principle. A systematic derivation of conservative balanced
models is now achieved by combining constrained Hamiltonian methods with
perturbation (or alternatively iteration) methods based on slaving principles.
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3.6.1 Velocity-to-height slaving principle

Consider the scaled shallow-water equations

1
€ o + (v-V)v|+efzxv=——V(h+hp), (3.6.1)
ot F,
h
g—t + V. (h, V) = 0, (362)

where h + hg = 1 + € F,.n. Substitution of a velocity slaving ansatz v =
vCOlh+hg] = v©[h] into (3.6.1), (3.6.2) and manipulation yields the following
superbalance equations (e.g. (2.3.3), (2.3.4))

] [5vc[h]

|-V (| + O 9) VR + £ x vl = -V,

(3.6.3)

where 6 v€[h]/6 h = 1/(e F,) 6 v€[h] /6 n acts as an operator O, on —V-(hv®).
Consider, for example, v©[h] = O[h] = h h, then

P b v (v lh) — h 0, [V (b LhD)] = O - (hvElh))

Expanding v¢ = v(% 4+ ev() 4 .. one finds geostrophic balance at leading
order

I
vO[n] = X V(h+ hg) =

At the next order one finds

zx V. (3.6.4)

-+ | =

1

Lvl) = ol (V : v(l)) —f2v) = f(vP.V)zxvD. (3.6.5)
T

Given boundary conditions for v(!) these elliptic equations may be solved.

The slaving approach, however, does not seem to provide such boundary

conditions. On physical grounds one expects v¢ - n = 0 at solid boundaries

and to ensure consistency one may take n-(3.6.1) at O(e), i.e.

n-(v®.v)v® —fvh. ¢ =0, (3.6.6)

at a solid boundary with n the corresponding outward normal and t the unit
vector tangent to the boundary. Without regard to conservation properties
the constraint velocity v(®) +¢v(") and the divergence V-v® need to be deter-
mined and may be substituted in the continuity equation in order to yield a
balanced equation one order higher than quasi-geostrophy. As becomes clear
in section 3.6.2 it suffices to impose a constrained velocity v(O + ev() in a
constrained variational or Hamiltonian approach since the Lagrange multi-
plier or particle velocity that will appear in the momentum and continuity
equations is seen to be of the required order in e. For unit (non-dimensional)
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f = F, = 1 and constant topography, constraints (3.6.5) may be rewritten in
terms of (! and (! as

(V2= V-vl) = (V= 1) VXY = J(n, V?p), (3.6.7)

7z-Vxvl) = V21/J =—2J(Nz, M), (3.6.8)

which appeared in Warn et al. (1995). Similar expressions emerge for space

dependent hp and f. The total constraint velocity may now be written in the
form

vOlh] = v + ev[A]
1
= X V(b hg) - eﬁ_l{fi x (v . ) v<0>} (3.6.9)

where £ is the inverse of £ in (3.6.5) for a given set of boundary conditions
for v(1) (or alternatively for v©).

3.6.2 Postulation of constrained dynamics

For a given set of velocity constraints f; = v; = vf (1 = 1,2), balanced

dynamics can be formulated by postulating the constrained dynamics

dF
dt

for the shallow-water Poisson bracket (cf. (3.4.19))

. O0F 5g OF 59 oG, OF

= [F, "], (3.6.10)

and Hamiltonian
1 1
%*:/dx{ WV ( h2+th>}+/ dxA-(v—vC(h)) (3.6.12)
Q Q

(cf. (2.4.13)), in which the bracket calculations have to be performed before
the constraints are ultimately substituted in the equations of motion.

Variation of H* yields functional derivatives

oH* _ Cr112 5VC[h] c — T
e = g VRP+ (et ha)+ S (vElE - X) = B
5;" = A=hvl (3.6.13)

These may be substituted into (3.6.10), (3.6.11) to give the balanced equa-
tions, while enforcing v = v¢ afterwards,

ov°
ot
oh

at

= —¢°hzxvPl -VBT, (3.6.14)

= -V (hvh), (3.6.15)



Hamiltonian balanced models 55

where B” is the total Bernoulli function, v is the advective or particle ve-
locity directly related to the Lagrange multiplier, and ¢¢ is the constrained
potential vorticity
¢ fle+z-Vxv©
= - )
Comparison of the balanced momentum equations (3.6.14) with (3.6.3) shows
that particle velocity v is formally accurate to O(e?). Since (3.6.10) involves
the original shallow-water bracket it follows immediately that the shallow-
water Casimir invariants remain invariant. The energy H* is conserved by
the skew-symmetry of the bracket and so are Clq“,h|, H[v®, h] after the
constraints are applied. Direct manipulation of (3.6.14), (3.6.15) to prove
(material) conservation of ¢ and C[q®[h], h] is the same as for the parent
shallow-water equations.

(3.6.16)

The above method and the following one do result in velocity splitting,
which means that the constraint velocity v© is different from the particle
velocity v = vP which clearly plays the role of a Lagrange (vector) multiplier.
Extra boundary conditions on the (“ageostrophic”) difference velocity vA¢ =
v — v¢ in addition to the usual ones on v, like no normal flow at fixed
walls, arise in the variation of the Hamiltonian H*. In summary, boundary
conditions on v® are needed to derive higher-order velocity constraints from
a slaving principle, while boundary conditions on the diagnostic advective
velocity v or rather vA¢ are needed to eliminate boundary contributions in
a variational or Hamiltonian formulation.

3.6.3 Direct substitution in Eulerian action principle

Direct substitution of the velocity constraint v = v®[h] into a dimensionless
version of (3.4.8) yields a constrained action principle

0=14 t: dt [ dx {—eh(euf[h] +R) (Y aait - H(uf[h],ai)}(s.fm)

in terms of variations da* only, in which v©[h] acts again as a (non-local)
operator on h and in which H (u[h], a*) is the Hamiltonian density.

Variation of (3.6.17) with suitable boundary conditions yields

11 . C
0 =6 dt/dxh(l“l);{ez%-l-
to Q

ot
[(aRi B 6Rm> N (émf B au,%)] pm
“WNozm ™ oz Nozm ~ 9zi 1"
8 1 2 C ¢cm i 2 cm _  pm %] } k
o [26 up u” + o (h+hp)+¢€ (u u ) 5 da” (3.6.18)

and thus the momentum equations (3.6.14). The continuity equation (3.6.15)
follows from the definition of A = hy(a) J(a,b) and (3.4.4).
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In deriving the above ageostrophic Hamiltonian balanced equations bound-
ary contributions emerge due to integration by parts. To eliminate these, the
physical boundary conditions for the velocity in the shallow-water equations
are used for the particle velocity, but extra boundary conditions are required
in the evaluation of

c
R = / dx hvAC . 5vCh] = / axhvA. Y s 5 619)

Q Q oh
For higher-order constraint velocities that involve non-local operators acting
on the height, it is anticipated that an abstract treatment in terms of Green’s
functions is required. For convenience only periodic boundary conditions will
be considered here, leaving the important more realistic boundary consider-
ations for future work. With periodic boundary conditions, for which f = 1,

one finds that

— _ 1 . AC L 1 AC
R = /de{ V(b )—i—eFTQJ[V(h—i-hB),L (hvA%)] +

1
V. J[h + hi, L7 (hvA°) } sh=— [ axB'%h  (3.620)
Q

2
e F:

where BAC = (6v©/6h) - h (v€ — vF) = BT — BY. The momentum equations
(3.6.14) with explicit expressions for constraint velocity v¢ are found to be

Ve —q“hiz x P—V{ (h+h )+1\ P+
o~ LRV e F, B)T oIV
1
~ AC —
6Frz.Vx(hv )—EJ[V(h—J-hB),[, L(hv1©)
1
G?V-J h+ hg, L7 (hvA°) } (3.6.21)

Consistency relations are required to obtain solutions for v'. Combining
momentum (3.6.21) and continuity equations (3.6.15) one may eliminate all
time derivatives and arrive at a coupled set of linear elliptic equations for
vP. Even with periodic boundary conditions it is not straightforward to find
solvability conditions that guarantee existence and unigeness, and I leave this
as an open question. (Ren and Shepherd (1997) found for Salmon’s (1985) L1-
dynamics, i.e. for constrained shallow-water flows with geostrophic constraint
velocity v(?), that the condition ¢¢ > 0 with v¢ = v(®) guarantees a unique
solution in a closed domain.)

3.6.4 Formal stability

Ren and Shepherd (1997) derived formal and nonlinear stability criteria for
Salmon’s (1985) L1-dynamics. They also outlined how to derive stability cri-
teria for higher-order balanced constraints and noted that complications may
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arise due to the non-local nature of the constraint velocity v©. These com-
plications will be largely circumvented here by considering formal stability
criteria for flows with periodic boundaries only.

Given the balanced system (3.6.14), (3.6.15), steady state solutions
v = UP(x), v¢ = UC(x), h= H(x), ¢ = QF(x) , B = B(x),
similar to the shallow-water ones (3.4.21), are found to be
V-(HU")=0, Q¢‘VU¥"=VB] (3.6.22)
where H UF =2 x VUF,

BT = Luep 4 L (4 hy) - 290 guac (3.6.23)
S92 e F, B oH s
is the total Bernoulli function, and QY is the steady state constrained poten-
tial vorticity satisfying UT - V QY = 0. Hence, Q¢ and BT are all constant
along streamlines ¥ = constant. The first-order variation of the pseudo-
energy invariant

A= (H+C)h] — (H+C)[H] (3.6.24)

with respect to h, is now required to vanish at the basic state, thus deter-
mining the unknown function C(y) in the Casimir invariant [ dxhC(q%).
Defining perturbations h = H + ', etc., one finds at first order in the per-
turbation

SA ~ /Q dx { (BST +0(Q%) — Q° 0’(@5)) 5H' +
(H U + V' (QF) x z) v BAC 5 _ HUAC . syAC } (3.6.25)

Elimination of the linear perturbations in A determines (cf. Ren and Shepherd
1997) C(v) to be

v K

Clv)=v (/ (27) dy + constant) (3.6.26)
o7

with BT (x) = K(Q%(x)) provided that the last two terms in (3.6.25) vanish,

which follows from the calculations leading to (3.6.20) (albeit checked here

for periodic boundary conditions only).

Following Ripa (1983) a finite-amplitude pseudo energy may now be de-
rived which will be quadratic in the limit of small-amplitude disturbances.
The following dimensional formal stability criteria (cf. Ren and Shepherd
1997)

2c ver S
Q)" Ve

U“? < gH, 0 (3.6.27)
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are required to ensure that A is positive definite for small-amplitude distur-
bances. The first criterion corresponds to a “subsonic” condition in the sense
that the constrained basic state flow speed needs to be less than the mini-
mum gravity wave speed, and the second one corresponds to that of Arnol’d’s
(1966) first stability theorem.

Further investigation is required to see whether Ripa’s formal stability
criteria can be refined by exploiting the relationship between v¢ and h, and
whether nonlinear norm stability can be proven for the above ageostrophic
balanced system.

4 Summary and discussion

The problem of preservation of variational and Hamiltonian structure under
singular perturbations in a small parameter has been considered.

In the first part of this chapter a general framework was presented for finite-
dimensional systems. In particular, singular perturbation methods based on a
slaving ansatz were shown to yield constraints on the dynamics (section 2.3)
and these constraints were subsequently imposed on the original variational
or Hamiltonian formulation of the “parent ” dynamics either via (I) Dirac’s
theory, (II) direct substitution, (III) a Lagrange multiplier method or via (IV)
postulation of a constrained bracket (section 2.4). While this two-step method
considers the derivation of constraints and their imposition separately, it has
also been shown that a constrained Dirac bracket arises automatically, in
one step (approach V), from a slaving ansatz when a particular prototypical
Hamiltonian system (singular in small parameter €) is considered (section
2.5). Unfortunately the resulting Dirac bracket is often too complicated or
impossible to calculate for continuous systems and only a regular leading-
order perturbation of the Dirac bracket has led to a viable, but only leading-
order, singular Hamiltonian perturbation theory (section 2.6). Except for this
leading-order theory, the various ways to impose given constraints are in
essence similar although specific applications may favor one implementation
or another.

In the second part, these general approaches were applied to fluids and
shown to yield several known and novel (sections 3.2 and 3.6) variational
or Hamiltonian formulations of balanced geophysical fluid systems. (These
reduced systems are balanced in the sense of being approximations, in which
particular high-frequency wave types have been eliminated, to the complete
compressible Euler equations of motion.) The application of the leading-order
Hamiltonian perturbation theory provides alternative derivations of the well
known Hamiltonian formulations of three-dimensional homogeneous vorticity
dynamics and the equivalent barotropic quasi-geostrophic equations (sections
3.3 and 3.5). Many other known and new balanced models in geophysical
fluid dynamics may be derived in a unified way with these variational or
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Equations Basic state Formal stability criteria
of motion
static subsonic vortical
Compressible resting | N?,¢3 >0
Ups‘O >0
Hydrostatic resting N2 >0
Shallow-water general UP?<gH g—gz >0
Barotropic
ageostrophic general U°2<gH ggf, >0
Planar incompr. planar % >0
homogeneous flows
Barotropic
quasi-geostrophic general VV‘IS(:) >0
Three-component 2/(h+h') <
vortex model (1 + %) C"(q) >0

Table 1. Summary of the formal stability criteria of fluid equa-
tions considered in section 3. Note that for the stability criteria
of incompressible three-dimensional flows considered here, both
basic state and disturbance need to be planar.

Hamiltonian perturbation approaches.

Formal stability criteria for steady states were given for all fluid dynami-
cal examples considered here. These criteria consisted of only Arnol’d’s first
stability condition on vortical components of flows in quasi-geostrophic dy-
namics, plus a subsonic condition in shallow-water and ageostrophic baro-
tropic dynamics, plus a static stability condition for hydrostatic stratified
flows in isentropic coordinates and three-dimensional compressible dynamics,
although for the last two systems formal stability conditions are only avail-
able for resting steady states. It may seem puzzling that the ageostrophic
barotropic equations lead to a subsonic stability criterion when interior sur-
face gravity waves are absent. However, formal stability criteria analogous to
Ripa’s theorem may be further analyzed when the relationship between con-
strained velocity and depth of the shallow layer of fluid is taken into account.
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A summary of the formal stability criteria considered in this chapter is given
in Table 1. Although formal stability criteria guarantee linear stability, their
violation is just a necessary and not sufficient condition for instability.

The observed reduction of the number of stability conditions relates in
reverse order to the number of imposed balance constraints which, in effect,
eliminate gravity- or acoustic-wave dynamics. The shallow-water formal sta-
bility criteria for the finite-dimensional vortex model in Example 11, the full,
barotropic quasi-geostrophic, and ageostrophic shallow-water equations are
clearly related. Moreover, formal stability criteria for Hamiltonian balanced
models based on velocity constraints will yield Ripa’s shallow-water crite-
ria with the velocity replaced by the constrained velocity. For Ripa’s criteria
boundary conditions and consistency relations for vA¢ may be necessary to
make the first variation of pseudo energy extremal but in the second vari-
ation no boundary contributions will emerge (cf. section 3.6). We thus see
that formal stability criteria analogous to Ripa’s theorem do not distinguish
boundary-trapped Kelvin from Poincaré gravity waves. In contrast, this dis-
tinction will become apparent when the actual velocity constraints are taken
into account in the derivation of formal or nonlinear stability criteria or in
particular linear stability calculations, since quadratic boundary contribu-
tions are then expected to emerge in the pseudo energy. (The actual velocity
constraint was taken into account for L1-dynamics by Ren and Shepherd
(1997) and for semi-geostrophic dynamics by Kushner, McIntyre and Shep-
herd (1998)).
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