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ABSTRACT

Our aim was to adapt the traditional framework for expected net benefit of sampling (ENBS) to be more compatible with
drug development trials from the pharmaceutical perspective.

We modify the traditional framework for conducting ENBS and assume that the price of the drug is conditional on the
trial outcomes. We use a value-based pricing (VBP) criterion to determine price conditional on trial data using Bayesian
updating of cost-effectiveness (CE) model parameters. We assume that there is a threshold price below which the company
would not market the new intervention. We present a case study in which a phase III trial sample size and trial duration are
varied. For each trial design, we sampled 10 000 trial outcomes and estimated VBP using a CE model. The expected com-
mercial net benefit is calculated as the expected profits minus the trial costs.

A clinical trial with shorter follow-up, and larger sample size, generated the greatest expected commercial net benefit.
Increasing the duration of follow-up had a modest impact on profit forecasts.

Expected net benefit of sampling can be adapted to value clinical trials in the pharmaceutical industry to optimise the
expected commercial net benefit. However, the analyses can be very time consuming for complex CE models. © 2014
The Authors. Health Economics published by John Wiley & Sons Ltd.
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1. INTRODUCTION

Drug development costs are burdensome for the pharmaceutical industry. High costs have been attributed to the
costs of research, duration of research programmes, and the low probabilities of market approval (Adams and
Brantner, 2006). Market access is increasingly dependent on the perceived, or estimated, value of new treat-
ments in addition to efficacy.

Value-based pricing (VBP) describes a pricing mechanism that explicitly estimates the price at which the
incremental value balances out the incremental costs of the new treatment (Sussex et al., 2013). VBP will be-
come more prominent when it is introduced as part of methods for value assessment in the UK from 2014. Al-
though the UK is a relatively small market, evidence suggests that 25% of the world pharmaceutical market
references UK prices (Hughes, 2011).

Values of information (Vols), and more specifically expected net benefit of sampling (ENBS), methods have
been promoted for determining trial designs for health care research (Claxton, 1999; Willan and Pinto, 2005).
ENBS methods undertake simulations of the sample trial data, for a given trial design, and evaluate the value of
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the treatment after data collection using cost-effectiveness (CE) analysis. Bigger trials will be more costly, so
ENBS quantifies the expected net trade-off of the benefits of the trial against the cost of the trial.

To date, most ENBS studies in health economics have taken a health care provider perspective to decide
whether to invest in research to evaluate whether the new intervention is cost-effective. They assume that re-
search will be financed by public resources. The decision to adopt an intervention now (i.e. before the research
study) is uncertain because it is possible that the new intervention is less cost-effective than the alternative, and
this is described as the expected opportunity cost (Eckermann and Willan, 2008; McKenna and Claxton, 2011).
The opportunity cost is typically quantified as the additional investment needed and the expected quality-
adjusted life years (QALYSs) forgone, valued at the health care provider’s willingness to pay for a QALY.

This health care provider framework is not directly applicable to the pharmaceutical company. Other
decision-theoretic approaches to selecting trial designs from a pharmaceutical perspective have been proposed.
A Bayesian clinical trial simulation (BCTS) study has demonstrated that multiple trial designs can be simulated
to optimise the likelihood of market access (Nixon et al., 2009). Gittins et al. have proposed designing trials
using a behavioural Bayes approach, which assumes that the number of patients who would receive the new
intervention (and hence the sales/profit of the new drug) is a function of the observed size of the treatment effect
and the statistical significance (Gittins and Pezeshk, 2000a, 2000b). Willan et al. estimated the optimal sample
size by valuing trials according to the expected profit conditional on the probability of regulatory approval
(Willan, 2008). However, these approaches either assume that the profit per patient is fixed, or they do not spec-
ify the future price of the drug and hence do not compute financial value. At the stage of reimbursement, the
pharmaceutical company should have sufficient evidence to get a regulatory licence for the new treatment.
However, such strong evidence is not available at earlier stages of drug development, which impacts on the
use of ENBS.

There is, as yet, no clear ENBS framework for evaluating alternative clinical trial designs when the
evidence base and price for a drug are uncertain. An ENBS approach adapted to evaluate if there is a
positive net benefit to pursuing a phase II or phase III trial could impact on the efficiency of drug
development programmes by reducing the number of treatments that fail to reach health care markets
(DiMasi, 2002).

The aim of this paper is to describe an ENBS framework for phase II or phase III trials and present a worked
example. The framework modifies the traditional ENBS method so that it can be used by pharmaceutical com-
panies to design clinical trials in drug development programmes. Essentially, the framework combines the ideas
of ENBS with the emerging ideas around VBP. We have selected a hypothetical intervention for the disease of
systemic lupus erythematosus (SLE) as a case study to investigate how our ENBS using the VBP method could
be useful to design a phase III clinical trial given existing trial evidence.

2. METHOD

2.1. Framework: expected net benefit of sampling using value-based pricing

In this proposed framework, the Vol to a pharmaceutical company from their proposed trial (or programme of
trials) is conceptualised and expressed as an expected profit forecast, which itself is dependent on the effective-
ness and CE of the new treatment as perceived by a reimbursement authority. We assume that the pharmaceu-
tical company does not have a license for the treatment in the proposed indication and therefore assume zero
sales in the absence of the proposed definitive trial. For pharmaceutical companies investing in phase II or
phase III drug development trials for new molecular entities, this is a realistic assumption. We also assume that
the price of the new treatment within the reimbursement authority’s jurisdiction is yet to be agreed upon and
will be finalised after the trial. We assume that a regulatory authority exists that will grant a license if effective-
ness is proven in the trial. We further assume that the reimbursement authority has a transparent process for
assessing CE, in which a CE model plays a key role, providing a mechanism to incorporate and synthesise
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the evidence available to estimate expected costs of different treatment strategies and expected benefits. Relax-
ation and extension of these assumptions are considered in the discussion.

We begin with notation. We first take the perspective of the reimbursement authority. They have a set of
possible treatment intervention decisions D= {D;, D5, ...,Dy} in a CE model that, for each intervention, has
a cost function component Cp, and a QALY component Qp, . The CE model has a vector of uncertain param-
eters, 8. We denote a joint prior distribution given current evidence, p(6). The willingness to pay for a threshold
of the reimbursement authority is denoted A. This enables quantification of the monetary net benefit function for
each possible decision D;, that is, NBp, = AQp, — Cp,. In the absence of the new treatment, and with prices for
existing treatments already set, the reimbursement authority has evaluated the decision options and mandated
use of the most cost-effective treatment given current evidence.

D\ = argmax;[E9{NBp.(0)}] (1)

Second, we consider the reimbursement authority’s perspective on the new product from the pharmaceutical
company D,. The evidence from the proposed trial will help to further inform or update our understanding of
some of the parameters, a subset we denote 6;, whilst our understanding of the remaining complementary set of
parameters, QIC, would remain unaffected by proposed research. The proposed new trial or research study with a
specified design, y, would provide data, X l"l, on parameters 6y, giving a posterior density via Bayesian updating
p(gthC‘ bl ) We denote functions for D, for QALYs as Qp, and for costs excluding the drug price compo-
nent (i.e. the effects on other health care resources utilised for the indication) as Cp, can now be incorpo-

rated. We denote the price of treating one person for 1 year with the new drug as P and the expected
number of years of treatment that a patient receives as t. The total expected costs of the new treatment

X >} plus the other health care

. . 7 *
given the trial result Xy are therefore the drug costs p E(,,ﬁlclle{,<ghglc

costs Egyefiey {C (ghgf| XX’)}.The total expected QALYs of the new treatment are Eg, g 1xy {Qng <81,6f| XW)}.

Or
The value-based price, denoted P*, will be chosen by the reimbursement authority. We assume that the CE
model is the key tool in this decision and that essentially P* is chosen so that the incremental CE ratio of the
new treatment versus the old treatment is equal to 4 (e.g. Incremental Cost Effectiveness Ratio (ICER) for D,
versus D =£30 000 per QALY gained). Thus, the CE model’s probabilistic sensitivity analysis (PSA) is re-run
incorporating the new treatment and the trial evidence, and P* is chosen as solving the following equation:

* C C C
P By, {1000 15 ) } + B, { o (00015 } = B, { € (00 |5) }
C C
Egaty { Q0. (00,65 |X5 ) } = Eoy e {00, (0165 ]X1,) }

0

=7 @)

Thirdly, we consider the pharmaceutical company’s perspective on this, with a modification of the expected
profit based on current information proposed by Willan in previous Vol analyses from a pharmaceutical
perspective (Willan, 2008). The financial value of sales accruing to the company will be related to the sales
volume and the price at which the drug is sold. We characterise sales volume utilising work on drug life cycles
and future prices from Hoyle (2011). We assume that the new treatment has a lifetime horizon H. In each year &
up to that lifetime horizon, the sales volume is a function of the annual incidence of patients eligible for
treatment x;,, the market share of the new treatment s;, and a deflation factor V" that accounts for real
pharmaceutical price deflation (v = 1/(1 +r)"), where r is the deflation in drug price over time. The total sales
volume over the lifetime horizon, H, is therefore ZhH:Oxhshvh. The total sales value to the company is

*
H h
P E0,.,0,C|X"ﬁ’] {t(@,, o° ‘X}‘)’l) }thoxhshv .
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The company will wish to compare this income against its costs, which will include costs of development,
costs of the proposed research programme (i.e. the trial) and, once approved, the costs of production and mar-
keting. We denote the previous costs of development to date as Cpeyelopment- W€ denote the costs of a proposed
trial with a specified design as C¥,. , and assume that this has a fixed and variable component. We further denote
the unit cost of producing and marketing 1 year’s worth of the new treatment for one patient as Cpyoq &aarker-
The total costs to the company are therefore Cpeyelopment Plus C %m[ plus the costs of production and marketing

multiplied by the amount sold, that is. Cerodsarker Eg o {t(@h o¢ |ng’) } Y sV
1

There will be many factors to be weighed in the balance by the company when it decides whether or not
to launch a new drug onto the market given its trial results and a proposed value-based price from the re-
imbursement authority. Included in that balance will be all of these costs described previously, although
none are likely to be directly observable to a third party outside the company. Similar to previous charac-
terisation of this issue (Willan and Eckermann, 2012), and in order to simplify this complexity, we con-
ceive a minimum price (again for 1 year’s treatment for one patient) below which the company would
be unwilling to launch its product in that jurisdiction, and we denote this minimum acceptable sales price
Pmin. The minimum price will be affected by the costs of production, however, will also be determined by
the wider costs to the pharmaceutical company of research and development (R&D), and marketing.

The operating profit per patient treated with the new drug, once approved, is dependent on the strength

of the trial evidence, and we denote this as n(@;, H,C ’Xg) The logic of the company deciding whether or

not to launch is as follows. If the value-based price is below the company’s minimum acceptable price,
then the pharmaceutical company would not have any sales, or any costs of production, and hence receive
zero profit for the new treatment. However, if P* is greater than the pharmaceutical company’s minimum
price Pmin, the pharmaceutical company would adopt the value-based price and produce and market the
treatment. Profit per patient would then equal value-based price minus the cost of treatment production
and multiplied by the mean treatment duration. Therefore, the following algorithm was used to quantify

profit per patient ”(XZ,)

” 0 lf P* < Pmin
7(xp) = . 3)
o {P* (91, 9f|XZ’,) - CProd&Market} Ee,,eﬂxgl {1(91, oF ‘XZ)} if P*>Ppin
The total profit forecast PFx, for a given trial result Xy, is therefore
5 h
PFX?)/, = ﬂ(XZ;/,>h§J KpSpV — CDevelopmem - C%ial (€]

The fourth component of the framework involves simulating the many possible trial results for the pro-
posed trial designs, y. Each simulation should reflect current uncertainty in trial outcomes and the joint
posterior density for the CE model parameters. We simulated a large number of trial datasets, k=1 to

K, which we denote X} , X)) ,..., Xj . The expected value-based price for each simulated dataset,
1 2 K

XZ’I , can be estimated by solving Eqn 2. Some trial results may estimate poor outcomes for the pharma-
k

ceutical company, which would result in P* being negative or less than Pmin. In turn, we can estimate
the expected profit to the company PF X! - The multiple simulated datasets will estimate the distribution of
Ix

profit forecasts for each trial design, y, and we can compute the Expected Commercial Net Benefit (ECNB).

© 2014 The Authors. Health Economics published by John Wiley & Sons Ltd. Health Econ. (2014)
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1 K
ECNB, = [ZPF(XZ )}
K= 1
®)
ECNB, = Ex; [PF(X}, )]
1

We denote the set of possible trial designs, y. The optimal trial design " is that which maximises the ex-
pected profit forecast.

ECNB = max.ey [EPF,]

(6)
y* = argmax .y [EPF |

2.2. Worked example in systemic lupus erythematosus

Systemic lupus erythematosus is an autoimmune disease with multiple organ manifestations. The disease
is characterised by a period of reversible disease activity, which has been measured in observation studies
using the SLE Disease Activity Index (SLEDAI) (Furie et al., 2011; Navarra et al., 2011). Disease activ-
ity and treatment toxicity are associated with permanent organ damage, whose burden is measured using
the Systemic Lupus International Collaborating Clinics/American College of Rheumatology Damage In-
dex (SLICC/ACR DI; Gladman et al., 2000).

To investigate the expected profit per patient in SLE clinical trials, we have developed a simple exemplar
SLE health economic decision model. The parameter inputs of the model 8= {6y, 0., ..., 04} are detailed in
Table I. The model computes total expected costs and QALY's over a lifetime horizon.

2.2.1. Disease natural history. The natural history of the disease assumes that a population of patients with
SLE will have a mean disease activity score, Ap,, measured using the SLEDAI conditional on treatment
allocation.

Ap, =06,

@)
AD2 =60, +6,

Organ damage is described by the SLICC/ACR DI. The mean rate of organ damage accrual Sp, is assumed to
be a function of disease activity, Ap,, and treatment allocation D,.

SD] = exp(63 + 94AD1)
®)
Sp, = exp(93 + 04Ap, + (95)

Mortality in the population is calculated from the exponential distribution. Mean survival is assumed to
increase with lifetime mean SLEDALI score. New treatments for SLE are expected to reduce the burden of

© 2014 The Authors. Health Economics published by John Wiley & Sons Ltd. Health Econ. (2014)
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Table 1. Prior parameters for the cost-effectiveness model of a hypothetical new treatment versus standard treatment for

SLE
Variance/Covariance
Label  Parameter description Mean matrix Source

1 0, Baseline SLEDALI score 9.67 0.020 0.100 Furie et al., 2011;
Navarra et al., 2011

2 0, SLEDALI score treatment effect —-0.37 0.100  0.400 Assumption

3 05 Baseline annual rate of SLICC/ACR DI accrual —2.77 0.300 0.00 0.100  Gladman et al., 2000

4 0, Effect of SLEDAI score on rate of SLICC/ACR DI 0.04 0.00 0.014 0.000 Ibanez et al., 2005

5 05 Effect of treatment on rate of SLICC/ACR DI —0.10 0.100 0.000 0.5 Assumption

6 O¢ Baseline mortality risk —4.41 0.070 —0.040 Estimated™*

7 6, Effect of SLEDAI score on mortality risk 0.14 —0.040 0.030 Willan and
Eckermann, (2010)

8 Cp Baseline cost of SLE 1152.000 115.200 GlaxoSmithKline,
2011

9 Cy Annual cost of SLEDAI score 55.60 5.560 GlaxoSmithKline,
2011

10 Cp Total cost per damage event 4821.000 482.100 GlaxoSmithKline,
2011

11 Up Baseline utility for SLE 0.72 0.072 GlaxoSmithKline,
2011

12 Uy Utility decrement per unit of SLEDAI —0.01 0.001 GlaxoSmithKline,
2011

13 Up Utility decrement per unit of SLICC/ACR DI —0.10 0.010 Assumption

14 014 Baseline withdrawal from trial —1.36 0.021 Furie et al., 2011;
Navarra et al., 2011

Additional parameters for the BCTS

Xa, Parameters for the bivariate normal distribution for 9.67 3.770  0.100 Furie et al., 2011;

sampling individual disease activity in the trial Navarra et al., 2011
Xa, simulation —0.37 0.100  2.000 Assumption

SLEDALI, SLE Disease Activity Index; SLICC/ACR DI, SLICC/ACR Damage Index *Estimated to generate a mean survival of 40 years.

disease activity for the treatment duration z. Mean SLEDAI score for treated patients is adjusted for time
on treatment so that their lifetime mean SLEDALI score is not underestimated.

1
Mp =— 9
b exp(06 + 97AD|) ©)
Mp, — ! (10)

exp (96 s (M;DIAD2 + (MAZI_:)ADI ))

2.2.2. Costs. We assumed a fixed annual cost for a patient with SLE, Cp, an annual cost per unit of disease
activity, C,, and a cost per damage event, C,. Acquisition costs for the new treatment are not included in the
calculation. Administration costs for the new treatment are assumed to be zero.

CD1 :MDI(CB+CAAD1 +CSSD]) (11)
Cp, =t(Cp + CaAp, + CsSp,) + (Mp, — 1)(Cp + CaAp, + CsSp,) (12)
© 2014 The Authors. Health Economics published by John Wiley & Sons Ltd. Health Econ. (2014)
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2.2.3. QALYs. Total lifetime QALYs were estimated using Eqns 11 and 12 for standard of care and new
treatment respectively. The model assumed a baseline utility score for patients with SLE without disease
activity, Ug. An annual decrement was applied per unit of SLEDAI, U,. A utility decrement was applied
for total cumulative organ damage assuming linear accrual of organ damage over time, Us.

Sp M
Op, = Mp,(Ug + UaAp,) + Us (%) (13)
Sp,t Sp,(Mp, —t
Qp, = 1(Us + UsAp,) + US( 5 > + (Mp, = 1)(Up + UaAp,) + Us (%) (14)

In total, the model had 14 parameter inputs for which the prior distributions are reported in Table 1. The
global willingness to pay for a QALY is assumed to be £30 000.

2.2.4. Trial simulation. In the illustrative example, we consider nine clinical trial designs of various sam-
ple sizes (n=500, 1000 and 1500) and duration of follow-up (1, 2 and 3 years). For simplicity, we as-
sumed that data for the new treatment and its comparator are both collected in a single phase III trial.
In real-life applications, multiple phase III trials may be planned, and an indirect comparison may be re-
quired if the comparator arm of the trial is not the comparator for the economic evaluation. However, the
method can be simply adapted to reflect these characteristics. In each trial, we generated data on the
SLEDALI score, SLICC/ACR DI and withdrawal from the trial as a result of adverse events or lack of ef-
ficacy. Mean SLEDAI score was sampled from the bivariate normal distribution.

{A1]~ { 0, 377 0
N (15)

Ar 01 + 05, 0 2

The number of damage events observed per year of follow-up for each patient during the trial was sampled
using the Poisson distribution.

S1~Pois(n, exp(0s + 04Ap, )Sy~Pois(n, exp(03 + 04Ap, + b5) (16)

The time to withdrawal from the trial for each patient was sampled from the exponential distribution.
t~Exp(exp(014)) (17)

If the sampled time was greater than the duration of the trial, it was assumed that the patient completed the
study. This generated a dataset describing mean SLEDALI for each year of follow-up, number of organ damage
events for each year of follow-up, and time to withdrawal from treatment with individuals completing the trial cen-
sored at the trial endpoint.

© 2014 The Authors. Health Economics published by John Wiley & Sons Ltd. Health Econ. (2014)
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2.2.5. Bayesian updating given trial data. We employ Bayesian updating methods to update the prior param-
eter distributions of the CE model (Table I) with clinical trial data. If the posterior is a distribution that is of the
same family as our prior, then Bayesian updating is relatively straightforward because the distributions are con-
jugate. If the prior and posterior are not conjugate, then the standard approach is to estimate the posterior using
Markov chain Monte Carlo (MCMC) methods to generate simulated samples from the posterior distribution.
However, in this example, we used the Brennan and Kharroubi (B&K) Bayesian approximation formula
(Brennan and Kharroubi, 2007a, 2007b) process because the joint prior probability distribution was not
conjugate with the trial data, and it has been shown to be substantially faster than using MCMC in WinBUGS.
Brennan and Kharroubi (2007a) have developed and tested an approximation formation for the posterior expec-
tation of a function v(6) with j uncertain parameters (9=0", ..., &) given a sample of data X.

E(u@) x5 }=0(0) + £ (av(er) + (o) () as

From the industry perspective, v(6) represents functions for value-based price. 0 is a vector for the posterior
mode of the model parameters that maximise the posterior density function given the data X. Each¢; and ;" is a
specific point in the j dimensional space at which the function v(0) is evaluated. A weighted average of these
evaluations is taken with weights a; and o applied. The points 6; and 6, and weights o; and &~ depend on
both the prior probability distribution for the model parameters & and on the data XZ’I but are independent of the
function v.

2.2.6. Exemplar total profit function. Profit forecast is determined by the annual incidence of SLE £, the current
time horizon of the treatment H, the market share of the new treatment s, and the price depreciation rate, r. The
point prevalence of SLE and the incidence over an annual period were determined in Birmingham, UK, to re-
flect a population with a broad ethnic mix. The study reports a point estimate of the incidence to be 3.8/
100 000/year (Johnson et al., 1995). The incidence rate was applied to the current population statistics for
the OECD countries. The most recent population statistics were from 2009 and reported a total population of
912 021 760 over 19 years of age (OECD, 2012). From this, we calculated an annual incidence of 34 657 di-
agnoses of SLE per year. The market share was assumed to be 42%. These assumptions enable us to estimate
the potential sales volumes for the new treatment. The time horizon of the treatment was assumed to be 33 years
(Hoyle, 2011). The price deflation rate was assumed to be 4% per year (Hoyle, 2008).

Expenditure on the trial, Cy,,,, Was estimated based on a fixed cost of £1 000 000 with a variable cost of
£2000 per patient in the first year of observation and £1500 for subsequent years to account for participant re-
cruitment costs. The additional costs of monitoring patients in subsequent years are incurred, even if they have
withdrawn from the study. We assumed that the minimum price acceptable to the pharmaceutical company was
£1000 per year.

2.3. Trial simulation process and estimation of optimal design

We programmed a simulation process to evaluate the ENBS given our prior uncertainty about the efficacy of
the treatment. We evaluated 10 000 data samples for each trial design to capture the uncertainty in our prior
beliefs about the clinical trial outcomes. The simulation process is described in the succeeding texts. The R
code for simulation is supplied as electronic supplementary material.

1. Specify a series of possible trial designs ¥, for example, sample size n, duration, etc.

2. Draw realisation of each parameter from its prior distribution.

3. Generate a sample of patients in the trial and randomly assign them to treatments 1 and 2.
4. Simulate the clinical trial result XZI using sampled parameters.

© 2014 The Authors. Health Economics published by John Wiley & Sons Ltd. Health Econ. (2014)
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Select patients for analysis according to trial design.

Estimate a value-based price P* given the sample data X Z’.

Repeat steps 5-7 for all design options.

Repeat steps 1-8 for 10 000 iterations.

Evaluate Eqn 4 for each simulated trial.

10. Evaluate the ECNB across all simulated trials for each trial design and identify the trial design that has
the optimal value (i.e. highest ECNB).

oW

Table II. Summary of 10 000 trial simulation results for nine proposed designs reporting the probability of demonstrating a
statistically significant effect size and probability of reimbursement

Probability of significant treatment
effect on disease activity measure

Probability of significant treatment
effect on organ damage measure

Probability of a significant reduction on
SLEDAI AND estimated VBP

SLEDAI SLICC/ACR DI P*> Pmin
1 year 2 years 3 years 1 year 2 years 3 years 1 year 2 years 3 years
n=100 57% 74% 80% 6% 9% 12% 47% 51% 52%
n=500 85% 89% 91% 15% 20% 23% 52% 52% 51%
n=1500 90% 92% 93% 23% 25% 32% 52% 52% 51%

SLEDALI, SLE Disease Activity Index; SLICC/ACR DI, SLICC/ACR Damage Index; P*, estimated value-based price; Pmin, minimum
price acceptable to a company.

Variability in value-based price

Pmin
.
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Figure 1. Summary of 10 000 trial simulation results for nine proposed designs illustrating the variability in estimated value-based price, P*
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3. RESULTS

Table II reports the probability that each trial observed a statistically significant improvement in disease
activity and a statistically significant reduction in organ damage. The analysis suggested that increasing
sample size increases the probability of observing a statistically significant difference in SLEDAI scores
more markedly than increasing the duration of follow-up. A similar result was observed for the probabil-
ity of observing a statistically significant difference in SLICC/ACR DI. The probability that the trial
identified a statistically significant difference in SLEDAI score and P* > Pmin increased with sample size
and duration of follow-up. At 3 years of follow-up there were no incremental benefits to increasing
sample size suggesting that there is a ceiling effect to the probability of reimbursement. This is because
the prior distribution of treatment benefit demonstrates approximately 49% probability that the treatment
is not cost-effective at Pmin. Figure 1 illustrates the effect of changes in trial design on the variability in
expected value-based price estimates. As the trials increase in size, the 95% confidence intervals of the
box plot become wider. This effect is observed because the large datasets have a greater impact on the
posterior value-based price and the prior has less impact. Trial designs with more variable estimated
value-based price will have higher expected profits because they are more likely to collect sufficient
evidence to support higher prices. The graph illustrates our assumed Pmin at £1000 per patient. Value-
based price estimates below this point will produce zero sales because the pharmaceutical company would
not be reimbursed at Pmin.

Table III reports the profit, sales and cost forecasts for the trial designs. The table illustrates that larger
trials are associated with higher profits per patient for trials that get market approval and reimbursement.
Increasing sample size from 100 to 1500 has a greater impact on the profit per patient than increasing
duration of follow-up from 1 to 3 years.

We observe a ceiling effect for expected sales volume and profit as trials increase in size and duration of
follow-up (Table III). The increase size has no impact on the probability of reimbursement aside from
simulation error in the probability of reimbursement. Therefore, increasing the duration of follow-up in a
trial of 500 or 1500 patients does not improve the expected profits. When trial costs and production costs
are taken into account, we observe that trials with larger sample size n=1500 and short duration have the

Commercial Net Benefit of Trial Designs
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Figure 2. Summary of 10 000 trial simulation results for nine proposed designs illustrating the commercial net benefit
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Figure 3. Summary of 10 000 trial simulation results for nine proposed designs illustrating the impact of Pmin on the expected commercial
net benefit

highest commercial net benefit (Figure 2). However, there is very little difference observed between trials of
sample size greater than 500 and duration of follow-up of more than 1 year.

We conducted a sensitivity analysis to observe what impact the choice of Pmin would have an impact on
the choice of trial design. Figure 3 illustrates how commercial net benefit estimates change for values of
Pmin ranging from £100 to £1200. Overall, commercial net benefit decreases as the minimum price accept-
able to the pharmaceutical company increases. The variability in commercial net benefit decreases as Pmin
increases. However, the patterns observed between trial designs are broadly stable over Pmin. Trials with
either large sample size (n=1500) and short follow-up or moderate to large sample size with longer
follow-up have very similar commercial net benefit estimates.

Each probabilistic sensitivity analysis evaluation of the CE model took 17 s to be generated. Each sample trial
dataset took 0.001 s to be generated. A single evaluation of the B&K approximations using the 14-parameter SLE
CE model took 4.33 s to be generated. The final analysis that included 10 000 samples from the prior distribution to
inform 90 000 approximations of value-based price using the B&K approximation took 236 h.

4. DISCUSSION

We have described how ENBS methods can be adapted to evaluate the value of trials according to the
perspectives of a pharmaceutical company. We have presented a framework that assumes that price is
flexible and conditional on evidence generated from the trial. As attention amongst health economists
and decision-makers move towards pricing strategies that incorporate value propositions, this framework
will provide a useful tool to formally and objectively evaluate trial designs using the best evidence available
to the pharmaceutical company.

The results of our case study suggest that shorter trials with a large sample size are associated with greater
profit forecasts for the pharmaceutical company. Although there is substantial uncertainty in the long-term
effectiveness of treatments in chronic diseases, increasing sample size is a more efficient method of data
collection in this illustrative example.
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We have adopted a very simple CE model in this illustrative example. No discounting has been applied, and a
very simple description of the disease is assumed. We assumed that the comparator for the randomised control trial
(RCT) was the same as the comparator for the economic evaluation. However, future adaptations of the method
would accommodate alternative assumptions and the inclusion of an indirect comparison to estimate treatment
effects for the comparators. We have chosen to use a simple model to illustrate the benefits of the VBP framework
for valuing trials. However, a more complex model may be preferred by pharmaceutical companies and reimburse-
ment authorities.

More complex CE models would require substantially more computation time than the model presented
here. The two most important determinants of computation time are the number of parameters in the CE
model and the time it takes to evaluate CE outcomes for a single set of parameter inputs. This is because
the B&K approximation requires the CE model to be evaluated 2d + 1 times (Brennan and Kharroubi,
2007a). In our example, the model contains only 14 parameters, and the CE model can be evaluated in
14 s. An individual patient simulation would require more parameters and would take longer to evaluate
CE outcomes. In this case, it may be infeasible to generate expected profit forecast (EPF) outcomes within
a reasonable time frame on a standard desktop computer.

The proposed data collection for a single drug indication was assumed to illustrate the framework of valuing
trials using VBP. However, the simplicity of this example does not reflect more complex drug development
programmes that include multiple trials or multiple drug indications. The simplifying assumptions can be
relaxed and adapted to accommodate more difficult decision problems. There have been several studies
reported in the literature where the ENBS methods have been extrapolated to more complex decision problems
to include multiple-stage research programmes (Claxton and Thompson, 2001; Willan and Kowgier, 2008;
Chen and Willan, 2013), unbalanced data collection from multiple studies (Kharroubi et al., 2011), and
imperfect implementation of policy changes (Willan and Eckermann, 2010). Some trial designs may require
BCTS to enable more complex trial designs to be evaluated (Nixon et al., 2009). BCTS could also be employed
to simulate outcomes from multiple RCTs or RCTs in multiple drug indications. Broadly, the framework would
be unchanged, but the process of updating CE model parameters would need to be adapted to accommodate
data from multiple sources.

Drug prices are not set globally, and not all national regulators use CE methods in reimbursement decision-
making. Although the illustrative example determines price in a single national market, additional assumptions
for multiple markets could be integrated into the analysis to reflect multiple market conditions. For example,
two or more willingness to pay thresholds could be incorporated into the function to estimate a weighted profit
function across multiple markets. However, the method is less easily transferable to a free-market setting.
However, if it were possible to specify a profit function linking trial outcomes to price and sales volumes, it
would be possible to integrate profits from other markets into the analysis. The proportion of market share
could be estimated conditional on the pharmaceutical company’s target price and trial outcomes.

Further research could evaluate the method with a real-life case study. Our worked example is useful to
demonstrate the method; however, it did not evaluate the usefulness and test the practicalities of the method.
A real-life case study would highlight which simplifying assumptions were priorities to adapt to add more
complexity. It would also be useful to evaluate how these methods could be incorporated into the trial design
process and whether the information generated would be valued by the relevant decision-makers within the
pharmaceutical company.

The VBP framework would help to focus trial planning in the pharmaceutical industry towards the
objective of reimbursement. Regulation and price control in health care have changed the objectives of
the pharmaceutical clinical trial. It is no longer sufficient to demonstrate statistically significant improve-
ments in efficacy compared with placebo to ensure market success. It makes sense that the implications
of data collection on reimbursement decision-making should be considered and integrated into the trial
design process early on in drug development. Implicit and explicit specification of willingness to pay
thresholds has helped inform pharmaceutical companies about the commercial viability of their R&D
projects (Vernon et al., 2009). We believe that a VBP framework for evaluating trial design is applicable
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to trial design in the pharmaceutical industry because it integrates the probability of market access and
expected profit given the regulatory constraints.

In conclusion, we have developed an extension to the ENBS framework that considers the perspective of the
pharmaceutical company and uses the ideas of VBP to value and rank for alternative phase III trial designs. The
method can be applied to any jurisdiction where there is some reasonable assessment of the relationship
between scale of treatment effects and new treatment price. We have demonstrated that a VBP framework
can be useful to incorporate value-based prices into the analysis of drug development trials to express expected

commercial net benefit.
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