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ASYMPTOTIC STATISTICS OF CYCLES IN SURROGATE-SPATIAL

PERMUTATIONS

LEONID V. BOGACHEV AND DIRK ZEINDLER

ABSTRACT. We propose an extension of the Ewens measure on permutations by choosing

the cycle weights to be asymptotically proportional to the degree of the symmetric group.

This model is primarily motivated by a natural approximation to the so-called spatial ran-

dom permutations recently studied by V. Betz and D. Ueltschi (hence the name “surrogate-

spatial”), but it is of substantial interest in its own right. We show that under the suitable

(thermodynamic) limit both measures have the similar critical behaviour of the cycle sta-

tistics characterized by the emergence of infinitely long cycles. Moreover, using a greater

analytic tractability of the surrogate-spatial model, we obtain a number of new results about

the asymptotic distribution of the cycle lengths (both small and large) in the full range of

subcritical, critical, and supercritical domains. In particular, in the supercritical regime there

is a parametric “phase transition” from the Poisson–Dirichlet limiting distribution of ordered

cycles to the occurrence of a single giant cycle. Our techniques are based on the asymptotic

analysis of the corresponding generating functions using Pólya’s Enumeration Theorem and

complex variable methods.

Keywords and phrases: Spatial random permutations; Surrogate-spatial measure; Gener-

ating functions; Pólya’s Enumeration Theorem; Long cycles; Poisson–Dirichlet distribution
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1. INTRODUCTION

1.1. Surrogate-spatial permutations. Let SN be the symmetric group of all permutations

on elements 1, . . . , N . For any permutation σ ∈ SN , denote byCj = Cj(σ) the cycle counts,

that is, the number of cycles of length j = 1, . . . , N in the cycle decomposition of σ; clearly

Cj ≥ 0 (j ≥ 1),
N∑

j=1

j Cj = N. (1.1)

A probability measure on SN with (multiplicative) cycle weights may now be introduced by

the expression

PN(σ) :=
1

N !HN

N∏

j=1

w
Cj

j , σ ∈ SN , (1.2)

where HN is the normalization constant,

HN =
1

N !

∑

σ∈SN

N∏

j=1

w
Cj

j . (1.3)

The cycle weights wj (j = 1, . . . , N ) in (1.2), (1.3) may in principle also depend on the

degree N . In the simplest possible case one just puts wj ≡ 1, resulting in the classical

uniform distribution on permutations dating back to Cauchy (see, e.g., [1, §1.1]). Gener-

alization with wj ≡ θ > 0 is known as the Ewens sampling formula ESF(θ), which first

emerged in the study of population dynamics in mathematical biology [13]. A class of mod-

els with variable coefficients wj (but independent of N ) was recently studied in papers [7],

[12], [26], [28] (see also an extensive background bibliography therein); more general mod-

els of assemblies allowing for mild dependence of the weights on N were considered earlier

by Manstavičius (see [25, § 2, pp. 67–68]).

The surrogate-spatial measure P̃N proposed in the present paper is a further natural gen-

eralization specified by choosing the cycle weights in the form

wj(N) := θj +Nκj, j ∈ N, (1.4)
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where (θj) and (κj) are given sequences with θj ≥ 0, κj ≥ 0 (j ∈ N). Thus, the general

model (1.2), (1.3) specializes to

P̃N(σ) :=
1

N !HN

N∏

j=1

(θj +Nκj)
Cj , σ ∈ SN , (1.5)

HN =
1

N !

∑

σ∈SN

N∏

j=1

(θj +Nκj)
Cj . (1.6)

1.2. Spatial permutations. Our original interest to the model (1.5), (1.6) (which also ex-

plains the proposed name “surrogate-spatial”) has been generated by the so-called spatial

random permutations, introduced and studied by Betz and Ueltschi in a series of papers [3],

[4], [5], [6] (see also a recent preprint by Ercolany et al. [11] developing a more general

setting of spatial random partitions). Specifically, the spatial model leads to the following

family of probability measures on the symmetric group SN ,

PN,L(σ) :=
1

N !HN,L

N∏

j=1

(
e−αj

∑

k∈Zd

e−j ε(k/L)

)Cj

, σ ∈ SN , (1.7)

where (αj) is a real sequence, L > 0 is an additional “spatial” parameter, ε : R
d → [0,∞)

is a certain function, and HN,L is the corresponding normalization factor.

The hidden spatial structure of the measure (1.7) is revealed by the fact that PN,L emerges

as the SN -marginal of a suitable probability measure on a bigger space ΛN × SN , where

Λ := [−1
2
L, 1

2
L]d ⊂ R

d; namely (cf. [6, Eq. (3.6), p. 1179])

PN,L(σ) =
1

N !HN,L

∫

ΛN

e−HN (x1,...,xN ;σ) dx1 . . . dxN , σ ∈ SN , (1.8)

HN(x1, . . . ,xN ; σ) :=
N∑

j=1

V (xj − xσ(j)) +
N∑

j=1

αjCj , (1.9)

where the interaction potential V : R
d → (−∞,+∞] is such that the function e−V (x) is con-

tinuous, has positive Fourier transform (which implies that V (−x) = V (x), x ∈ R
d), and

∫

Rd

e−V (x) dx = 1, (1.10)

so that the function f(x) := e−V (x) can be interpreted as a probability density on R
d.

The basic physical example is the Gaussian case with a quadratic potential (see [6, p. 1175])

V (x) = 1
4
β−1‖x‖2 + 1

2
d log (4πβ), x = (x1, . . . , xd) ∈ R

d, (1.11)

where ‖x‖ :=
(∑d

i=1 x
2
i

)1/2

is the usual (Euclidean) norm in R
d, β > 0 is the inverse tem-

perature, and a constant term in (1.11) insures the normalization condition (1.10). According

to formula (1.9), particles in a random spatial configuration {x1, . . . ,xN} interact with one

another via the spatial potential V only along cycles of an auxiliary permutation σ ∈ SN

(see Fig. 1), whereby the existence of a cycle of length j ∈ N is either promoted or penalized

depending on whether αj < 0 or αj > 0, respectively.
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L
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N (particles)

FIGURE 1. Illustration of spatial permutations.

The link between formulas (1.7) and (1.8) is provided by the function ε(s) defined by the

Fourier transform

e−ε(s) =

∫

Rd

e−2πi(x,s) e−V (x) dx, s ∈ R
d, (1.12)

where (x, s) denotes the inner product in R
d. For example, the Gaussian potential (1.11)

leads to a quadratic function ε(s) = c‖s‖2 (with c = 4π2β).

From the assumptions on V (·), it readily follows that ε(0) = 0, ε(−s) = ε(s) (s ∈ R
d),

ε(s) > 0 (s 6= 0) and, by the Riemann–Lebesgue lemma, lims→∞ ε(s) = ∞. Since

the Fourier transform (1.12) is positive, a simple lemma (see [9, Theorem 9, p. 20] or [18,

Lemma 7.2.1, p. 162]) yields that
∫

Rd

e−ε(s) ds <∞, (1.13)

hence the Fourier inversion formula implies the dual relation

e−V (x) =

∫

Rd

e2πi(x,s) e−ε(s) ds, x ∈ R
d.

Finally, let us assume that the function ε(s) is regular enough as s → ∞, so that the integra-

bility condition (1.13) implies the convergence (for any L > 0) of the series
∑

k∈Zd

e−ε(k/L) <∞. (1.14)

For the latter, it is sufficient that, for s large enough, ε(s) = ε(s1, . . . , sd) is non-decreasing

in each of the variables si, or that there is a lower bound ε(s) ≥ c1 + γ log ‖s‖, with some

c1 > 0 and γ > d. Importantly, the condition (1.14) ensures that the spatial measure (1.7) is

well defined.

The model (1.8), (1.9) is motivated by the Feynman–Kac representation of the dilute Bose

gas (at least in the Gaussian case), and it has been proposed in connection with the study of

the Bose–Einstein condensation (for more details and the background, see [3], [4], [5] and
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further references therein). An important question in this context, which is also interesting

from the combinatorial point of view, is the possible emergence of an infinite cycle under

the thermodynamic limit, that is, by letting N,L → ∞ while keeping constant the particle

density ρ = NL−d. The (expected) fraction of points contained in infinitely long cycles can

be defined as

ν := lim
K→∞

lim inf
N→∞

1

N
EN,L

(
∑

j>K

j Cj

)
. (1.15)

Betz and Ueltschi have shown in [6] that in the model (1.7), under certain assumptions on

the coefficients αj , the quantity ν is identified explicitly as

ν = max

{
0, 1 − ρc

ρ

}
, (1.16)

where ρc is the critical density given by

ρc :=
∞∑

j=1

e−αj

∫

Rd

e−j ε(s) ds ≤ +∞. (1.17)

That is to say, infinite cycles emerge (in the thermodynamic limit) when the density ρ is

greater than the critical density ρc (see further details in [6]).

However, the computations in [6] for the original spatial measure PN,L are quite com-

plicated, and it may not be entirely clear as to why the asymptotic behaviour of cycles is

drastically different for ρ < ρc and ρ > ρc (even though intuition does suggest such a phase

transition; see a heuristic explanation in [6, p. 1175]).

1.3. Surrogate-spatial model as an approximation of the spatial model. A simple obser-

vation that has motivated the present work is that the sum in (1.7) can be viewed, for each

fixed j, as a Riemann sum (with mesh size 1/L) for the corresponding integral appearing

in (1.17). Using Euler–Maclaurin’s (multidimensional) summation formula (see, e.g., [8,

§A.4]) and recalling that ρ = NL−d, this suggests the following plausible approximation of

the cycle weights in formula (1.7),

e−αj

∑

k∈Zd

e−j ε(k/L) = Nκj + θj + o(1), N, L→ ∞, (1.18)

with the coefficients

κj = ρ−1e−αj

∫

Rd

e−j ε(s) ds, j ∈ N. (1.19)

(Note that, due to the condition (1.13), the integral in (1.19) is finite for all j ∈ N.) Thus,

neglecting the o-terms in (1.18), we arrive at the surrogate-spatial model (1.4).

The ansatz (1.18) demands a few comments. In the Gaussian case, with ε(s) = c‖s‖2,

it can be checked with the help of the Poisson summation formula [10, §3.12, p. 52] that

the expansion (1.18) holds true for any fixed j ∈ N with κj ∝ e−αjj−d/2 and θj ≡ 0 (see

Section 6.1 below). In general, however, it may not be obvious that the leading correction to

the principal term in (1.18) is necessarily constant in N .

More importantly, the expansion (1.18) with the integral coefficients (1.19) may fail to be

adequate if the index j ≤ N grows fast enough with N . For instance, again assuming the

Gaussian case, for the sum in (1.18) with j = N we have in dimension d ≥ 3
∑

k∈Zd

e−Nc ‖k/L‖2

=
∑

k∈Zd

exp
{
−cρ2/dN1−2/d‖k‖2

}
→ 1, N → ∞,
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whereas the integral counterpart (see (1.19)) is asymptotic to O(N1−2/d) = o(1). This sug-

gests that for j close to N the relation (1.18) holds with the universal (potential-free) coeffi-

cients κj = 0, θj = e−αj . That is to say, the (Gaussian) spatial model PN,L dynamically in-

terpolates (up to asymptotically small correction terms) between the surrogate-spatial model

P̃N with κj > 0, θj = 0 (for small j) and the one with κj = 0, θj > 0 (for large j).
We postpone a detailed comparison of the models (1.5) and (1.7) until Section 6. For

now let us just point out that both models, after a suitable calibration, share the same critical

density ρc and the expected fraction of points in infinite cycles (see (1.17)); there are also

qualitative similarities in the transition from the Poisson–Dirichlet distribution of large cycles

to a single giant cycle (see Section 5).

1.4. Synopsis and layout. As will be demonstrated in this paper, the class of surrogate-

spatial measures P̃N defined by (1.5) produces a rich picture of the asymptotic statistics of

permutation cycles as N → ∞, being at the same time reasonably tractable analytically.

Thus, despite lacking direct physical relevance, it can be used as an efficient exploratory tool

in the analysis of more complicated spatial models.

More specifically, the asymptotics of the surrogate-spatial model can be characterized

using the singularity analysis of the generating functions of the sequences (θj/j) and (κj/j),

gθ(z) :=
∞∑

j=1

θj

j
zj, gκ(z) :=

∞∑

j=1

κj

j
zj (z ∈ C). (1.20)

In particular, the emergence of criticality is determined by the conditionRg′κ(R) < 1, where

R > 0 is the radius of convergence of the power series gκ(z); this inequality defines the

supercritical regime, with the subcritical counterpart represented by the opposite inequality,

Rg′κ(R) > 1. In the limit N → ∞, the criticality is manifested as a phase transition in the

cycle statistics when the system passes through the critical point.

Remark 1.1. The phase transition can be parameterized by scaling the coefficients κj 7→
̺−1κj (̺ > 0). Then the critical value of the parameter ̺ is given by ̺c = Rg′κ(R), with the

subcritical and supercritical domains corresponding to the intervals 0 < ̺ < ̺c and ̺ > ̺c,

respectively. We will argue in Section 6.2 below that the scaling parameter ̺ can be viewed

as an analogue of the particle density (cf. (1.19)).

Remark 1.2. We will routinely assume that gθ(z) is analytic in the disk |z| < R, which

allows us to distill the role of the leading sequence (κj) in the surrogate-spatial model (1.4).

However, gθ(z) will be permitted to have a singularity at z = R (usually of a logarithmic

type), which may have significant impact on the asymptotic statistics of long cycles (see

Section 5).

The first evidence of the different asymptotic statistics of cycles in the subcritical vs. super-

critical regimes is provided by the (weak) law of large numbers for individual cycle counts,

Cj/N → κj r
j
∗/j as N → ∞, where r∗ > 0 is the (unique) root of the equation rg′κ(r) = 1

if Rg′κ(R) ≥ 1 and r∗ := R otherwise (see Theorem 4.1).

This result is heuristically matched by the law of large numbers for the total number

of cycles TN =
∑∞

j=1Cj , stating that TN/N → ∑∞
j=1 κj r

j
∗/j = gκ(r∗). In all cases,

fluctuations of TN appear to be of order of
√
N , and a central limit theorem holds in both

subcritical and supercritical regimes (Theorem 4.4(a), (b)). The critical case can be studied

as well (see Theorem 4.4(c)), but the situation there is more complicated, being controlled

by the analytic structure of the generating functions gκ(z) and gθ(z) at the singularity point
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z = R; in particular, if gθ(z) has a non-degenerate logarithmic singularity (e.g., gθ(z) =
−θ∗ log (1−z/R) with θ∗ > 0, which corresponds to a geometric sequence θj = θ∗R−j), then

it is possible that the limiting distribution of TN includes an independent gamma-distributed

correction to a Gaussian component (see Theorem 4.4(c-iii)).

The criticality is further manifested by a phase transition in the fraction of points contained

in long cycles (cf. (1.15)); namely, we will see (Theorems 4.2 and 4.3) that such a fraction

is asymptotically given by ν̃ = 1 − r∗g
′
κ(r∗) and so is strictly positive in the supercritical

regime. The quantity r∗g
′
κ(r∗) ≤ 1 can also be interpreted (see Theorem 4.6) as the full

mass of the limiting distribution of individual cycle lengths (under a convenient ordering

called lexicographic).

The statistics of long cycles emerging in the supercritical regime will be investigated in

Section 5. Our main result there is Theorem 5.9 stating that if the generating function gθ(z)
has a logarithmic singularity at z = R with θ∗ > 0 (cf. above), then the cycle lengths,

arranged in decreasing order and normalized by Nν̃, converge to the Poisson–Dirichlet dis-

tribution with parameter θ∗. Furthermore, if θ∗ = 0 then the limiting distribution of the cycle

order statistics is reduced to the deterministic vector (1, 0, 0, . . . ), meaning that there is a

single giant cycle of length Nν̃ (1 + o(1)) (see Theorem 5.13).

The rest of the paper is organized as follows. Section 2 contains the necessary preliminar-

ies concerning certain generating functions, including a basic identity deriving from Pólya’s

Enumeration Theorem (see Lemma 2.2). In Section 3, with the help of complex analysis

we prove some basic theorems enabling us to compute the asymptotics of (the coefficients

of) the corresponding generating functions. In Section 4, we apply these techniques to study

the cycle counts, the total number of cycles and also the asymptotics of lexicographically

ordered cycles. In Section 5, we study the asymptotic statistics of long cycles. Finally, we

compare our surrogate-spatial model with the original spatial model in Section 6.

2. PRELIMINARIES

2.1. Generating functions. We use the standard notation Z and N for the sets of integer

and natural numbers, respectively, and also denote N0 := {j ∈ Z : j ≥ 0} = {0} ∪ N.

For a sequence of complex numbers (aj)j≥0, its (ordinary) generating function is defined

as the (formal) power series

g(z) :=
∞∑

j=0

ajz
j, z ∈ C. (2.1)

As usual [15, §I.1, p. 19], we define the extraction symbol [zj ] g(z) := aj , that is the coeffi-

cient of zj in the power series expansion (2.1) of g(z).
The following simple lemma known as Pringsheim’s Theorem (see, e.g., [15, Theorem

IV.6, p. 240]) is important in the singularity analysis of asymptotic enumeration problems,

where generating functions with non-negative coefficients are usually involved.

Lemma 2.1. Assume that aj ≥ 0 for all j ≥ 0, and let the series expansion (2.1) have a

finite radius of convergence R. Then the point z = R is a singularity of the function g(z).

The generating functions with the coefficients (aj/j) (cf. gθ(z) and gκ(z) introduced in

(1.20)) are instrumental in the context of permutation cycles due to the following important

result. Recall that the cycle counts Cj = Cj(σ) are defined as the number of cycles of length

j ∈ N in the cycle decomposition of permutation σ ∈ SN (see the Introduction). The next
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well-known identity is a special case of the general Pólya’s Enumeration Theorem [29, §16,

p. 17]; we give its proof for the reader’s convenience (cf., e.g., [24, p. 5]).

Lemma 2.2. Let (aj)j∈N be a sequence of (real or complex) numbers. Then there is the

following (formal) power series expansion

exp

( ∞∑

j=1

ajz
j

j

)
=

∞∑

n=0

zn

n!

∑

σ∈Sn

n∏

j=1

a
Cj

j , (2.2)

whereCj = Cj(σ) are the cycle counts. If either of the series in (2.2) is absolutely convergent

then so is the other one.

Proof. Dividing all permutations σ ∈ Sn into classes with the same cycle type (cj) :=
(c1, . . . , cn), that is, such that Cj(σ) = cj (j = 1, . . . , n), we have

∑

σ∈Sn

n∏

j=1

a
Cj

j =
∑

(cj)

N(cj)

n∏

j=1

a
cj

j , (2.3)

where
∑

(cj)
means summation over non-negative integer arrays (cj) satisfying the condition∑n

j=1 jcj = n (see (1.1)), and N(cj) denotes the number of permutations with cycle type

(cj).
Furthermore, allocating the elements 1, . . . , n to form a given cycle type (cj) and taking

into account that (i) each cycle is invariant under cyclic rotations (thus reducing the ini-

tial number n! of possible allocations by a factor of
∏n

j=1 j
cj ), and (ii) cycles of the same

length can be permuted among themselves (which leads to a further reduction by a factor of∏n
j=1 cj! ), it is easy to obtain Cauchy’s formula (see, e.g., [1, §1.1])

N(cj) =
n!∏n

j=1 j
cjcj!

. (2.4)

Hence, using (2.3) and (2.4) and noting that zn =
∏n

j=1 z
jcj , the right-hand side of (2.2) is

rewritten as

1 +
∞∑

n=1

n∏

j=1

1

cj!

(
ajz

j

j

)cj

=
∞∏

j=1

∞∑

k=0

1

k!

(
ajz

j

j

)k

=
∞∏

j=1

exp

(
ajz

j

j

)
,

which coincides with the left-hand side of (2.2).

The second claim of the lemma follows by the dominated convergence theorem. �

Lemma 2.2 can be used to obtain a convenient expression for the normalization constant

HN involved in the definition of the surrogate-spatial measure P̃N (see (1.5), (1.6)). More

generally, set h0(N) := 1 and

hn(N) :=
1

n!

∑

σ∈Sn

n∏

j=1

(θj +Nκj)
Cj , n ∈ N. (2.5)

In particular (see (1.6)) we have HN = hN(N). By Lemma 2.2 (with aj = θj + Nκj), it is

immediately seen that the generating function of the sequence (hn(N))n∈N0
is given by

∞∑

n=0

hn(N)zn = exp

{ ∞∑

j=1

θj +Nκj

j
zj

}
≡ eGN (z), (2.6)
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where we define the function

GN(z) := gθ(z) +Ngκ(z), (2.7)

with the generating functions gθ(z) and gκ(z) defined in (1.20). Hence, the coefficients

hn(N) can be represented as

hn(N) = [zn] eGN (z), n ∈ N0. (2.8)

In particular, for n = N formula (2.8) specializes to

HN ≡ hN(N) = [zN ] eGN (z). (2.9)

2.2. Some simple properties of the cycle distribution. In what follows, we use the Poch-

hammer symbol (x)n for the falling factorials,

(x)n := x(x− 1) · · · (x− n+ 1) (n ∈ N), (x)0 := 1. (2.10)

Denote by ẼN the expectation with respect to the measure P̃N (see (1.5)).

Lemma 2.3. For each m ∈ N and any integers n1, . . . , nm ≥ 0, we have

ẼN

(
m∏

j=1

(Cj)nj

)
=
hN−Km

(N)

HN

m∏

j=1

(
θj +Nκj

j

)nj

, (2.11)

where Km :=
∑m

j=1 jnj and N ≥ Km.

Proof. Using the definitions of hn(N) and GN(z) (see (2.5) and (2.7), respectively), differ-

entiate the identity (2.6) nj times with respect to θj for all j = 1, . . . ,m to obtain

∞∑

n=0

zn

n!

∑

σ∈Sn

m∏

j=1

(Cj)nj

n∏

i=1

(θi +Nκi)
Ci = eGN (z)

m∏

j=1

(θj +Nκj)
nj

(
zj

j

)nj

. (2.12)

Extracting the coefficient [zN ](·) on both sides of (2.12) and using (1.5) we get

ẼN

(
m∏

j=1

(Cj)nj

)
=

1

N !HN

∑

σ∈SN

m∏

j=1

(Cj)nj

N∏

i=1

(θi +Nκi)
Ci

=
1

HN

[zN ]

(
eGN (z)

m∏

j=1

(
θj +Nκj

j

)nj

zjnj

)

=
m∏

j=1

(
θj +Nκj

j

)nj [zN−Km ] exp{GN(z)}
HN

,

and formula (2.11) follows on using (2.8). �

Next, let TN be the total number of cycles,

TN :=
N∑

j=1

Cj. (2.13)

Lemma 2.4. For each v > 0, the probability generating function of TN is given by

ẼN(vTN ) =
1

HN

[zN ] exp{vGN(z)}, (2.14)

where the expansion of the function z 7→ exp{vGN(z)} on the right-hand side of (2.14) is

understood as a formal power series.



10 L.V. BOGACHEV AND D. ZEINDLER

Proof. By definition of the measure P̃N (see (1.5)) we have

ẼN(vTN ) =
1

N !HN

∑

σ∈SN

vC1+···+CN

N∏

j=1

(θj +Nκj)
Cj

=
1

N !HN

∑

σ∈SN

N∏

j=1

(vθj +Nvκj)
Cj .

The last sum is analogous to the expression (2.5), only with θj and κj replaced by vθj and

vκj , respectively. Hence, formula (2.8) may be used with vGN(z) in place of GN(z), thus

readily yielding (2.14). �

One convenient way to list the cycles (and their lengths) is via the lexicographic ordering,

that is, by tagging them with a suitable increasing subsequence of elements starting from 1.

Definition 2.1. For permutation σ ∈ Sn decomposed as a product of cycles, let L1 =
L1(σ) be the length of the cycle containing element 1, L2 = L2(σ) the length of the cycle

containing the smallest element not in the previous cycle, etc. The sequence (Lj) is said to

be lexicographically ordered.

It is easy to compute the joint (finite-dimensional) distribution of the lengths Lj .

Lemma 2.5. For each m ∈ N and any ℓ1, . . . , ℓm ∈ N (with ℓ0 := 0), we have

P̃N{L1 = ℓ1, . . . , Lm = ℓm} =
m∏

j=1

θℓj
+Nκℓj

N − ℓ1 − · · · − ℓj−1

· hN−ℓ1−···−ℓm
(N)

HN

. (2.15)

In particular, for m = 1

P̃N{L1 = ℓ} =
θℓ +Nκℓ

N
· hN−ℓ(N)

HN

. (2.16)

Proof. Note that there are (N−1) · · · (N−ℓ+1) = (N−1)ℓ−1 cycles of length ℓ containing

the element 1, and the choice of such a cycle does not influence the cycle lengths of the

remaining cycles. Using the definition (2.5) of hn(N) we get

P̃N{L1 = ℓ} =
(N − 1)ℓ−1(θℓ +Nκℓ) · (N − ℓ)!hN−ℓ(N)

N !HN

=
θℓ +Nκℓ

N
· hN−ℓ(N)

HN

,

which proves the lemma for m = 1 (see (2.16)). Similarly, for m = 2

P̃N{L1 = ℓ1, L2 = ℓ2} = (N − 1)ℓ1−1(θℓ1 +Nκℓ1) · (N − ℓ1 − 1)ℓ2−1(θℓ2 +Nκℓ2)

× (N − ℓ1 − ℓ2)!
hN−ℓ1−ℓ2(N)

N !HN

=
(θℓ1 +Nκℓ1)(θℓ2 +Nκℓ2)

N(N − ℓ1)
· hN−ℓ1−ℓ2(N)

HN

(2.17)

(cf. (2.15)). The general case m ∈ N is handled in the same manner. �
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3. ASYMPTOTIC THEOREMS FOR THE GENERATING FUNCTION

In this section, we develop complex-analytic tools for computing the asymptotics of the

coefficient hN(N) = HN in the power series expansion of exp{GN(z)} (see (2.8)). More

generally, it is useful to consider expansions of the function exp{vGN(z)}, with some pa-

rameter v > 0. From Lemma 2.3 it is clear that the case v = 1 is of primary importance,

but Lemma 2.4 suggests that information for v ≈ 1 will also be needed for the sake of limit

theorems for cycles (see Sections 4 and 5). General considerations in Sections 3.1–3.4 below

are illustrated by a few important examples (Section 3.5).

3.1. Preliminaries and motivation. Let us introduce notation for the “modified” deriva-

tives of a function z 7→ g(z),

g{n}(z) := zn dng(z)

dzn
, n ∈ N0. (3.1)

For the generating functions gθ(z), gκ(z) (see (1.20)) it is easy to see that, for each n ∈ N,

g
{n}
θ (z) =

∞∑

j=1

(j − 1)n−1 θj z
j, g{n}κ (z) =

∞∑

j=1

(j − 1)n−1κj z
j, (3.2)

where (·)n−1 is the Pochhammer symbol defined in (2.10).

Let R > 0 (possibly R = +∞) be the radius of convergence of the power series gκ(z),

and hence of each of its (modified) derivatives g
{n}
κ (z). If R <∞ then, according to Prings-

heim’s Theorem (see Lemma 2.1), z = R is a point of singularity of gκ(z) (and each g
{n}
κ (z),

see (3.2)). We write g
{n}
κ (R) := limr↑R g

{n}
κ (r), with g

{n}
κ (R) := +∞ if this limit is diver-

gent. For r ∈ (0, R], let us also denote

b1(r) := g{1}κ (r) > 0, b2(r) := g{1}κ (r) + g{2}κ (r) > 0. (3.3)

The following simple lemma will be useful.

Lemma 3.1. For any r ∈ (0, R],

b1(r) ≤
√
gκ(r) b2(r) , (3.4)

where the inequality is in fact strict unless κj = 0 for all j ≥ 2.

Proof. Using the expression (3.2) for the modified derivatives of gκ and applying the Cauchy–

Schwarz inequality, we have

g{1}κ (r) =
∞∑

j=1

κj r
j =

∞∑

j=1

(
κj r

j

j

)1/2(
jκj r

j
)1/2

≤
( ∞∑

j=1

κj r
j

j

)1/2( ∞∑

j=1

jκj r
j

)1/2

=
√
gκ(r) ·

√
g
{1}
κ (r) + g

{2}
κ (r) ,

and the inequality (3.4) follows in view of the notation (3.3). The equality is only possible

when κj/j = jκj for all j ≥ 1, which implies that κj ≡ 0 for j ≥ 2. �

To avoid trivial complications (or simplifications), let us impose
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Assumption 3.1. The sequence (κj) is assumed to be non-arithmetic, that is, there is no

integer j0 > 1 such that the inequality κj 6= 0 would imply that j is a multiple of j0. We also

suppose that (κj) is non-degenerate, in that κj > 0 for some j ≥ 2.

Remark 3.1. The assumption of non-arithmeticity simplifies the analysis by ensuring there is

a unique maximum of (the real part of) the generating function gκ(z) (see Lemma 3.2 below).

However, a more general case (with multiple maxima) can be treated as well, without too

much difficulty. Note also that in the original spatial model (see (1.18), (1.19)) all coefficients

κj are positive, hence such a sequence (κj) is automatically non-arithmetic.

In what follows, ℜ(w) denotes the real part of a complex number w ∈ C, and arg(w) ∈
(−π, π] is the principal value of its argument.

Lemma 3.2. (a) Under Assumption 3.1, for each r ∈ (0, R) there is a unique maximum of

the function t 7→ ℜ(gκ(re
it)) over t ∈ [−π, π], attained at t = 0 and equal to gκ(r). If

gκ(R) <∞ then this claim is also true with r = R.

(b) The same statements hold for the function t 7→ ℜ(g
{1}
κ (reit)), t ∈ [−π, π].

Proof. (a) Since the coefficients κj are non-negative, t = 0 is always a point of global

maximum of the function t 7→ ℜ(gκ(re
it)). It is easy to see that the uniqueness of this

maximum over t ∈ [−π, π] is equivalent to the property that gκ(·) cannot be written as

gκ(z) = f(zj0) with a holomorphic function f(·) and some integer j0 > 1, and the latter is

true because the sequence (κj) is non-arithmetic due to Assumption 3.1.

(b) The same considerations are valid for the function g
{1}
κ (z) =

∑∞
j=1 κjz

j which is again

a power series with non-negative non-arithmetic coefficients. �

Remark 3.2. The uniqueness part of Lemma 3.2(b) may fail for g
{n}
κ (z) with n ≥ 2, because

the non-arithmeticity property may cease to hold, like in the following example: κ1 > 0,

κ2j > 0, κ2j+1 = 0 (j ∈ N).

Remark 3.3. Lemma 3.2 is akin to the “Daffodil Lemma” in [15, §IV.6.1, Lemma IV.1,

p. 266], but the latter deals with the maximum of the absolute value rather than the real part.

Setting z = reit with r = |z| < R, t = arg(z) ∈ (−π, π], let us consider the Taylor

expansion of gκ(z) near z0 = r with respect to t,

gκ(re
it) = gκ(r) + itb1(r) − 1

2
t2b2(r) + o(t2), t→ 0, (3.5)

where b1(r), b2(r) are defined in (3.3). Note that g
{1}
κ (0) = 0 and the function r 7→ g

{1}
κ (r) is

real analytic and strictly increasing for r ≥ 0 (of course, provided that gκ(z) is not identically

zero). Thus, the inverse of g
{1}
κ (r) exists for 0 < r ≤ R. For v ≥ 1/g

{1}
κ (R), let rv be the

(unique) solution of the equation

g{1}κ (r) = v−1, 0 < r ≤ R. (3.6)

In particular, for v = 1/g
{1}
κ (R) we have rv = R.

Definition 3.2. The cases g
{1}
κ (R) > 1 and g

{1}
κ (R) < 1 are termed “subcritical” and “su-

percritical”, respectively.

This terminology will be justified in Section 4 below, in particular by Theorem 4.2, where

we will demonstrate that the limiting fraction of points in infinite cycles is positive if and

only if g
{1}
κ (R) < 1. In Section 6, it will also be shown that the dichotomy in Definition 3.2
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corresponds to the cases ρ̃ < ρ̃c and ρ̃ > ρ̃c, respectively, with ρ̃ standing for the system

“density” (see Section 6.2 below).

The analytical reason for such a distinction becomes clear from the following observation.

Proceeding from the expression (2.9) for HN , with the function GN(z) defined in (2.7),

Cauchy’s integral formula with the contour γ := {z = reit, t ∈ [−π, π]} (r < R) gives

[zN ] exp{GN(z)} =
1

2πi

∮

γ

exp{GN(z)}
zN+1

dz

=
1

2πi

∮

γ

exp{gθ(z)}
z

exp
{
N
(
gκ(z) − log z

)}
dz. (3.7)

Hence, the classical saddle point method (see, e.g., [10, Ch. 5]) suggests that the asymptotics

of the integral (3.7) are determined by the maximum of the function z 7→ ℜ(gκ(z) − log z).
In turn, by Lemma 3.2(a) this is reduced to finding the maximum of the function r 7→
gκ(r) − log r for real r > 0, leading to the equation

g′κ(r) −
1

r
= 0 ⇔ g{1}κ (r) = 1,

which, in view of Lemma 3.2(b), is solvable if and only if g
{1}
κ (R) ≥ 1.

3.2. The subcritical case. In what follows, we shall frequently use a standard shorthand

aN ∼ bN for limN→∞ aN/bN = 1, or equivalently aN = bN(1 + o(1)). The same symbol ∼
will have a similar meaning for other limits (e.g., as z ↑ R).

Theorem 3.3. Assume that the generating functions gθ(z) and gκ(z) both have radius of

convergence R > 0, and suppose that 1 < g
{1}
κ (R) ≤ ∞. Let f(z) be a function holo-

morphic in the open disk |z| < R. Then, uniformly in v ∈ [v1, v2] with arbitrary constants

v2 > 1 > v1 > 1/g
{1}
κ (R), we have

[zN ]
[
f(z) exp{vGN(z)}

]
∼ f(rv) exp{vGN(rv)}

rN
v

√
2πNvb2(rv)

, N → ∞, (3.8)

where b2(r) and rv are defined in (3.3) and (3.6), respectively. In particular,

HN ∼ exp{gθ(r1) +Ngκ(r1)}
rN
1

√
2πNb2(r1)

, N → ∞. (3.9)

Proof. First of all, according to (2.9) formula (3.9) readily follows from (3.8) by setting

f(z) ≡ 1 and v = 1, whereby rv|v=1 = r1. To handle the general case, apply Cauchy’s

integral formula with the contour γ := {z = rveit, t ∈ [−π, π]} to obtain

[zN ]
[
f(z) exp{vGN(z)}

]
=

1

2πi

∮

γ

f(z) exp{vGN(z)}
zN+1

dz

=
1

2π

∫ π

−π

f(rveit) exp
{
vgθ(rveit) + itn

}

rN
v

exp
{
N
(
vgκ(rveit) − it

)}
dt

=:
1

2π

(
I 1

N + I 2
N + I 3

N

)
, (3.10)

where I 1
N , I 2

N and I 3
N are the corresponding integrals arising upon splitting the interval

[−π, π] into three parts, with |t| ∈ [0, tN ] ∪ [tN , δ] ∪ [δ, π]. Choosing tN = N−β with
1
3
< β < 1

2
and δ > 0 small enough, we estimate each of the integrals in (3.10) as follows.
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(i) By Taylor’s expansion (3.5) at r = rv, with b1(rv) = v−1 (see (3.3), (3.6)), we have

I 1
N =

f(rv) exp{vGN(rv)}
rN
v

∫ tN

−tN

exp
{
−1

2
Nt2vb2(rv) +O(Nt3)

}
dt. (3.11)

On the change of variables s =
√
N t, the integral in (3.11) becomes

1√
N

∫ √
N tN

−
√

N tN

exp
{
−1

2
vb2(rv)s

2 +O(N−1/2s3)
}

ds

=
exp{O(Nt3N)}√

N

∫ √
N tN

−
√

N tN

exp
{
−1

2
vb2(rv)s

2
}

ds ∼
√

2π

Nvb2(rv)
,

as long as Nt3N → 0. Hence, returning to (3.11) we get

I 1
N ∼ f(rv) exp{vGN(rv)}

rN
v

√
2π

Nvb2(rv)
, N → ∞. (3.12)

(ii) Similarly, using the expansion (3.5) for |t| ≤ δ we obtain

|I 2
N | = O(1)

exp{vGN(rv)}√
N rN

v

∫ ∞

√
NtN

exp
{
−1

2
vb2(rv)s

2
}

ds

= o(1)
exp{vGN(rv)}√

N rN
v

, (3.13)

as long as
√
N tN → ∞.

(iii) For |t| ≥ δ, by a simple absolute value estimate we have

|I 3
N | =

O(1)

rN
v

∫ π

δ

exp
{
−Nvℜ(gκ(rveit))

}
ds = O(1)

exp{−Nvµκ(δ)}
rN
v

, (3.14)

where, according to Lemma 3.2(a),

µκ(δ) := max
|t|∈[δ,π]

ℜ(gκ(rveit)) < gκ(rv).

Hence, the bound (3.13) is exponentially small as compared to (3.12), and so the contribution

from I 3
N is negligible.

Substituting the estimates (3.12), (3.13) and (3.14) into (3.10) yields the asymptotic for-

mula (3.8) for a fixed v > 0. Finally, it is easy to see that all O(·) and o(·) terms used above

are uniform in v ∈ [v1, v2], as claimed in the theorem. This completes the proof. �

3.3. The supercritical case.

3.3.1. The domain ∆0. Recall (see Definition 3.2) that the supercritical case occurs when

g
{1}
κ (R) < 1, whereby the equation g

{1}
κ (r) = 1 is no longer solvable. To overcome this

difficulty, we have to allow the contour of integration in Cauchy’s integral formula akin to

(3.7) to go outside the disk of convergence |z| < R. To make this idea more precise, we give

the following definition (see Fig. 2).

Definition 3.3. For η > 0 and ϕ ∈ (0, π
2
), define an open domain ∆0 = ∆0(R, η, ϕ) in the

complex plane by

∆0 :=
{
z ∈ C : |z| < |R (1 + η eiϕ)|, z 6= R, |arg(z −R)| > ϕ

}
.
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We also introduce the notation for the radius of the outer circle, R ′ := R |1 + η eiϕ|, and the

angle α := arg(1 + η eiϕ) ∈ (0, π/2), so that R (1 + η eiϕ) = R ′eiα.

0

|z| = R

|z| = R′

Rη

ϕα

FIGURE 2. Domain ∆0 = ∆0(R, η, ϕ).

Lemma 3.4. Suppose that Assumption 3.1 holds, and let gκ(z) be holomorphic in a domain

∆0 = ∆0(R, η, ϕ) as defined above, with g
{1}
κ (R) < ∞. Then there exist constants δ > 0,

ε > 0 such that, for all z ∈ ∆0 with R ≤ |z| ≤ R(1 + δ), |arg(z)| ≥ δ,

ℜ(gκ(z)) ≤ gκ(R) +
(
g{1}κ (R) − ε

)
log

|z|
R
. (3.15)

Proof. By Lemma 3.2(b), if |z| = R and z 6= 0 then

ℜ(g{1}κ (z)) < g{1}κ (R). (3.16)

Along with gκ(z), the function z 7→ ℜ(g
{1}
κ (z)) is also analytic in ∆0, and in particular it

is continuous in a vicinity of the punctured circle {|z| = R, z 6= R} ⊂ ∆0. Hence, by a

compactness argument the inequality (3.16) also holds on a closed domain

∆δ := ∆0 ∩ {z : R ≤ |z| ≤ R(1 + δ), |arg(z)| ≥ δ},
with δ > 0 small enough. Moreover, by the continuity of ℜ(g

{1}
κ (z)) the strict inequality

(3.16) implies that

ε := g{1}κ (R) − sup
z∈∆δ

ℜ(g{1}κ (z)) > 0.

Therefore, for any z = reit ∈ ∆δ we have
∫ r

R

ℜ
(
g{1}κ (ueit)

) du

u
≤
∫ r

R

(
g{1}κ (R) − ε

) du

u
=
(
g{1}κ (R) − ε

)
log

|z|
R
. (3.17)

On the other hand,
∫ r

R

ℜ
(
g{1}κ (ueit)

) du

u
= ℜ

(∫ r

R

∂

∂u
gκ(ueit) du

)
= ℜ

(
gκ(z) − gκ(Reit)

)
. (3.18)

Hence, combining (3.17) and (3.18) we obtain

ℜ(gκ(z)) ≤ ℜ(gκ(R eit)) +
(
g{1}κ (R) − ε

)
log

|z|
R
,

and the inequality (3.15) readily follows in view of Lemma 3.2(a). �
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Motivated by the model choice θj = const ≥ 0 (see Section 3.5.2 below), in the su-

percritical asymptotic theorems that follow we allow the generating function gθ(z) to have a

logarithmic singularity at z = R, of the form gθ(z) ∼ −θ∗ log (1−z/R) as z → R (z ∈ ∆0).

It turns out that there is a significant distinction between the cases θ∗ > 0 and θ∗ = 0.

3.3.2. Case θ∗ > 0. We first handle the case with a non-degenerate log-singularity of gθ(z).

Theorem 3.5. Let the generating functions gθ(z) and gκ(z) both have radius of convergence

R > 0 and be holomorphic in some domain∆0 as in Definition 3.3. Assume that g
{1}
κ (R) < 1

and the following asymptotic formulas hold as z → R (z ∈ ∆0), with some θ∗ ≥ 0, δ > 0,

gθ(z) = −θ∗ log (1 − z/R) +O
(
(1 − z/R)δ

)
, (3.19)

gκ(z) = gκ(R) − g{1}κ (R)(1 − z/R) +O
(
(1 − z/R)1+δ

)
. (3.20)

Finally, let f : ∆0 → C be a holomorphic function such that for some β ≥ 0

f(z) = (1 − z/R)−β
{
1 +O

(
(1 − z/R)δ

)}
, z → R (z ∈ ∆0). (3.21)

Then, provided that vθ∗ + β > 0, we have, as N → ∞,

[zN ]
[
f(z) exp{vGN(z)}

]
∼ exp{Nvgκ(R)} ·

{
N (1 − vg

{1}
κ (R))

}vθ∗+β−1

RN Γ(vθ∗ + β)
, (3.22)

uniformly in v ∈ [v1, v2] for any 0 < v1 < 1 < v2 < 1/g
{1}
κ (R). In particular, for θ∗ > 0

HN ∼ exp{Ngκ(R)} ·
{
N (1 − g

{1}
κ (R))

}θ∗−1

RN Γ(θ∗)
, N → ∞. (3.23)

Proof. In view of the identity (2.9), formula (3.23) is obtained from (3.22) by setting f(z) ≡
1 (so that β = 0) and v = 1. Let us also observe that, according to (3.19) and (3.21),

vgθ(z) + log f(z) = −(vθ∗ + β) log(1 − z/R) +O
(
(1 − z/R)δ

)
.

Thus, accounting for the pre-exponential factor f(z) just leads to the change vθ∗ 7→ vθ∗+β.

With this in mind, it suffices to consider the basic case β = 0 (but now with θ∗ > 0).

Without loss of generality, we may and will assume (by slightly reducing the original

domain ∆0 if necessary) that both gθ(z) and gκ(z) are continuous on the boundary of ∆0

except at z = R. By virtue of Lemma 3.4 (and again reducing ∆0 as appropriate), we may

also assume that the inequality (3.15) is fulfilled for all z ∈ ∆0 such that R ≤ |z| ≤ R ′ and

|arg(z)| ≥ δ0, with some δ0 > 0, where R ′ = R |1 + η eiϕ| (see Definition 3.3).

Consider a continuous closed contour γ = γ1 ∪ γ2 ∪ γ3 ∪ γ4 (see Fig. 3(a)), where

γ1 :=
{
z = R (1 + (η − x) e−iϕ), x ∈ [0, η −N−1]

}
,

γ2 :=
{
z = R (1 +N−1e−it), t ∈ [ϕ, 2π − ϕ]

}
,

γ3 :=
{
z = R (1 + xeiϕ), x ∈ [N−1, η ]

}
,

γ4 :=
{
z = R ′eit, t ∈ [α, 2π − α]

}
.

(3.24)
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0

|z| = R

|z| = R′

γ1

γ2

γ3

γ4

(a) γ = γ1 ∪ γ2 ∪ γ3 ∪ γ4

0

γ′

1

γ′

2

γ′

3

(b) γ
′
= γ

′

1
∪ γ

′

2
∪ γ

′

3

0

γ′′

1

γ′′

2

γ′′

3

(c) γ
′′

= γ
′′

1
∪ γ

′′

2
∪ γ

′′

3

FIGURE 3. Contours used in the proof of Theorem 3.5.

According to the chosen parameterization in (3.24), the contour γ is traversed anti-clockwise.

Then Cauchy’s integral formula yields

[zN ] exp{vGN(z)} =
1

2πi

(∫

γ1

+ · · · +
∫

γ4

)
exp{vGN(z)}

zN+1
dz

=:
1

2πi

(
I 1

N + · · · + I 4
N

)
. (3.25)

Now, we estimate each of the integrals in (3.25). Denote for short

d1 := 1 − vg{1}κ (R) > 0. (3.26)

(i) Let us first show that the integral I 4
N over the circular arc γ4 (see (3.24)) is negligible

as N → ∞. Indeed, by an absolute value inequality we have

|I 4
N | ≤

∫

γ4

exp{vℜ(GN(z))}
|z|N+1

d|z|

≤ 2π

(R ′)N
exp

{
vµθ(R

′) +Nvµκ(R
′)
}
, (3.27)

where µθ(R
′) := maxz∈γ4

ℜ(gθ(z)) <∞ and, by Lemma 3.4,

µκ(R
′) := max

z∈γ4

ℜ(gκ(z)) ≤ gκ(R) + g{1}κ (R) · log
R ′

R
. (3.28)

Hence, the right-hand side of the bound (3.27) is further estimated by

O(1)

(R ′)N
exp

{
Nv

(
gκ(R) + g{1}κ (R) · log

R ′

R

)}

=
O(1) exp{Nvgκ(R)}

RN
exp

{
−Nd1 log

R ′

R

}
(3.29)

(see the notation (3.26)), which is exponentially small as compared to the right-hand side of

(3.22), thanks to the inequalities R ′/R > 1 and d1 > 0. Thus,

I 4
N = o(1)

exp{Nvgκ(R)}
RNN1−vθ∗

, N → ∞. (3.30)
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(ii) For z ∈ γ2 (see (3.24)), we have

z = R (1 + wN−1), w ∈ γ ′
2 :=

{
e−it, t ∈ [ϕ, 2π − ϕ]

}
. (3.31)

Then formulas (3.19) and (3.20) yield the uniform asymptotics, as N → ∞,

gθ(z) = −θ∗ log (−wN−1) +O
(
(w/N)δ

)
, (3.32)

gκ(z) = gκ(R) + g{1}κ (R)wN−1 +O
(
(w/N)1+δ

)
. (3.33)

We also have

1

zN+1
=

1

RN+1
exp

{
−(N + 1) log(1 + wN−1)

}

=
1

RN+1
exp

{
−w +O(wN−1)

}
, N → ∞. (3.34)

Collecting (3.32), (3.33) and (3.34), we obtain from (3.25) via the change of variables (3.31)

I 2
N ∼ exp{Nvgκ(R)}

RNN1−vθ∗

∫

γ′

2

(−w)−vθ∗e−d1w dw. (3.35)

(iii) By the symmetry between the contours γ1 and γ3, it is easy to see that the corre-

sponding integrals −I 1
N and I 3

N are complex conjugate to one another. Hence, it suffices to

consider, say, I 3
N . Similarly to (3.31), we reparameterize the contour γ3 (see (3.24)) as

z = R (1 + wN−1), w ∈ γ ′
3,N :=

{
xeiϕ, x ∈ [1, Nη ]

}
. (3.36)

Let us split the contour γ ′
3,N into three parts corresponding to x ∈ [1, xN ] ∪ [xN , Nη0] ∪

[Nη0, Nη ], with xN → ∞, xN = o(N) as N → ∞, and denote the respective parts of the

integral I 3
N by I 3 ′

N , I 3 ′′

N and I 3 ′′′

N . Because the substitutions (3.31) and (3.36) are formally

identical to one another, it is clear that the estimates (3.32), (3.33) and (3.34) hold true for

(3.36) and, moreover, are uniform in w such that |w| ≤ Nη0, with η0 > 0 small enough.

Hence, the asymptotics of the integral I 3 ′

N is given by a formula analogous to (3.35),

I 3 ′

N ∼ exp{Nvgκ(R)}
RNN1−vθ∗

∫

γ′

3

(−w)−vθ∗e−d1w dw, (3.37)

where (cf. (3.36))

γ ′
3 := lim

N→∞
γ′3,N =

{
w = xeiϕ, x ∈ [1,∞)

}
. (3.38)

Similarly, the integral I 3 ′′

N is asymptotically estimated as

I 3 ′′

N =
O(1) exp{Nvgκ(R)}

RNN1−vθ∗

∫ Nη0

xN

exp{−d1x cosϕ}
xvθ∗

dx

=
O(1) exp{Nvgκ(R)}

RNN1−vθ∗
· exp{−d1xN cosϕ}

(xN)vθ∗

= o
(
I 3 ′

N

)
, N → ∞, (3.39)

provided that xN → ∞ and d1 > 0 (see (3.26)).

By the continuity of gθ(·), for z in (3.36) with |w| ∈ [Nη0, Nη ] there is a uniform bound

ℜ(gθ(z)) = O(1). (3.40)

On the other hand, the estimate (3.15) of Lemma 3.4 takes the form

ℜ(gκ(z)) ≤ gκ(R) + g{1}κ (R) · log |1 + wN−1|, (3.41)
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whereby

log
∣∣∣1 +

w

N

∣∣∣ =
1

2
log

(
1 +

2|w| cosϕ

N
+

|w|2
N2

)
=

|w| cosϕ

N
+O(|w|2N−2). (3.42)

Hence, using (3.34) and (3.40)–(3.42) we can adapt the estimation in (3.39) to obtain

I 3 ′′′

N =
O(1) exp{Nvgκ(R)}

RNN

∫ Nη

Nη0

exp{−d1x cosϕ} dx

=
O(1) exp{Nvgκ(R)}

RNN
exp{−d1Nη0 cosϕ}

= o
(
I 3 ′

N

)
, N → ∞, (3.43)

because cosϕ > 0 and d1 > 0 (see (3.26)).

As a result, combining the asymptotic formulas (3.37), (3.39) and (3.43) we get

I 3
N ∼ exp{Nvgκ(R)}

RNN1−vθ∗

∫

γ′

3

(−w)−vθ∗e−d1w dw. (3.44)

Finally, collecting the contributions from I 1
N , . . . , I 4

N (see (3.30), (3.35) and (3.44)) and

returning to (3.25) yields, upon the change of the integration variable d1w 7→ w,
∮

γ

exp{vGN(z)}
zN+1

dz ∼ exp{Nvgκ(R)}
RNN1−vθ∗

(d1)
vθ∗−1

∫

eγ ′

(−w)−vθ∗e−w dw, (3.45)

with γ̃ ′ := d1γ
′, where γ ′ = γ ′

1 ∪ γ ′
2 ∪ γ ′

3 is defined via (3.31) and (3.38) (see Fig. 3(b)).

The integral on the right-hand side of (3.45) can be explicitly computed. Indeed, by virtue

of a simple estimate
∣∣(−w)−vθ∗e−w

∣∣ ≤ |w|−vθ∗ exp{−|w| cos arg(w)},
one can apply a standard contour transformation argument to replace the contour γ̃ ′ in (3.45)

by the “loop” contour γ ′′ starting from +∞ − ic, winding clockwise about the origin and

proceeding towards +∞ + ic (see Fig. 3(c)), which leads to the equality
∫

γ′

(−w)−vθ∗e−w dw =

∫

γ′′

(−w)−vθ∗e−w dw =
2πi

Γ(vθ∗)
, (3.46)

according to the well-known Hankel’s loop representation of the reciprocal gamma function

(see, e.g., [15, §B.3, Theorem B.1, p. 745]). This completes the proof of Theorem 3.5. �

3.3.3. Case θ∗ = 0. Note that the deceptively simple case θj ≡ 0 (leading to θ∗ = 0 in

(3.19)) is not covered by Theorem 3.5, unless β > 0. The reason is that, in the lack of a

logarithmic singularity of gθ(z) at z = R, the main term in the asymptotic formula (3.22)

vanishes (as suggested by the formal equality 1/Γ(0) = 0). Thus, in the case θ∗ = 0 the

singularity of gκ(z) at z = R should become more prominent in the asymptotics. The full

analysis of the competing contributions from the singularities of gθ(z) and gκ(z) can be

complicated (however, see Remark 3.4 below), so for simplicity let us focus on the role of

gκ(z) assuming that gθ(z) is regular (e.g., gθ(z) ≡ 0).

Theorem 3.6. Let the generating function gκ(z) have radius of convergence R > 0 and be

holomorphic in a domain∆0 as in Definition 3.3. Assume that g
{1}
κ (R) < 1 and, furthermore,
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there is a non-integer s > 1 such that g
{n}
κ (R) < ∞ for all n < s while g

{n}
κ (R) = ∞ for

n > s, and the following asymptotic expansion holds as z → R (z ∈ ∆0),

gκ(z) =
∑

0≤n<s

(−1)ng
{n}
κ (R)

n!
(1 − z/R)n + as (1 − z/R)s +O

(
(1 − z/R)s+δ

)
, (3.47)

with some as > 0, δ > 0. As for the generating function gθ(z), it is assumed to be holomor-

phic in the domain ∆0 and, moreover, regular at point z = R. Finally, let f : ∆0 → C be a

holomorphic function such that, with some β > 0 and cβ > 0, as z → R (z ∈ ∆0),

f(z) = 1 +
∑

1≤n<β

(−1)nf {n}(R)

n!
(1− z/R)n + cβ (1− z/R)β +O

(
(1− z/R)β+δ

)
. (3.48)

Then, depending on the relationship between s and β, the following asymptotics hold as

N → ∞, uniformly in v ∈ [v1, v2] for any 0 < v1 < 1 < v2 < 1/g
{1}
κ (R).

(i) If β > s− 1 then

[zN ]
[
f(z) evGN (z)

]
∼ evGN (R) vas

{
N (1 − vg

{1}
κ (R))

}−s

RN Γ(−s)
(
1 − vg

{1}
κ (R)

) . (3.49)

(ii) If β is non-integer and β < s− 1 then

[zN ]
[
f(z) evGN (z)

]
∼ evGN (R) cβ

{
N (1 − vg

{1}
κ (R))

}−β−1

RN Γ(−β)
. (3.50)

(iii) If β = s− 1 then

[zN ]
[
f(z) evGN (z)

]
∼ evGN (R)

{
N (1 − vg

{1}
κ (R))

}−s

RN

×
(

cβ
Γ(1 − s)

+
vas

Γ(−s)
(
1 − vg

{1}
κ (R)

)
)
. (3.51)

In particular,

HN ∼ eGN (R) as

{
N (1 − g

{1}
κ (R))

}−s

RN Γ(−s)
(
1 − g

{1}
κ (R)

) , N → ∞. (3.52)

Proof. The proof proceeds along the lines of the proof of Theorem 3.5, with suitable modi-

fications indicated below. In what follows, we may and will assume that 0 < δ < 1.

Under the change of variables z = R(1 + wN−1), with w ∈ γ ′
2 (see (3.31)), by virtue of

the expansions (3.47), (3.48) and the regularity of gθ(z) we obtain the uniform asymptotics

(cf. (3.32), (3.33))

gθ(z) = gθ(R) +

q∑

n=1

g
{n}
θ (R)

n!Nn
wn +O(N−q−1), (3.53)

gκ(z) = gκ(R) +

q∑

n=1

g
{n}
κ (R)

n!Nn
wn +

as(−w)s

N s
+O(N−s−δ), (3.54)

f(z) = 1 +
∑

1≤n<β

f {n}(R)

n!Nn
wn +

cβ (−w)β

Nβ
+O(N−β−δ),
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with q = ⌊s⌋ ≥ 1. We can also write (cf. (3.34))

1

zN+1
=

1

RN+1
exp

{
q+1∑

n=1

(−w)n

nNn−1
+O(N−q−1)

}
.

Substituting these expansions into the integral I 2
N over the contour γ2 (see (3.25)), we obtain

similarly to (3.35)

I 2
N ∼ evGN (R)

RNN

∫

γ′

2

[
1 + PN(w) + cβN

−β(−w)β +O(N−β−δ)
]

× exp
{
QN(w) + vasN

1−s(−w)s +O(N−s−δ)
}

× exp{−d1w} dw,

(3.55)

where d1 = 1 − vg
{1}
κ (R) > 0 (see (3.26)) and PN(w), QN(w) are polynomials in w,

PN(w) =
∑

1≤n<β

f {n}(R)

n!Nn
wn,

QN(w) = v

q∑

n=1

g
{n}
θ (R)

n!Nn
wn + v

q∑

n=2

g
{n}
κ (R)

n!Nn−1
wn + v

q∑

n=2

(−w)n

nNn−1
.

Noting that QN(w) = O(N−1) uniformly in w ∈ γ ′
2, we can Taylor expand the exponential

under the integral in (3.55) keeping the terms up to the order N1−s. Thus, we obtain

I 2
N ∼ evGN (R)

RNN

∫

γ′

2

[
RN(w) + vasN

1−s (−w)s + cβN
−β(−w)β

]
e−d1w dw,

where RN(w) is the resulting polynomial in w.

A similar estimation holds for the integral I 3
N (cf. (3.44)). As a result, we get (cf. (3.45))

∮

γ

evGN (z)

zN+1
dz ∼ evGN (R)

RNN

∫

γ ′

[
RN(w) + vasN

1−s (−w)s + cβN
−β(−w)β

]
e−d1w dw.

(3.56)

Since RN(w) is an entire function of w ∈ C, its contribution to the integral (3.56) vanishes,
∫

γ ′

RN(w) e−d1w dw = 0. (3.57)

Furthermore, changing the integration variable d1w 7→ w and transforming the contour γ ′ to

the loop contour γ ′′ (see before equation (3.46)), we obtain
∫

γ ′

(−w)s e−d1w dw = (d1)
−1−s

∫

γ ′′

(−w)s e−w dw = (d1)
−1−s 2πi

Γ(−s) , (3.58)

according to Hankel’s identity akin to (3.46) (see [15, §B.3, Theorem B.1, p. 745]). As for

the term (−w)β in (3.56), if β ∈ N then its contribution also vanishes (cf. (3.57)), but if β is

non-integer then, similarly to (3.58), we have
∫

γ ′

(−w)β e−d1w dw = (d1)
−1−β 2πi

Γ(−β)
. (3.59)

It remains to note that the contributions (3.58) and (3.59) enter the asymptotic formula (3.56)

with the weights N1−s and N−β , respectively, so the relationship between the exponents

s− 1 and β determines which of these two terms is the principal one in the limit as N → ∞.
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Accordingly, retaining one of the power terms in (3.56) (or both, if β = s− 1) and dividing

everything by 2πi (cf. (3.25)) , we arrive at formulas (3.49), (3.50) and (3.51), respectively.

Finally, formula (3.52) follows from (3.49) by setting f(z) ≡ 1, v = 1; note that in this

case the parameter β in (3.48) can be formally chosen to be any positive (integer) number,

e.g. bigger than s− 1, so formula (3.49) applies. �

Remark 3.4. Analogous considerations as in the proof of Theorem 3.6 can be used to handle

the case with a power-logarithmic term bs(1−z/R)s log (1−z/R) (bs 6= 0) added to the ex-

pansion (3.47) of gκ(z), where the index s > 1 is now allowed to be integer; this is motivated

by the choice κj := κ∗j−q with q ∈ N, leading to the polylogarithm gκ(z) = κ∗ Liq+1(z)
with the asymptotics (3.115) (see Section 3.5.2 below). Furthermore, the condition of regu-

larity of gθ(z) at z = R imposed in Theorem 3.6 is also not essential, and may be extended to

include a power singularity of the form ãs1
(1 − z/R)s1 (with ãs1

6= 0 and some non-integer

s1 > 0) and, possibly, a power-logarithmic singularity, similarly to what was said above

about gκ(z) (with any s1 > 0). We leave the details to the interested reader.

3.4. The critical case.

3.4.1. First theorems. Here g
{1}
κ (R) = 1, and the equation g

{1}
κ (r) = v−1 is still solvable for

all v ≥ 1, with the unique root rv ≤ R (see (3.6)). Thus, the same argumentation may be

applied as in the proof of Theorem 3.3, but for this to cover the case v = 1 one has to assume

that gθ(R) <∞, because the circle z = rv eit to be used in Cauchy’s integral formula passes

through the singularity z = R if v = 1 (with r1 = R). Recall that the function GN(z) is

defined in (2.6), and b2(r) is given by (3.3).

Theorem 3.7. Assume that both gθ(z) and gκ(z) have radius of convergence R > 0, with

gθ(R) < ∞, gκ(R) < ∞ and, moreover, g
{1}
κ (R) = 1, 0 < g

{2}
κ (R) < ∞. Let f(z) be a

function holomorphic in the open disk |z| < R and continuous up to the boundary |z| = R.

Then, uniformly in v ∈ [1, v0] with an arbitrary constant v0 ≥ 1, we have

[zN ]
[
f(z) exp{vGN(z)}

]
∼ f(rv) exp{vGN(rv)}

rN
v

√
2πNvb2(rv)

, N → ∞. (3.60)

In particular,

HN ∼ exp{GN(R)}
RN
√

2πNb2(R)
, N → ∞. (3.61)

Proof. Note that Taylor’s expansion (3.5) extends to r = R, with b1(R) = g
{1}
κ (R) = 1,

b2(R) = 1 + g
{2}
κ (R) <∞ (see (3.3)). Then, on account of the continuity of gθ(z) and f(z)

on each circle |z| = rv ≤ R, it is easy to check that the proof of Theorem 3.3 is valid with

any rv ≤ R, thus leading to (3.60) (cf. (3.8)). As before, formula (3.61) follows from (3.60)

by setting f(z) ≡ 1 and v = 1, making rv|v=1 = R. �

If gθ(z) has a logarithmic singularity at z = R, we can still use the same argumentation

as in Theorem 3.5 as long as v 6= 1.

Theorem 3.8. Assume that gθ(z) and gκ(z) both have radius of convergence R > 0 and are

holomorphic in some domain ∆0 as in Definition 3.3. Let g
{1}
κ (R) = 1, 0 < g

{2}
κ (R) < ∞,
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and suppose that for some θ∗ ≥ 0, δ > 0, as z → R (z ∈ ∆0),

gθ(z) = −θ∗ log (1 − z/R) +O
(
(1 − z/R)δ

)
, (3.62)

gκ(z) = gκ(R) − (1 − z/R) +
g
{2}
κ (R)

2
(1 − z/R)2 +O

(
(1 − z/R)2+δ

)
. (3.63)

Finally, let f : ∆0 → C be a holomorphic function such that for some β ≥ 0

f(z) = (1 − z/R)−β
{
1 +O

(
(1 − z/R)δ

)}
, z → R (z ∈ ∆0).

Then, as N → ∞,

(a) uniformly in v ∈ [v1, v2] with arbitrary v2 ≥ v1 > 1,

[zN ]
[
f(z) exp{vGN(z)}

]
∼ f(rv) exp{vGN(rv)}

rN
v

√
2πNvb2(rv)

; (3.64)

(b) uniformly in v ∈ [v1, v2] with arbitrary 0 < v1 ≤ v2 < 1, provided that vθ∗ + β > 0,

[zN ]
[
f(z) exp{vGN(z)}

]
∼ exp{Nvgκ(R)} · {N (1 − v)}vθ∗+β−1

RN Γ(vθ∗ + β)
. (3.65)

Proof. (a) Like in Theorem 3.7, we can use the proof of Theorem 3.3 as long as rv < R,

which is guaranteed by the condition v > 1.

(b) Here the proof of Theorem 3.5 applies as long as v < 1/g
{1}
κ (R) = 1 (cf. (3.22)). �

Note that, unlike Theorem 3.7, both parts (a) and (b) of Theorem 3.8 do not cover the value

v = 1 and so do not provide the asymptotics of HN . Moreover, the asymptotic expressions

on the right-hand side of (3.64) and (3.65) vanish as v → 1, which suggests that no uniform

statements are possible on intervals (even one-sided) that contain the point v = 1. Neverthe-

less, the case v = 1 can be handled by a more careful adaptation of the proof of Theorem 3.5.

First, we need to compute some complex integrals emerging in the asymptotics.

3.4.2. Two auxiliary integrals. Let γ ′ = γ ′
1 ∪ γ ′

2 ∪ γ ′
3 be a continuous contour composed of

the parts defined as follows (see Fig. 3(b)),

γ ′
1 :=

{
w = −ye−iϕ, y ∈ (−∞,−ǫ]

}
,

γ ′
2 :=

{
w = ǫe−it, t ∈ [ϕ, 2π − ϕ]

}
,

γ ′
3 :=

{
w = yeiϕ, y ∈ [ǫ,+∞)

}
,

(3.66)

with ϕ ∈ (π/4, π/2) and ǫ > 0. For any real parameter ξ, let us consider the contour integral

Jξ(σ) :=

∫

γ′

(−w)−σ exp{−ξw + w2} dw, σ ∈ C. (3.67)

The determination of (−w)−σ in (3.67) is defined by the principal branch when w is negative

real, and then extended uniquely by continuity along the contour. An absolute value estimate

gives for w ∈ γ ′
1 ∪ γ ′

3∣∣(−w)−σ exp{−ξw + w2}
∣∣ ≤ |w|−ℜ(σ) e|σ|π exp{−ξ|w| cosϕ+ |w|2 cos 2ϕ}, (3.68)

where cos 2ϕ < 0 according to the chosen range of ϕ. Hence, the integral (3.67) is absolutely

convergent for all complex s and, moreover, the function σ 7→ Jξ(σ) is holomorphic in

the entire complex plane C. An explicit analytic continuation from the domain ℜ(σ) < 0
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is furnished through the following functional equation (which can be easily obtained from

(3.67) by integration by parts),

2Jξ(σ) = (σ + 1)Jξ(σ + 2) − ξJξ(σ + 1), σ ∈ C.

From the estimate (3.68) it also follows that the integral (3.67) does not depend on the choice

of the angle ϕ and the arc radius ǫ > 0; in the computation below, we will choose ϕ = π/2
and take the limit ǫ→ 0.

It is straightforward to calculate a few values of Jξ(σ), such as

J0(−1) = 0, J0(1) = iπ, Jξ(0) = i
√
π e−ξ2/4 .

A general formula for the integral (3.67) is established in the next lemma.

Lemma 3.9. For any ξ ∈ R and all σ ∈ C, there is the identity

Jξ(σ) =
iπ exp{−ξ2/4}

Γ
(
(σ + 1)/2

)
Γ(σ/2)

∞∑

n=0

Γ

(
σ + n

2

)
ξn

n!
. (3.69)

In particular, for ξ = 0 we have

J0(σ) =
iπ

Γ
(
(σ + 1)/2

) , σ ∈ C. (3.70)

Proof. It suffices to prove (3.69) for real σ < 0 (an extension to arbitrary σ ∈ C will follow

by analytic continuation). As already mentioned, we can choose ϕ = π/2 in (3.66), so that

the parts of the original contour γ ′ = γ ′
1 ∪ γ ′

2 ∪ γ ′
3 take the form

γ ′
1 =

{
w = iy, y ∈ [−∞,−ǫ]

}
,

γ ′
2 =

{
w = ǫ e−it, t ∈ [π/2, 3π/2]

}
,

γ ′
3 =

{
w = iy, y ∈ [ǫ,+∞]

}
.

(3.71)

Here the parameter ǫ > 0 is arbitrary, and the idea is to send it to zero.

First of all, since we have assumed that −σ > 0, the integral over γ ′
2 vanishes as ǫ → 0.

Next, using the parameterization (3.71) of the contour γ ′
1 we compute

∫

γ ′

1

(−w)−σ exp{−ξw + w2} dw = i

∫ −ǫ

−∞
(−iy)−σ exp{−iξy − y2} dy

= i

∫ ∞

ǫ

(iy)−σ exp{iξy − y2} dy

= i
(
eiπ/2

)−σ
∫ ∞

ǫ

y−σ exp{iξy − y2} dy

→ i

∫ ∞

0

y−σ exp
{

i
(
ξy − πσ

2

)
− y2

}
dy, ǫ→ 0.

(3.72)
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A similar computation for γ ′
3 gives

∫

γ′

3

(−w)−σ exp{−ξw + w2} dw = i

∫ ∞

ǫ

(−iy)−σ exp{−iξy − y2} dy

= i
(
e−iπ/2

)−σ
∫ ∞

ǫ

y−σ exp{−iξy − y2} dy

→ i

∫ ∞

0

y−σ exp
{
−i
(
ξy − πσ

2

)
− y2

}
dy, ǫ→ 0.

(3.73)

Combining (3.72) and (3.73), by using Euler’s formula eiφ + e−iφ = 2 cosφ and some ele-

mentary trigonometric identities we obtain

1

2
(−i)Jξ(σ) =

∫ ∞

0

y−σ cos
(
ξy − πσ

2

)
e−y2

dy

= A1(ξ, σ) sin
π(1 − σ)

2
+ A2(ξ, σ) sin

πσ

2
, (3.74)

where

A1(ξ, σ) :=

∫ ∞

0

y−σ cos(ξy) e−y2

dy, A2(ξ, σ) :=

∫ ∞

0

y−σ sin(ξy) e−y2

dy. (3.75)

For −σ > 0 the integrals (3.75) are given by (see [16, #3.952(7, 8), p. 503])

A1(ξ, σ) =
1

2
Γ

(
1 − σ

2

)
e−ξ2/4

1F1

(
σ

2
,
1

2
,
ξ2

4

)
, (3.76)

A2(ξ, σ) =
1

2
Γ
(
1 − σ

2

)
ξ e−ξ2/4

1F1

(
σ + 1

2
,
3

2
,
ξ2

4

)
, (3.77)

where 1F1(a, b, z) is the confluent hypergeometric function (see [16, #9.210(1), p. 1023]),

1F1(a, b, z) := 1 +
∞∑

n=1

Γ(a+ n)Γ(b)

Γ(a)Γ(b+ n)

zn

n!
, z ∈ C, (3.78)

with b /∈ −N0. It is easy to see (e.g., using the ratio test) that the series (3.78) converges for

all z ∈ C, and hence 1F1(a, b, z) is an entire function of z. In particular, 1F1(0, b, z) ≡ 1.

Substituting the expressions (3.76), (3.77) into (3.74) and using (twice) the well-known

complement formula for the gamma function (see, e.g., [15, §B.3, pp. 745–746])

Γ(z) Γ(1 − z) =
π

sin(πz)
, z ∈ C, (3.79)

we obtain

(−i)Jξ(σ) = π e−ξ2/4

{
1F1

(
σ
2
, 1

2
, ξ2

4

)

Γ
(

σ
2

+ 1
2

) + ξ
1F1

(
σ
2

+ 1
2
, 3

2
, ξ2

4

)

Γ
(

σ
2

)
}
. (3.80)

Furthermore, observe from (3.78) that

1F1

(
σ

2
,
1

2
,
ξ2

4

)
=

1

Γ
(

σ
2

)
∞∑

k=0

Γ
(

σ
2

+ k
)
ξ2k

1
2
· 3

2
· · ·
(

1
2

+ k − 1
)
22kk!

=
1

Γ
(

σ
2

)
∞∑

k=0

Γ
(

σ
2

+ k
)
ξ2k

(2k)!
, (3.81)
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and similarly

ξ · 1F1

(
σ + 1

2
,
3

2
,
ξ2

4

)
=

1

Γ
(

σ+1
2

)
∞∑

k=0

Γ
(

σ
2

+ 1
2

+ k
)
ξ2k+1

(2k + 1)!
. (3.82)

Now, returning to (3.80) and combining the sums in (3.81) and (3.82) we arrive at (3.69).

Finally, formula (3.70) readily follows from (3.69) by setting ξ = 0. �

There is a simple probabilistic representation of the power series part of the expression

(3.69), which will be helpful in applications (see the proof of Theorem 4.4(c-iii) below).

Lemma 3.10. Let X ≥ 0 be a random variable with gamma distribution Gamma(σ/2)
(σ > 0), that is, with probability density f(x) = (1/Γ(σ/2))xσ/2−1 e−x, x > 0. Then the

moment generating function of
√
X is given by

E
(
e ξ

√
X
)

=
1

Γ(σ/2)

∞∑

n=0

Γ

(
σ + n

2

)
ξn

n!
, ξ ∈ R. (3.83)

Proof. The left-hand side of (3.83) can be expanded in a series

E
(
e ξ

√
X
)

=
∞∑

n=0

ξn

n!
E
(
Xn/2

)
. (3.84)

The moments of X in (3.84) are easily computed,

E
(
Xn/2) =

1

Γ(σ/2)

∫ ∞

0

xn/2+σ/2−1 e−x dx =
Γ
(
(σ + n)/2

)

Γ(σ/2)
,

and returning to (3.84) we obtain (3.83). �

A similar argumentation as in Lemma 3.9 may be applied to the integral

J̃0(σ; s) :=

∫

γ′

(−w)−σ exp{(−w)s} dw, σ ∈ C, 1 < s ≤ 2, (3.85)

with the contour γ ′ = γ ′
1∪γ ′

2∪γ ′
3 as defined in (3.66). Note that for s = 2 the integral (3.85)

is reduced to (3.70): J̃0(σ; 2) = J0(σ). The general case is handled in the next lemma.

Lemma 3.11. For any 1 < s ≤ 2, the following identity holds

J̃0(σ; s) =
2πi

sΓ

(
s− 1 + σ

s

) , σ ∈ C. (3.86)

Proof. Like in the proof of Lemma 3.9, it suffices to consider the case −σ > 0. Then,

similarly to (3.72) and (3.73), we obtain (cf. (3.74))

1
2
(−i)J̃0(σ; s) =

∫ ∞

0

y−σ cos
(πσ

2
− ys sin

πs

2

)
exp

{
ys cos

πs

2

}
dy. (3.87)

Note that, according to the condition 1 < s ≤ 2, we have cos(πs/2) < 0. By the change of

variable ys = x and with the help of some standard trigonometric identities, the integral on

the right-hand side of (3.87) is rewritten as

1

s

(
B1(σ; s) cos

πσ

2
+B2(σ; s) sin

πσ

2

)
, (3.88)
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where

B1(σ; s) :=

∫ ∞

0

x−1+(1−σ)/s cos
(
x sin

πs

2

)
exp

{
x cos

πs

2

}
dy,

B2(σ; s) :=

∫ ∞

0

x−1+(1−σ)/s sin
(
x sin

πs

2

)
exp

{
x cos

πs

2

}
dy.

These integrals can be explicitly computed as follows (see [16, #3.944(5, 6), p. 498])

B1(σ; s) = Γ

(
1 − σ

s

)
cosψ, B2(σ; s) = Γ

(
1 − σ

s

)
sinψ,

where

ψ :=
π(1 − σ)(2 − s)

2s
.

Substituting this into (3.87) and (3.88) we get

1
2
(−i)J̃0(σ; s) =

1

s
Γ

(
1 − σ

s

)(
cosψ cos

πσ

2
+ sinψ sin

πσ

2

)

=
1

s
Γ

(
1 − σ

s

)
cos
(
ψ − πσ

2

)

=
1

s
Γ

(
1 − σ

s

)
sin

π(1 − σ)

s

=
π

sΓ

(
s− 1 + σ

s

) ,

again using the complement formula (3.79). Hence, the result (3.86) follows. �

3.4.3. Asymptotic theorems with v ≈ 1. We are now in a position to obtain “dynamic”

asymptotic results for the critical case in the neighbourhood of v = 1. For simplicity, we

omit the pre-exponential factor f(z) (which will not be needed). First, let us consider a

“regular” case where the second derivative of gκ(z) at z = R is finite.

Theorem 3.12. Let gθ(z) and gκ(z) satisfy the conditions of Theorem 3.8 with θ∗ ≥ 0 (see

(3.62)), for a suitable domain of holomorphicity ∆0. Assume also that g
{1}
κ (R) = 1 and

0 < g
{2}
κ (R) <∞. Finally, let f : ∆0 → C be a holomorphic function such that

f(z) = 1 +O
(
(1 − z/R)δ

)
, z → R (z ∈ ∆0).

Then for any u ≥ 0, as N → ∞,

[zN ]
[
f(z) exp{e−u/

√
NGN(z)}

]
∼ exp

{
Ngκ(R) −

√
Nugκ(R) + 1

2
u2gκ(R)

}

RN

×
(

1
2
Nb2(R)

)(θ∗−1)/2 Jũ(θ
∗)

2πi
, (3.89)

where ũ := u
√

2/b2(R) and Jũ(θ
∗) is given by formula (3.69). In particular,

HN ∼ exp{Ngκ(R)} ·
(

1
2
Nb2(R)

)(θ∗−1)/2

2RN Γ
(

1+θ∗

2

) , N → ∞. (3.90)

Proof. Setting v = e−u
√

N , we adapt the proof of Theorem 3.5 by making the following

modifications:
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(i) the angle ϕ in the specification (3.24) of the contour γ is chosen in the range ϕ ∈
(π/4, π/2), so that cos 2ϕ < 0;

(ii) the rescaling coefficient N−1 throughout (3.24) is replaced by N−1/2;

(iii) under the change of variables z = R (1 + wN−1/2) (cf. (3.31)), Taylor’s formu-

las (3.33) and (3.34) are extended to the corresponding second-order expansions (in

particular, using (3.47)).

Note that due to the criticality assumption, the quantity d1 = 1 − vg
{1}
κ (R) (see (3.26)) is

reduced to zero for v = 1, so that the estimate (3.29) of the asymptotic contribution of the

integral I 4
N becomes void. This can be fixed by taking advantage of an enhanced version of

the inequality (3.28) provided by Lemma 3.4 (see (3.15)), leading to an improved bound

|I 4
N | =

O(1) exp{Ngκ(R)}
RN

exp

{
−Nε log

R ′

R

}
, N → ∞.

Next, under the substitution z = R (1 + wN−1/2), using (3.63) and the expansion

e−u/
√

N = 1 − u√
N

+
u2

2N
+O(N−3/2), N → ∞,

we have, as N → ∞,

e−u/
√

NNgκ(z) = Ngκ(R) −
√
Nugκ(R) + 1

2
u2gκ(R)

+
√
Nw − uw + 1

2
g{2}κ (R)w2 +O

(
w2+δN−δ/2

)
. (3.91)

Combined with the expansion (cf. (3.34))

1

zN+1
=

1

RN+1
exp

{
−
√
Nw + 1

2
w2 +O(w3N−3/2)

}
, N → ∞, (3.92)

this leads to the following asymptotics of the integral I 2
N as N → ∞ (cf. (3.35))

I 2
N ∼ exp

{
Ngκ(R) −

√
Nugκ(R) + 1

2
u2gκ(R)

}

RN

×
(

1
2
Nb2(R)

)(θ∗−1)/2
∫

eγ ′

2

(−w)−θ∗ exp{−ũw + w2} dw, (3.93)

where γ̃ ′
2 := γ ′

2

√
b2(R)/2 and ũ := u

√
2/b2(R).

The integral I 3
N is asymptotically evaluated in a similar fashion (cf. (3.44)), leading to the

same formula as (3.93) but with the contour of integration γ ′
3 defined in (3.38). Note that

the error terms (3.39) and (3.43), formally invalidated by d1 = 0, can be adapted by using

Lemma 3.4 as described above.

As a result, collecting the principal asymptotic terms from formula (3.93) and its other

counterparts (cf. (3.37)) produces the integral Jũ(θ
∗), according to the notation (3.67). Hence,

we arrive at the expression (3.89), as claimed. Finally, (3.90) immediately follows from

(3.89) by setting u = 0 and on using formula (3.70). �

Remark 3.5. For θ∗ = 0, formula (3.90) gives the same asymptotics of HN as formula (3.61)

of Theorem 3.7 (note that Γ(1/2) =
√
π ). Moreover, formula (3.89) with θ∗ = 0 coincides

with the dynamic version obtained from Theorem 3.7 by setting v = e−u/
√

N ; this can be

shown using calculations carried out in the proof of Theorem 4.4(a) below.

Let us now study the case with an infinite second derivative of gκ(z) at z = R.



CYCLES IN SURROGATE-SPATIAL RANDOM PERMUTATIONS 29

Theorem 3.13. Let gθ(z) and gκ(z) satisfy the assumptions of Theorem 3.8 with θ∗ ≥ 0 (see

(3.62)), including the condition g
{1}
κ (R) = 1, but with the expansion (3.63) replaced by

gκ(z) = gκ(R) − (1 − z/R) + as(1 − z/R)s +O
(
(1 − z/R)s+δ

)
,

with s ∈ (1, 2), as > 0 and δ > 0. Let f : ∆0 → C be a holomorphic function satisfying

f(z) = 1 +O
(
(1 − z/R)δ

)
, z → R (z ∈ ∆0).

Then for any u ≥ 0, as N → ∞,

[zN ]
[
f(z) exp{e−u/

√
NGN(z)}

]
∼ exp

{
Ngκ(R) −

√
Nugκ(R) + 1

2
u2gκ(R)

}

RN

× (Nas)
(θ∗−1)/s

sΓ
(

s−1+θ∗

s

) . (3.94)

In particular,

HN ∼ exp{Ngκ(R)} · (Nas)
(θ∗−1)/s

sRN Γ
(

s−1+θ∗

s

) , N → ∞. (3.95)

Proof. In what follows, we can assume that 0 < δ ≤ 2 − s. Again setting v = e−u
√

N ,

we adapt the proof of Theorem 3.12 by using the change of variables z = R (1 + wN−1/s).
Hence, the expansions (3.91) and (3.92) are replaced, respectively, by

e−u/
√

NNgκ(z) = Ngκ(R) −
√
Nugκ(R) + 1

2
u2gκ(R)

+N1−1/sw + as (−w)s +O
(
ws+δN−δ/s

)

and
1

zN+1
=

1

RN+1
exp

{
−N1−1/sw +O(w2N1−2/s)

}
.

Similarly as in the proof of Theorem 3.13, this leads to the asymptotics (cf. (3.93))

I 2
N ∼ exp

{
Ngκ(R) −

√
Nugκ(R) + 1

2
u2gκ(R)

}

RN

× (Nas)
(θ∗−1)/s

∫

eγ ′

2

(−w)−θ∗ exp{(−w)s} dw,

with the rescaled contour γ̃ ′
2 := a

1/s
s γ ′

2. The integral I 3
N is estimated similarly (cf. (3.44)).

As a result, recalling the notation (3.85) we obtain

[zN ]
[
exp{e−u/

√
NGN(z)}

]
∼ exp

{
Ngκ(R) −

√
Nugκ(R) + 1

2
u2gκ(R)

}

RN

× (Nas)
(θ∗−1)/s J̃0(θ

∗; s)

2πi
,

and (3.94) follows on using formula (3.86).

Finally, formula (3.95) follows by setting u = 0 in (3.94). �

3.5. Examples. Let us give a few simple examples to illustrate the conditions of the asymp-

totic theorems proved in Sections 3.2–3.4.
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3.5.1. Constant coefficients. For all j ∈ N, let θj = θ∗ ≥ 0, κj = κ∗ > 0. Then the

corresponding generating functions specialize to

gθ(z) = −θ∗ log (1 − z), gκ(z) = −κ∗ log (1 − z). (3.96)

Recalling the expression (2.8) and using the binomial series expansion, we have explicitly

hn(N) = [zn] exp{GN(z)} = [zn] (1 − z)−(θ∗+Nκ∗)

= [zn]
∞∑

j=0

(
θ∗ +Nκ∗ + j − 1

j

)
zj =

(
θ∗ +Nκ∗ + n− 1

n

)
, (3.97)

and with Stirling’s formula for the gamma function this yields, for any n = N +O(1),

hn(N) ∼ 1√
2πN

(
κ∗ + 1

κ∗

)θ∗+Nκ∗−1/2

(κ∗ + 1)n, N → ∞. (3.98)

To apply the general machinery developed in Section 3.2, from (3.96) we find

g{1}κ (z) =
κ∗z

1 − z
, g{2}κ (z) =

κ∗z2

(1 − z)2
, (3.99)

so that the expressions (3.3) specialize to

b1(r) =
κ∗r

1 − r
, b2(r) =

κ∗r

1 − r
+

κ∗r2

(1 − r)2
=

κ∗r

(1 − r)2
. (3.100)

Here R = 1 and gκ(1) = +∞, g
{1}
κ (1) = +∞, so that, according to our terminological

convention in Section 3.1 (see Definition 3.2), we are always in the subcritical regime. In

view of (3.99), the solution rv of the equation (3.6) is explicitly given by

rv =
1

vκ∗ + 1
, v > 0. (3.101)

Setting v = 1, from (3.96), (3.100) and (3.101) we find

gθ(r1) = θ∗ log
κ∗ + 1

κ∗
, gκ(r1) = κ∗ log

κ∗ + 1

κ∗
, b2(r1) =

κ∗ + 1

κ∗
,

and Theorem 3.3 (with v = 1 and f(z) = zN−n readily yields the same result as (3.98).

Remark 3.6. In the degenerate case with κ∗ = 0, θ∗ > 0 (which is nothing more than the

Ewens model), a direct calculation using (3.97) gives

hn(N) =

(
θ∗ + n− 1

n

)
=

Γ(θ∗ + n)

n! Γ(θ∗)
∼ nθ∗−1

Γ(θ∗)
, n→ ∞. (3.102)

3.5.2. Polylogarithm. To illustrate the supercritical and critical regimes, we need examples

with g
{1}
κ (R) < ∞. To this end, let us set κj := κ∗j−s (j ∈ N) with κ∗ > 0, s ∈ R, so that

the corresponding generating function is proportional to the polylogarithm (see, e.g., [23])

gκ(z) = κ∗Lis+1(z) = κ∗
∞∑

j=1

zj

js+1
. (3.103)

For s = 0 the model (3.103) is reduced to the case κj ≡ κ∗ considered in Section 3.5.1.

Clearly, Lis(z) has the radius of convergence R = 1 for any s ∈ R, and Lis(1) ≡ ζ(s) <∞
for s > 1, where ζ(·) is the Riemann zeta function. Differentiating (3.103) we get

g{1}κ (z) = κ∗z Li′s+1(z) = κ∗Lis(z), (3.104)
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and so the supercriticality condition reads

g{1}κ (1) = κ∗Lis(1) = κ∗ζ(s) < 1 ⇔ s > 1, κ∗ < 1/ζ(s). (3.105)

Similarly,

g{2}κ (z) = κ∗
(
Lis−1(z) − Lis(z)

)
(3.106)

and so

g{2}κ (1) = κ∗
(
ζ(s− 1) − ζ(s)

)
<∞ ⇔ s > 2.

Hence, substituting (3.104) and (3.106) into (3.3) we obtain

b1(r) = κ∗Lis(r), b2(r) = κ∗ Lis−1(r), 0 ≤ r ≤ 1.

Furthermore, from (3.104) we find that the root of the equation (3.6) is given by

rv = Li−1
s

(
(κ∗v)−1

)
, v ≥ 1

κ∗ζ(s)
, (3.107)

where Li−1
s is the inverse of Lis. Differentiating the identity (3.107) we also obtain

r′v
rv

=
−κ∗v−2

Lis−1(rv)
.

In particular,

r1 = Li−1
s (1/κ∗),

r′1
r1

=
−κ∗

Lis−1(r1)
.

The supercritical case κ∗ < 1/ζ(s) is more interesting. It is known (see, e.g., [15, §IV.9,

p. 237, and §VI.8, p. 408], that the polylogarithm Lis(·) can be analytically continued to the

complex plane C slit along the ray [1,+∞). The asymptotic behaviour of Lis(z) near z0 = 1
is specified as follows (see [15, Theorem VI.7, p. 408, and §VI.20, p. 411]).

Lemma 3.14. With the notation

̟ := − log z ∼
∞∑

n=1

(1 − z)n

n
, z → 1, (3.108)

the polylogarithm Lis(z) satisfies the following asymptotic expansion as z → 1:

(a) if s ∈ R \ N then

Lis(z) ∼ Γ(1 − s)̟s−1 +
∞∑

n=0

(−1)nζ(s− n)

n!
̟n ; (3.109)

(b) if s = q ∈ N then

Liq(z) ∼
(−1)q

(q − 1)!
̟q−1 (log̟ − Hq−1) +

∑

n≥0, n 6=q−1

(−1)nζ(q − n)

n!
̟n, (3.110)

where Hq−1 :=
∑q−1

n=1 n
−1 (with H0 := 0).

Remark 3.7. The restriction n 6= q − 1 in the sum (3.110) respects the fact that the zeta

function ζ(z) has a pole at z = 1.
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Remark 3.8. In the simplest case q = 1 the expansion (3.110) specializes to

Li1(z) ∼ − log̟ +
∞∑

n=1

(−1)n ζ(1 − n)

n!
̟n, ̟ → 0,

which should be contrasted with the explicit expression Li1(z) = − log (1−e−̟) (z = e−̟).

Of course, there is no contradiction; the corresponding identity

log
̟

1 − e−̟
=

∞∑

n=1

(−1)n ζ(1 − n)

n!
̟n, (3.111)

with the left-hand side defined at ̟ = 0 by continuity as log (0/0) := log 1 = 0, can be

verified using that ζ(0) = −1/2, ζ(1 − n) = 0 for odd n ≥ 3 and ζ(1 − n) = −Bn/n for

even n ≥ 2 (see, e.g., [15, §B11, p. 747]), where Bn are the Bernoulli numbers (see, e.g.,

[15, p. 268]) defined by the generating function ̟/(e̟ − 1) =
∑∞

n=0Bn̟
n/n! (note that

B0 = 1, B1 = −1/2 and Bn = 0 for odd n ≥ 3). Indeed, (3.111) is then rewritten as

log
̟

1 − e−̟
=
̟

2
−

∞∑

n=1

Bn

n!n
̟n,

and the proof is completed by differentiation of both sides with respect to ̟.

Explicit asymptotic expansion of Lis(z) in terms of 1 − z, to any required order, can be

obtained by substituting the series (3.108) into (3.109) or (3.110) as appropriate. In particu-

lar, for the generating function gκ(z) of the form (3.103) with q < s < q+ 1 (q ∈ N0), from

formulas (3.108) and (3.109) we get the Taylor-type expansion

gκ(z) =

q∑

n=0

(−1)ng
{n}
κ (1)

n!
(1 − z)n + κ∗Γ(−s)(1 − z)s +O

(
(1 − z)q+1

)
, (3.112)

where the coefficients

g{n}κ (1) = κ∗ Li
{n}
s+1(1) = κ∗

∞∑

j=1

(j)n

js+1
, n = 0, . . . , q,

are expressible as linear combinations of the zeta functions ζ(s+ 1 − k) (k = 1, . . . , n),

Li
{0}
s+1(1) = ζ(s+ 1), Li

{1}
s+1(1) = ζ(s), Li

{2}
s+1(1) = ζ(s− 1) − ζ(s),

Li
{3}
s+1(1) = ζ(s− 2) − 3ζ(s− 1) + 2ζ(s), etc.

Furthermore, using similar arguments it is easy to see that the expansion (3.112) can be

differentiated any number of times, yielding the asymptotics

g{n}κ (z) = g{n}κ (1)
{
1 +O

(
(1 − z)s−q

)}
(n < s), (3.113)

g{n}κ (z) = κ∗Γ(n− s) (1 − z)s−n
{
1 +O

(
(1 − z)q+1−s

)}
(n > s). (3.114)

By virtue of formula (3.112), and by choosing suitable (non-integer) values of the param-

eter s > 0 in (3.103), one can easily construct examples matching the assumptions of each of

the asymptotic theorems in Sections 3.3 and 3.4. Moreover, the asymptotic formulas (3.113)

and (3.114) make the polylogarithm example (3.103) suitable for the setting of Section 5

below (see the assumptions (5.1), (5.2)).
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The case with integer s = q ∈ N0 leads to a logarithmic term in the singular part of the

asymptotic expansion at z = 1. Indeed, if q = 0 then formula (3.103) is reduced to

gκ(z) = κ∗ Li1(z) = κ∗
∞∑

j=1

zj

j
= −κ∗ log (1 − z),

while q ∈ N corresponds to gκ(z) = κ∗ Liq+1(z), so that using (3.108) and (3.110) one

obtains with an arbitrary δ ∈ (0, 1) (cf. (3.112))

gκ(z) =

q−1∑

n=0

(−1)ng
{n}
κ (1)

n!
(1 − z)n − κ∗

(−1)q

q!
(1 − z)q log (1 − z)

+ κ∗Aq (1 − z)q +O
(
(1 − z)q+δ

)
, (3.115)

where Aq is the coefficient of the term (1 − z)q arising from the expansion (3.110) (with q
replaced by q + 1) upon the substitution (3.108).

3.5.3. Perturbed polylogarithm. A natural extension of the polylogarithm example consid-

ered in the previous section is furnished by setting κj := κ∗j−s (1 + ξ(j)) (j ∈ N), where

κ∗ > 0, s ≥ 0, 1+ξ(j) ≥ 0 for all j ∈ N, and the perturbation function z 7→ ξ(z) is assumed

to be analytic in the half-plane ℜ(z) > 1
4

and to satisfy there the estimate ξ(z) = O(z−ǫ),
with some ǫ > 0. It follows that the corresponding generating function

gκ(z) = κ∗
∞∑

j=1

1 + ξ(j)

js+1
zj = κ∗ Lis+1(z) + κ∗

∞∑

j=1

ξ(j)

js+1
zj (3.116)

is analytic in the disk |z| < 1, with singularity at z = 1. Furthermore (see (3.104)),

g{1}κ (z) = κ∗Lis(z) + κ∗
∞∑

j=1

ξ(j)

js
zj. (3.117)

As suggested by the principal term Lis(z) in (3.117), the criticality occurs if s > 1 (cf. (3.105));

indeed, with a suitable constant c > 0 we have for sufficiently small κ∗

g{1}κ (1) = κ∗Lis(1) + κ∗
∞∑

j=1

ξ(j)

js
≤ κ∗

{
ζ(s) + c ζ(s+ ǫ)

}
< 1. (3.118)

Lemma 3.15. Under the above conditions on ξ(z) (with s ≥ 0), the function gκ(z) can be

analytically continued to the slit complex plane C \ [1,+∞).

Proof. Since the claim is valid for the polylogarithm Lis+1(z) (see Section 3.5.2), from

(3.116) we see that it suffices to prove the lemma for the series
∑∞

j=1 a(j) z
j , where a(w) :=

ξ(w)/ws+1. Clearly, for any δ ∈ (0, π) we have the estimate a(w) = O
(
e(π−δ)|w|). Hence,

the Lindelöf theorem (see [15, § IV.8, p. 237] yields the integral representation

∞∑

j=1

a(j)zj = − 1

2πi

∫ (1/2)+i∞

(1/2)−i∞
a(w) (−z)w π

sin πw
dw, (3.119)

which provides an analytic continuation of the series to the domain C \ {z : |arg(z)| ≤ δ}.

Since δ > 0 can be taken arbitrarily small, this implies the analyticity in C slit along the ray

[0,+∞). To complete the proof, it remains to recall that
∑

j a(j)z
j is analytic in |z| < 1. �
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The next question is the asymptotic behaviour of the function (3.116) as z → 1 with

z ∈ C\[1,+∞). Application of the asymptotic formulas (3.109) and (3.110) in the particular

case ξ(z) = z−ǫ (leading to gκ(z) = κ∗{Lis+1(z) + Lis+ǫ+1(z)}) motivates and illustrates

the following expansions, which now have to be finite (up to the order of (1− z)s) due to the

limited information about the perturbation function ξ(z).

Lemma 3.16. Suppose that ξ(z) satisfies the same conditions as in Lemma 3.15, and let

q ∈ N0 be such that q ≤ s < q + 1. Then, as z → 1 so that z ∈ C \ [1,+∞),

(a) for s /∈ N0 (i.e., q < s < q + 1),

gκ(z) =

q∑

n=0

(−1)ng
{n}
κ (1)

n!
(1 − z)n + κ∗Γ(−s)(1 − z)s +O

(
(1 − z)s+ǫ∗

)
, (3.120)

where ǫ∗ = ǫ if s + ǫ < q + 1, ǫ∗ = 1 if s + ǫ > q + 1, and ǫ∗ is any number in (0, ǫ) if

s+ ǫ = q + 1;

(b) for s = q ∈ N0 ,

gκ(z) =

q−1∑

n=0

(−1)ng
{n}
κ (1)

n!
(1 − z)n − κ∗

(−1)q

q!
(1 − z)q log (1 − z)

+ κ∗Bq (1 − z)q +O
(
(1 − z)q+ǫ∗

)
, (3.121)

where Bq is some constant, ǫ∗ = ǫ if ǫ < 1 and ǫ∗ is any number in (0, ǫ) if ǫ ≥ 1.

The expansions (3.120) and (3.121) can be differentiated q times.

Sketch of proof. This result is of marginal significance for our purposes, as it will only be

used for illustration in Section 6.3. Its full proof is quite tedious but follows very closely the

proof of a similar result for the polylogarithm Lis+1(z) (see details in [15, §VI.8]). Thus,

we opt to derive the expansion (3.120) only for real z ↑ 1; an extension to complex z ∈
C \ [1,+∞) is based on the Lindelöf integral representation (3.119).

Observe that it suffices to prove (3.120) for s ∈ (0, 1); the case of an arbitrary (non-

integer) s > 0 may then be handled via a suitable (q-fold) integration over the interval [z, 1].
To this end, using the substitution z = e−̟ (with ̟ ↓ 0 as z ↑ 1), from (3.116) we obtain

gκ(z) = gκ(1) − κ∗
∞∑

j=1

1 − e−j̟

js+1
− κ∗

∞∑

j=1

ξ(j)(1 − e−j̟)

js+1
. (3.122)

The first series in (3.122) may be rewritten as a Riemann integral sum

̟s

∞∑

j=1

1 − e−j̟

(j̟)s+1
̟ = ̟s

∫ ∞

0

1 − e−x

xs+1
dx+O(̟), ̟ ↓ 0, (3.123)

where the asymptotics on the right-hand side can be obtained using Euler–Maclaurin’s sum-

mation formula. The integral in (3.123) is easily computed via integration by parts,

1

(−s)

∫ ∞

0

(1 − e−x) d(x−s) =
1

s

∫ ∞

0

x−s e−x dx =
Γ(1 − s)

s
= −Γ(−s). (3.124)

Next, using the estimate ξ(j) = O(j−ǫ) and assuming that s + ǫ < 1, the second series in

(3.122) is estimated, similarly to (3.123) and (3.124), by

O(1)
∞∑

j=1

1 − e−j̟

js+ǫ+1
= O(̟s+ǫ), ̟ ↓ 0. (3.125)
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Finally, collecting (3.122), (3.123), (3.124) and (3.125), we obtain

gκ(z) = gκ(1) + κ∗Γ(−s)̟s +O(̟s+ǫ),

and the formula (3.120) (with 0 < s < 1 and real z ↑ 1) immediately follows by the

substitution ̟ = − log z = 1 − z +O
(
(1 − z)2

)
. �

4. ASYMPTOTIC STATISTICS OF CYCLES

Throughout this section, we assume that the generating functions gθ(z) and gκ(z) satisfy

the hypotheses of a suitable asymptotic theorem in Section 3 — namely, Theorem 3.3 for the

subcritical case (g
{1}
κ (R) > 1), Theorems 3.5 or 3.6 for the supercritical case (g

{1}
κ (R) < 1),

and Theorems 3.7, 3.12 or 3.13 for the critical case (g
{1}
κ (R) = 1).

Remark 4.1. The analytic conditions on the generating functions gθ(z) and gκ(z) employed

in Section 3 are difficult to convert into general sufficient conditions on the underlying coef-

ficients (θj) and (κj), respectively. For a better orientation in the asymptotic results below, it

should be helpful for the reader to bear in mind the examples (especially the polylogarithm)

considered in Section 3.5.

Let us define the quantity r∗ > 0 as

r∗ :=

{
r1, g

{1}
κ (R) ≥ 1,

R, g
{1}
κ (R) ≤ 1,

(4.1)

where r1 = rv|v=1 is the (unique) root of the equation (3.6) with v = 1, that is, g
{1}
κ (r1) = 1.

Thus, we have

g{1}κ (r∗) = 1 if g{1}κ (R) ≥ 1,

g{1}κ (r∗) < 1 if g{1}κ (R) < 1.
(4.2)

4.1. Cycle counts. Our first result treats the asymptotics of the cycle counts Cj (i.e., the

numbers of cycles of length j ∈ N, respectively, in a random permutation σ ∈ SN ).

Theorem 4.1. Let r∗ be as defined in (4.1).

(a) For each m ∈ N and any integers n1, . . . , nm ≥ 0, we have

lim
N→∞

N−(n1+···+nm)
ẼN

(
m∏

j=1

(Cj)nj

)
=

m∏

j=1

(
κj r

j
∗

j

)nj

. (4.3)

In particular, the random variables (Cj/N) are asymptotically independent and, for each

j ∈ N, there is the convergence in probability

Cj

N

p−→ κj r
j
∗

j
, N → ∞. (4.4)

(b) If, for some j ∈ N, κj = 0 but θj > 0 then for any integer n ≥ 0

lim
N→∞

ẼN

[
(Cj)n

]
=

(
θj r

j
∗

j

)n

. (4.5)

Hence, Cj converges weakly to a Poisson law with parameter θj r
j
∗/j . The asymptotic inde-

pendence of Cj with other cycle counts (normalized or not, as appropriate) is preserved.

Remark 4.2. If both κj = 0 and θj = 0 then, by the definition (1.5) of the measure P̃N ,

Cj = 0 almost surely (a.s.).
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Proof of Theorem 4.1. If all κj > 0 then Lemma 2.3 implies that for any n1, . . . , nm ∈ N0

N−(n1+···+nm)
ẼN

(
m∏

j=1

(Cj)nj

)
∼ hN−Km

(N)

HN

m∏

j=1

(
κj

j

)nj

, N → ∞, (4.6)

where Km =
∑m

j=1 jnj . Furthermore, note that

hN−Km
(N) = [zN−Km ] eGN (z) = [zN ]

[
zKm eGN (z)

]
. (4.7)

Hence, applying one of Theorems 3.3, 3.5, 3.6, 3.7, 3.12 or 3.13 as appropriate (each one

with the pre-exponential function f(z) = zKm), we get

hN−Km
(N)

HN

→ rKm
∗ , N → ∞. (4.8)

Combining (4.6) and (4.8) we obtain formula (4.3), which also entails the asymptotic inde-

pendence. Finally, the convergence (4.4) follows from (4.3) by the method of moments.

Similarly, for κj = 0, θj > 0 we have

ẼN

[
(Cj)n

]
→
(
θj r

j
∗

j

)n

, N → ∞,

where the limit is the n-th factorial moment of the corresponding Poisson distribution. �

Remark 4.3. If κj = 0 for all j ∈ N, then r∗ is ill-defined (see (4.1)) and our result does not

apply. In this case, it has been proved by Nikeghbali and Zeindler [28, Corollary 3.2] that,

under suitable analytic conditions on the generating function gθ(z) in the spirit of those used

in Section 3, the cycle countsCj converge to mutually independent Poisson random variables

with parameter θj/j, respectively. The latter is easy to see in a simple particular case with

θj = θ∗ = const (the Ewens model), where by the asymptotics (3.102) and Lemma 2.3

ẼN

(
m∏

j=1

(Cj)nj

)
=
hN−Km

(N)

HN

m∏

j=1

(
θj

j

)nj

→
m∏

j=1

(
θ∗

j

)nj

, N → ∞.

See also Ercolani and Uelstchi [12, Theorem 6.1], where the asymptotically Ewens case

limj→∞ θj = θ∗ > 0 has been studied.

Remark 4.4. Formally, the limiting result (4.4) suggests that the total proportion of points

contained in finite cycles, i.e., N−1
∑∞

j=1 j Cj , is asymptotically given by (see (4.2))

∞∑

j=1

κj r
j
∗ = g{1}κ (r∗)

{
= 1 if g

{1}
κ (R) ≥ 1,

< 1 if g
{1}
κ (R) < 1,

which indicates the emergence of an “infinite” cycle in the supercritical case (i.e., g
{1}
κ (R) <

1, see Definition 3.2). This observation is elaborated below (see Theorems 4.2 and 4.3).

4.2. Fraction of points in long cycles. By analogy with the spatial case (see (1.15)), let us

define the similar quantities in the surrogate-spatial model to capture the expected fraction

of points in long cycles,

ν̃K := lim inf
N→∞

1

N
ẼN

(
∑

j>K

j Cj

)
, ν̃ := lim

K→∞
ν̃K . (4.9)
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Theorem 4.2. The quantity ν̃K (K ∈ N) defined in (4.9) exists as a limit and is explicitly

given by

ν̃K = lim
N→∞

1

N
ẼN

(
∑

j>K

j Cj

)
= 1 −

K∑

j=1

κj r
j
∗ , (4.10)

where r∗ is defined in (4.1). Moreover,

ν̃ = lim
K→∞

ν̃K =

{
0, g

{1}
κ (R) ≥ 1,

1 − g
{1}
κ (R) > 0, g

{1}
κ (R) < 1.

(4.11)

Proof. Noting that
∑∞

j=1 j Cj = N and applying Theorem 4.1(a), we get

ν̃K = 1 − lim
N→∞

1

N
ẼN

(
∑

j≤K

j Cj

)
= 1 −

K∑

j=1

κj r
j
∗,

which proves (4.10). Hence, using (4.2) we obtain

ν̃ = lim
K→∞

ν̃K = 1 −
∞∑

j=1

κj r
j
∗ = 1 − g{1}κ (r∗),

which is reduced to (4.11) thanks to (4.2). �

Theorem 4.2 can be complemented by a similar statement about the convergence of the

(random) proportion of points in long cycles, rather than its expected value.

Theorem 4.3. Under the sequence of probability measures P̃N , for any finite K ∈ N there

is the convergence in probability

1

N

∑

j>K

j Cj
p−→ ν̃K , N → ∞, (4.12)

where ν̃K is identified in (4.10).

Proof. Similarly to the proof of Theorem 4.2, by the probability convergence part of Theo-

rem 4.1(a) and according to (4.10) we have

1

N

∑

j>K

j Cj = 1 − 1

N

K∑

j=1

j Cj
p−→ 1 −

K∑

j=1

κj r
j
∗ = ν̃K ,

and the limit (4.12) is proved. �

4.3. Total number of cycles. The next result is a series of weak limit theorems (in the

subcritical, supercritical and critical cases, respectively) for fluctuations of the total number

of cycles TN (see (2.13)). As stipulated at the beginning of Section 4, we work under the

conditions of suitable asymptotic theorems from Section 3, which will be applied without

the pre-exponential factor (i.e., with f(z) ≡ 1). Note that in all but one cases the limiting

distribution is normal, whereas in the critical case with θ∗ > 0 (part (c-iii)) the answer is

more complicated (and more interesting).

In what follows, the notation
d→ indicates convergence in distribution (with respect to the

sequence of measures P̃N ), and N (0, 1) denotes the standard normal law (i.e., with mean 0
and variance 1).
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Theorem 4.4. (a) Let 1 < g
{1}
κ (R) ≤ ∞. Then, under the conditions of Theorem 3.3,

TN −Ngκ(r1)√
N
[
gκ(r1) − 1/b2(r1)

]
d−→ N (0, 1), N → ∞, (4.13)

where r1 is the root of (3.6) with v = 1, b2(r) is defined in (3.3), and gκ(r1)− 1/b2(r1) > 0.

(b) If g
{1}
κ (R) < 1 then, under the conditions of either of Theorems 3.5 or 3.6,

TN −Ngκ(R)√
Ngκ(R)

d−→ N (0, 1), N → ∞. (4.14)

(c) Let g
{1}
κ (R) = 1.

(c-i) Under the conditions of Theorem 3.7,

TN −Ngκ(R)√
N
[
gκ(R) − 1/b2(R)

]
d−→ N (0, 1), N → ∞,

where gκ(R) − 1/b2(R) > 0.

(c-ii) Under the conditions of Theorem 3.13,

TN −Ngκ(R)√
Ngκ(R)

d−→ N (0, 1), N → ∞. (4.15)

(c-iii) Under the conditions of Theorem 3.12 with θ∗ > 0,

TN −Ngκ(R)√
N
[
gκ(R) − 1/b2(R)

]
d−→ Z −

√
2X

gκ(R) b2(R) − 1
, N → ∞, (4.16)

where Z is a standard normal random variable and X is an independent random variable

with gamma distribution Gamma(θ∗/2).

Proof. (a) Using Lemma 2.4 and applying Theorem 3.3 (see (3.8)) we obtain as N → ∞,

uniformly in v in a neighbourhood of v0 = 1,

ẼN(vTN ) =
[zN ] exp{vGN(z)}
[zN ] exp{GN(z)} ∼ Φ(v) exp{NΨ(v)}

Φ(1) exp{NΨ(1)} , (4.17)

where we set for short

Φ(v) :=
exp{vgθ(rv)}√

vb2(rv)
, Ψ(v) := vgκ(rv) − log rv. (4.18)

Using the definition of rv (see (3.6)), from (4.18) we find

Ψ ′(v) = gκ(rv) + vg′κ(rv)r
′
v −

r′v
rv

= gκ(rv) +
r′v
rv

(
vg{1}κ (rv) − 1

)
= gκ(rv). (4.19)

Differentiating (4.19) once more gives

Ψ ′′(v) = g′κ(rv)r
′
v = g{1}κ (rv)

r′v
rv

=
r′v
vrv

. (4.20)
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On the other hand, differentiating the identity rvg
′
κ(rv) = v−1 (see equation (3.6)), we get

r′v g
′
κ(rv) + rv g

′′
κ(rv)r

′
v = −v−2,

which yields, on account of (3.1) and (3.3),

r′v
rv

= − 1

v2b2(rv)
. (4.21)

Hence, using (4.19), (4.20) and (4.21) we obtain the expansion of Ψ(v) around v0 = 1,

Ψ(v) = Ψ(1) + gκ(r1)(v − 1) − 1

2b2(r1)
(v − 1)2 + o

(
(v − 1)2

)
. (4.22)

Substituting v = eu/
√

N = 1 + uN−1/2 + 1
2
u2N−1 +O(N−3/2) into (4.22) gives

NΨ
(
eu/

√
N
)

= N Ψ(1) +
√
Nugκ(r1) + 1

2
u2
(
gκ(r1) − 1/b2(rv)

)
+O(N−1/2).

Besides, for the function Φ(·) from (4.18) we have, for any u,

Φ
(
eu/

√
N
)
→ Φ(1), N → ∞.

Therefore, returning to (4.17) we get, as N → ∞,

ẼN

(
euTN/

√
N
)
∼ exp

{
N
[
Ψ(eu/

√
N ) − Ψ(1)

]}

∼ exp
{√

Nugκ(r1) + 1
2
u2
(
gκ(r1) − 1/b2(r1)

)}
.

The statement (4.13) now follows by a standard convergence theorem based on convergence

of moment generating functions and the well-known fact that if a random variable Z is stan-

dard normal then its moment generating function is given by E
[
exp{uZ}

]
= exp{u2/2}.

It remains to check that the limit variance gκ(r1) − 1/b2(r1) is positive. But this follows

by Lemma 3.1, yielding

gκ(r1)b2(r1) >
(
g{1}κ (r1)

)2 ≡ 1,

according to the definition of r1 as the root of the equation (3.6) with v = 1.

(b) If θ∗ > 0 then, similarly as in (4.17), (4.18), we use Lemma 2.4 and Theorem 3.5 to

obtain as N → ∞, uniformly in v in a neighbourhood of v0 = 1,

ẼN(vTN ) ∼ N θ∗(v−1) exp
{
N(v − 1) gκ(R)

} Γ(θ∗)(1 − vg
{1}
κ (R))vθ∗−1

Γ(vθ∗)(1 − g
{1}
κ (R))θ∗−1

.

Again substituting v = eu/
√

N , the rest of the proof proceeds similarly as in part (a), giving

ẼN

(
euTN/

√
N
)
∼ exp

{
N
(
eu/

√
N − 1

)
gκ(R)

}

∼ exp
{√

Nugκ(R) + 1
2
u2gκ(R)

}
, (4.23)

and (4.14) follows.

Likewise, if θ∗ = 0 then by Theorem 3.6 we have from (3.49) and (3.52)

ẼN(vTN ) ∼ v exp
{
(v − 1)GN(R)

}
(

1 − vg
{1}
κ (R)

1 − g
{1}
κ (R)

)−s−1

, N → ∞, (4.24)

and the substitution v = exp
{
u/

√
N
}

in (4.24) yields the same asymptotics (4.23).

(c-i) From (3.60), similarly as in part (a), we obtain the asymptotic relation (4.17) that

holds uniformly in a right neighbourhood of v0 = 1. The rest of the proof is an exact copy

of that in part (a), except that we must use the substitution v = eu/
√

N with u ≥ 0.
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(c-ii) We use Lemma 2.4 (with v = e−u/
√

N , u ≥ 0) and the dynamic asymptotics (3.94)

to obtain

ẼN

(
e−uTN/

√
N
)
∼ exp

{
−
√
Nugκ(R) + 1

2
u2gκ(R)

}
,

which immediately implies (4.15).

(c-iii) Again applying Lemma 2.4 with v = e−u/
√

N and u ≥ 0, from the asymptotic

relation (3.89) and with the help of Lemma 3.10 we get

ẼN

(
e−uTN/

√
N
)
∼ exp

{
−
√
Nugκ(R) + 1

2
u2
(
gκ(R) − 1/b2(R)

)}

× E
[
exp

{
−u
√

2/b2(R) (−
√
X )
}]
,

where X has the distribution Gamma(θ∗/2). Hence, the result (4.16) follows. �

Remark 4.5. To summarize the content of Theorem 4.4, the sequence of “phase transitions”

manifested by the limit distribution of T ∗
N := N−1/2

(
TN − Ngκ(R)

)
is as follows. In the

subcritical domain (g
{1}
κ (R) > 1), T ∗

N is asymptotically normal with asymptotic variance

gκ(r1) − 1/b2(r1) (Theorem 4.4(a)). This is consistent with the critical case (g
{1}
κ (R) = 1)

with finite gθ(R) and g
{2}
κ (R), whereby r1 = R (Theorem 4.4(c-i)). Quite surprisingly,

if gθ(z) acquires logarithmic singularity with exponent θ∗ > 0, the central limit theorem

breaks down as the existing normal component of the limit is reduced by the square root

of an independent gamma-distributed random variable (Theorem 4.4(c-iii)). In particular,

the limit distribution of T ∗
N gets negatively skewed; for instance, its expected value equals

−Γ((θ∗+1)/2)/Γ(θ∗/2) < 0 whilst E(T ∗
N) ≡ 0. Thus, although we prove weak convergence

using the moment generating functions, the limit in this case cannot be established by the

plain method of moments. However, when the function gκ(z) becomes more singular at

z = R, with g
{2}
κ (R) = ∞, the limit of T ∗

N reverts to a normal distribution but with a bigger

variance, gκ(R) (Theorem 4.4(c-ii)), which continues to hold in the supercritical regime

g
{1}
κ (R) < 1 (Theorem 4.4(b)).

Despite a complicated structure of the weak limit, the total number of cycles TN in all

cases satisfies the following simple law of large numbers, as N → ∞.

Corollary 4.5. Under the sequence of probability measures P̃N , in each of the cases in

Theorem 4.4 there is the convergence in probability

TN

N

p−→ gκ(r∗), N → ∞, (4.25)

where r∗ is given by (4.1).

Remark 4.6. The result (4.25) for TN =
∑

j Cj is formally consistent with Theorem 4.1(a),

since the limits (4.4) of the normalized cycle counts Cj/N sum up exactly to the right-hand

side of (4.25) (cf. (1.20)):

∑

j

κj r
j
∗

j
= gκ(r∗).

Remark 4.7. The uniform asymptotic formula (4.17) can also be used to derive large devia-

tion results for TN (cf. [26, §4]), but we do not enter into further details here.
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4.4. Lexicographic ordering of cycles. We can now find the asymptotic (finite-dimensional)

distribution of the cycle lengthsLj (see Definition 2.1). Note that no normalization is needed.

Theorem 4.6. For each m ∈ N, the random variables L1, . . . , Lm are asymptotically inde-

pendent as N → ∞ and, moreover, for any ℓ1, . . . , ℓm ∈ N

lim
N→∞

P̃N{L1 = ℓ1, . . . , Lm = ℓm} =
m∏

j=1

κℓj
r

ℓj
∗ , (4.26)

where r∗ is defined in (4.1).

Proof. By Lemma 2.5 we have, as N → ∞,

P̃N{L1 = ℓ1, . . . , Lm = ℓm} ∼
m∏

j=1

κj ·
hN−ℓ1−···−ℓm

(N)

HN

.

Similarly to (4.7), with Km := ℓ1 + · · · + ℓm we have

hN−Km
(N) = [zN ]

[
zKm eGN (z)

]
.

Hence, by a suitable asymptotic theorem from Section 3 (i.e., one of Theorems 3.3, 3.5, 3.6,

3.7, 3.8 or 3.12 as appropriate, each with f(z) = zKm), we get

hN−Km
(N)

HN

∼ rKm
∗ , N → ∞.

Substituting this into (4.7) we obtain the limit (4.26). �

Note from (4.26) that the limiting distribution of each Lj has the probability generating

function

lim
N→∞

ẼN(vLj) =
∞∑

ℓ=1

κℓ r
ℓ
∗ v

ℓ = g{1}κ (r∗v), 0 < v ≤ 1. (4.27)

The right-hand side of (4.27) defines a proper probability distribution if g
{1}
κ (R) ≥ 1 (i.e.,

in the subcritical and critical cases), because then its total mass is given by g
{1}
κ (r∗v)|v=1 =

g
{1}
κ (r∗) = 1 (see (4.2)). But in the supercritical regime this distribution is deficient, since

g
{1}
κ (r∗) = g

{1}
κ (R) < 1. Clearly, the reason for this is the emergence of infinite cycles as

N → ∞; see Theorems 4.2 and 4.3, where the defect ν̃ = 1 − g
{1}
κ (R) > 0 is identified

precisely as the limiting fraction of points contained in infinite cycles.

However, conditioning on {Lj ≤ K} and passing to the limit as K → ∞ gives

lim
K→∞

lim
N→∞

P̃N{Lj = ℓ |Lj ≤ K} = lim
K→∞

lim
N→∞

P̃N{Lj = ℓ}
P̃N{Lj ≤ K}

=
κℓR

ℓ

g
{1}
κ (R)

,

which defines a proper distribution.

5. LONG CYCLES

The ultimate goal of Section 5 is to characterize the supercritical asymptotics of longest

cycles (i.e., containing the fraction of points ν̃ = 1 − g
{1}
κ (R) > 0, see Section 4.2). Fol-

lowing the classical approach of Kingman [21] and Vershik and Shmidt [31], we study first

the asymptotic extreme value statistics of cycles under lexicographic ordering (see Defini-

tion 2.1) and then deduce from this the limit distribution for cycles arranged in the decreasing

order of their length.
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More specifically, we will show (Theorem 5.6) that if the generating function gθ(z) has a

non-vanishing logarithmic singularity at z = R (i.e., with θ∗ > 0 in formula (3.19)), then the

lengths (Lj) of lexicographically ordered cycles normalized by Nν̃, converge (in the sense

of finite-dimensional weak convergence) to the modified GEM distribution with parameter

θ∗ (cf. [1, p. 107]). The latter is constructed via the usual stick-breaking process but applied

only to the breakable part [0, ν̃ ] of the unit stick [0, 1], whereas the remaining part [ν̃, 1]
causes delays that contribute atoms at zero to the distribution of the output random sequence

(see more details in Section 5.3). Using the well-known link between the descending extreme

values of the GEM and the Poisson–Dirichlet distribution (see [1, §5.7]), and noting that

delays in the stick-breaking process do not affect the upper order statistics of cycle lengths,

Theorem 5.6 will readily imply that the ordered cycle lengths L(1) ≥ L(2) ≥ · · · weakly

converge to the corresponding Poisson–Dirichlet distribution PD(θ∗) (Theorem 5.9).

In the case θ∗ = 0, a similar argumentation works as well (see Theorem 5.12) but here

the stick-breaking process of Section 5.3 is reduced to removal of the entire breakable part

[0, ν̃ ] at first success in a chain of Bernoulli trials with success probability ν̃. Translated back

to the language of descending order statistics (L(j)), this means that there is a single giant

cycle, with length Nν̃ (1 + o(1)), emerging in the limit N → ∞ (Theorem 5.13).

Remark 5.1. Let us point out that although the supercritical regime is defined in terms of the

generating function gκ(z) of the sequence (κj), the limit distribution of long cycles (and in

particular the distinction between the Poisson–Dirichlet distribution PD(θ∗) of Theorem 5.9

and the degenerate distribution of Theorem 5.13) is determined entirely by the generating

function gθ(x) of the sequence (θj).

5.1. Analytic conditions on the generating functions. For the most part (until Section

5.6), the generating functions gθ(z) and gκ(z) will be assumed to satisfy the hypotheses of

Theorem 3.5, including the asymptotic formulas (3.19) and (3.20) (with some θ∗ > 0). In

particular, g
{1}
κ (R) < 1 so we are in the supercritical regime. Furthermore, let us assume that

there is a non-integer s > 1 such that g
{n}
κ (R) < ∞ for all n < s while g

{n}
κ (R) = ∞ for

n > s; moreover, there exist a constant as > 0 and a sequence δn > 0 such that, as z → R,

z ∈ ∆0 (see Definition 3.3),

g{n}κ (z) = g{n}κ (R)
{
1 +O

(
(1 − z/R)δn

)}
(n < s), (5.1)

g{n}κ (z) =
Γ(−s+ n) as

Γ(−s) (1 − z/R)s−n
{
1 +O

(
(1 − z/R)δn

)}
(n > s). (5.2)

In addition to (3.19), we also assume that

g
{n}
θ (z) =

θ∗(n− 1)!

(1 − z/R)n

{
1 +O

(
(1 − z/R)δn

)}
, n ∈ N. (5.3)

In Section 5.6 we will also consider the case θ∗ = 0, using the results of Theorem 3.6.

Remark 5.2. The principal term in the asymptotic expression (5.3) may be formally obtained

by differentiating the condition (3.19). Similarly, the asymptotic formulas (5.1) and (5.2) are

underpinned by the expansion (3.47).

5.2. Reminder: Poisson–Dirichlet distribution. Our aim is to show that, under the as-

sumptions stated in Section 5.1 (most importantly, with θ∗ > 0), the descending order statis-

tics of the cycle lengths converge to the so-called Poisson–Dirichlet distribution PD(θ∗).
Let us recall that the Poisson–Dirichlet distribution PD(θ) with parameter θ > 0 was

introduced by Kingman [20, §5] as the weak limit of order statistics of a symmetric Dirichlet



CYCLES IN SURROGATE-SPATIAL RANDOM PERMUTATIONS 43

distribution (with parameter α) on N -dimensional simplex ∆N as N → ∞, αN → θ > 0.

Such a limit can be identified as the distribution law L of the normalized points of a Poisson

process σ1 > σ2 > · · · on (0,∞) with rate θx−1e−x,

PD(θ) = L(σ1/σ, σ2/σ, . . . ),

where σ = σ1 + σ2 + · · · < ∞ (a.s.); note that the random variable σ has the gamma

distribution Gamma(θ) and is independent of the sequence (σj/σ) (see, e.g., [22, §9.3] or

[1, §5.7] for more details).

An explicit formula for the finite-dimensional probability density of PD(θ), first obtained

by Watterson [32, §2] (see also [1, p. 113]), is quite involved but is of no particular interest

to us. There is, however, an equivalent descriptive definition of the Poisson-Dirichlet distri-

bution PD(θ) through the so-called GEM(θ) distribution (named after Griffiths, Engen and

McCloskey; see, e.g., [1, p. 107]), which is the joint distribution of the random variables

Y1 := B1, Yn := Bn

n∏

j=1

(1 −Bj) (n ≥ 2), (5.4)

where (Bn) is a sequence of independent identically distributed (i.i.d.) random variables with

the beta distribution Beta(1, θ) (i.e., with the probability density θ(1 − x)θ−1, 0 ≤ x ≤ 1).

From the definition (5.4), it is straightforward to obtain the finite-dimensional probability

density of GEM(θ) (see [1, p. 107]),

fθ(x1, . . . , xm) =
θm(1 − x1 − · · · − xm)θ−1

∏m−1
j=1 (1 − x1 − · · · − xj)

, x1, . . . , xm ≥ 0, x1 + · · · + xm < 1.

Remark 5.3. The sequence (5.4) has a geometric interpretation as a stick-breaking process,

whereby at each step an i.i.d. Beta(1, θ)-distributed fraction is removed from the remaining

“stick” (see, e.g., [19, §3] for the background and further references).

The remarkable link of the GEM(θ) with the PD(θ), discovered by Tavaré [30, Theorems

4 and 6] (see also [1, §5.7]), is as follows.

Lemma 5.1. The descending order statistics Y (1) ≥ Y (2) ≥ · · · of the GEM(θ) sequence

(5.4) have precisely the PD(θ) distribution.

Note that since the joint distribution of Yn’s is continuous, the order statistics Y (n) are in

fact distinct (a.s.).

5.3. Modified stick-breaking process. Let (Un), (Bn) be two sequences of i.i.d. random

variables each, also independent of one another, where Un’s have uniform distribution on

[0, 1] and Bn’s have beta distribution Beta(1, θ∗) with parameter θ∗ > 0. Setting η0 := 1, let

us define inductively the random variables

ξn := ✶{Un≤u∗(ηn−1)}, Dn := ξnBn, ηn :=
n∏

j=1

(1 −Dj) (n ∈ N), (5.5)

where u∗(x) := ν̃x/(1 − ν̃ + ν̃x) (x ∈ [0, 1]) and ✶A denotes the indicator of event A.

Note that ξn’s are Bernoulli random variables (with values 0 and 1), adapted to the filtration

Fn := σ{(Uj, Bj), 1 ≤ j ≤ n} and with the conditional distribution

P{ξn = 1 | Fn−1} = u∗(ηn−1) ≡
ν̃ ηn−1

1 − ν̃ + ν̃ ηn−1

(n ∈ N), (5.6)
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where F0 is a trivial σ-algebra. In particular, P{ξ1 = 1} = ν̃, P{ξ1 = 0} = 1 − ν̃.

Finally, let us consider the random variables

Xn := ηn−1Dn (n ∈ N). (5.7)

Noting that, for all n ∈ N, we have 0 < Bn < 1 (a.s.), from (5.5) it is clear that

∀n ∈ N, 0 ≤ Dn < 1 and 0 < ηn ≤ 1 (a.s.), (5.8)

which also implies, due to (5.7), that

∀n ∈ N, 0 ≤ Xn < 1 (a.s.).

Remark 5.4. The random sequence (Xn) may be interpreted as a modified stick-breaking

process with delays (cf. Remark 5.3), whereby the original interval [0, 1] (“stick”) is divided

into two parts: (i) [0, ν̃ ] which is subject to a subsequent breaking, and (ii) [ν̃, 1] which stays

intact. At each step, the breaking is only enabled if an independent point chosen at random

in the remaining stick falls in the breakable part, otherwise the process is idle; the breaking,

when it occurs, acts as the removal of a fraction of the current breakable part, independently

sampled from Beta(1, θ∗).

Lemma 5.2. The random sequence (Xn)n∈N satisfies the a.s.-identities

n∑

j=1

Xj = 1 − ηn (n ∈ N),
∞∑

j=1

Xj = 1. (5.9)

Proof. Recalling (5.7), we have
n∑

j=1

Xj =
n∑

j=1

(ηj−1 − ηj) = 1 − ηn, (5.10)

which proves the first formula in (5.9). To establish the second one, in view of (5.10) we

only need to check that limn→∞ ηn = 0 a.s. To this end, note that 0 ≤ Dj ≤ 1, so that the

sequence (ηn) is non-increasing and therefore converges to a (possibly random) limit η ≥ 0.

To show that η = 0 a.s., consider

E [ηn | Fn−1] = ηn−1

(
1 − E [Dn | Fn−1]

)
. (5.11)

Recalling the definition of (Dn) (see (5.5)) and noting that ξn and Bn are mutually indepen-

dent, with Bn also independent of Fn−1, we obtain, using (5.6) and replacing ηn−1 in the

denominator with its upper bound 1,

E [Dn | Fn−1] = E [ξnBn | Fn−1] = E [ξn | Fn−1] · E [Bn]

=
ν̃ ηn−1

1 − ν̃ + ν̃ ηn−1

E [B1] ≥ ν̃ ηn−1 E [B1].

Returning to (5.11) and taking the expectation, we obtain

E [ηn] ≤ E [ηn−1] − ν̃ E [B1] · E [η2
n−1].

Passing to the limit as n → ∞ and using the monotone convergence theorem, we deduce

that E[η2] ≤ 0, hence η = 0 a.s. This completes the proof of the lemma. �

Remark 5.5. In terms of the modified stick-breaking process (see Remark 5.3), the second

equality in (5.9) means that, with probability 1, the total fraction removed from the breakable

part of the stick has full measure. This is a generalization of the similar property of the

standard stick-breaking process (5.4).
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Lemma 5.3. With probability 1, infinitely many Xn’s are non-zero.

Proof. By Lemma 5.2, ηn → 0 (a.s.) as n → ∞. In view of the last formula in (5.5), this

implies that
∑

n log (1 − Dn) = −∞ (a.s.), which is equivalent to
∑

nDn = +∞ (a.s.).

Hence, Dn > 0 infinitely often (a.s.), and the claim of the lemma now readily follows from

(5.7) since ηn > 0 a.s. (see (5.8)).

The fact that Dn > 0 infinitely often (a.s.) can be established more directly as follows.

Put τ0 := 0 and define inductively the successive hitting times

τn := min{j > τn−1 : ξj = 1}, n ∈ N, (5.12)

with the usual convention min ∅ := +∞. SinceBn > 0 (a.s.), from (5.5) we see thatDτn
> 0

(a.s.), while Dj = 0 for τn−1 < j < τn, so it remains to verify that (τn) is an a.s.-infinite

sequence. Indeed, from the definition of ηn it follows that

ηj ≡ ητn−1
(τn−1 ≤ j < τn), ητn

< ητn−1
.

Together with formulas (5.5) and (5.6), this implies that, conditionally on Fτn−1
, the random

variable τn − τn−1 is time to first success in a sequence of independent Bernoulli trials ξj
with success probability u∗(ητn−1

) > 0 (see (5.6)), so it has the geometric distribution

P{τn − τn−1 = k | Fτn−1
} =

(
1 − u∗(ητn−1

)
)k−1

u∗(ητn−1
), k = 1, 2, . . . ,

and in particular τn − τn−1 < ∞ a.s. From the product structure of the filtration (Fn) it

is also clear that the waiting times τn − τn−1 are mutually independent (n ∈ N). Hence, it

follows that all τn are a.s.-finite, as required. �

Let X(1) ≥ X(2) ≥ · · · be the order statistics built from the sequence (Xn) (see (5.7)) by

arranging the entries in decreasing order. Recall thatXn ≥ 0; moreover, by Lemma 5.3 infin-

itely many entries are positive (a.s.) and, in addition,
∑

nXn = 1 according to Lemma 5.2.

It follows that, with probability 1, there is an infinite sequence of order statistics X(n) > 0,

each well defined up to possible ties of at most finite multiplicities (however, it will be clear

from the next lemma and the continuity of the Poisson–Dirichlet distribution that positive

order statistics X(n) are in fact a.s.-distinct).

In particular, the sequence X(1) ≥ X(2) ≥ · · · > 0 is not affected by any zero entries

among Xn’s, which therefore can be removed from (Xn) prior to ordering. But, according to

the definition of the random times τn (see (5.12)) and by formulas (5.5) and (5.7), successive

non-zero entries among X1, X2, . . . are precisely given by

Xτ1 = Bτ1, Xτn
= Bτn

n−1∏

j=1

(1 −Bτj
) (n ≥ 2), (5.13)

where (Bτn
) are i.i.d. random variables with beta distribution Beta(1, θ∗). The latter claim

can be easily verified using the total probability formula and mutual independence of the

waiting times τn − τn−1 pointed out in the alternative proof of Lemma 5.3; for instance,

P{Bτ1> x1, Bτ2 > x2} =
∞∑

k1=1

∑

k2>k1

P{τ1 = k1, τ2 − τ1 = k2 − k1}P{Bk1
> x1, Bk2

> x2}

= (1 − x1)
θ∗(1 − x2)

θ∗
∞∑

k1=1

P{τ1 = k1}
∞∑

ℓ=1

P{τ2 − τ1 = ℓ}

= (1 − x1)
θ∗(1 − x2)

θ∗ .
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Now, comparing (5.13) with (5.4) and using Lemma 5.1, we arrive at the following result.

Lemma 5.4. The sequence of the descending order statistics (X(n)) has the Poisson–Dirichlet

distribution PD(θ∗) with parameter θ∗ > 0.

In conclusion of this subsection, let us prove some moment identities for the random

variables Xj .

Lemma 5.5. For each n ∈ N, as N → ∞,

E[Xn
1 ] = ν̃

B(n+ 1, θ∗)

B(1, θ∗)
≡ ν̃ n! Γ(θ∗ + 1)

Γ(θ∗ + n+ 1)
. (5.14)

Furthermore, for all n1, n2 ∈ N

E
[
Xn1

1 X
n2

2 (1 − ν̃X1)
]

=
ν̃ 2B(n1 + 1, θ∗ + n2 + 1)B(n2 + 1, θ∗)

(B(1, θ∗))2

≡ θ∗ ν̃ 2n1!n2! Γ(θ∗ + 1)

Γ(θ∗ + n1 + n2 + 2)
, (5.15)

while for n1 = 0 and any n2 ∈ N

E
[
Xn2

2 (1 − ν̃X1)
]

=

(
1 − ν̃ + ν̃

B(1, n2 + 1 + θ∗)

B(1, θ∗)

)
ν̃ B(n2 + 1, θ∗)

B(1, θ∗)

≡
{
θ∗ + (n2 + 1)(1 − ν̃)

} ν̃ n2! Γ(θ∗ + 1)

Γ(θ∗ + n2 + 2)
. (5.16)

Proof. Using the definitions (5.5) and (5.7), we obtain

E[Xn
1 ] = E[ξ1B

n
1 ] = E[ξ1] · E[Bn

1 ]

=
ν̃

B(1, θ∗)

∫ 1

0

xn(1 − x)θ∗−1 dx =
ν̃ B(n+ 1, θ∗)

B(1, θ∗)
,

which proves the first part of formula (5.14). The second part follows by substituting the

well-known representation B(a, b) = Γ(a)Γ(b)/Γ(a+ b).
To prove (5.15), let us first compute the conditional expectation

E
[
Xn1

1 X
n2

2 (1 − ν̃X1) | F1

]
= Dn1

1 (1 −D1)
n2 (1 − ν̃D1) E

[
Dn2

2 | F1

]
, (5.17)

where, according to (5.5) and (5.6),

E
[
Dn2

2 | F1

]
= E

[
ξ2B

n2

2 | F1

]
=

ν̃ η1

1 − ν̃ + ν̃ η1

· E[Bn2

2 ]

=
ν̃ (1 −D1)

1 − ν̃D1

· B(n2 + 1, θ∗)

B(1, θ∗)
.

Hence, on taking the expectation of (5.17), we obtain

E
[
Xn1

1 X
n2

2 (1 − ν̃X1)
]

=
ν̃ B(n2 + 1, θ∗)

B(1, θ∗)
E
[
Dn1

1 (1 −D1)
n2+1

]

=
ν̃ B(n2 + 1, θ∗)

B(1, θ∗)
E
[
ξn1

1 B
n1

1 (1 − ξ1B1)
n2+1

]
. (5.18)
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For n1 ≥ 1 we have ξn1

1 = ξ1, leading to

E
[
ξn1

1 B
n1

1 (1 − ξ1B1)
n2+1

]
= P{ξ1 = 1}E

[
Bn1

1 (1 −B1)
n2+1

]

=
ν̃

B(1, θ∗)

∫ 1

0

xn1(1 − x)θ∗+n2 dx =
ν̃ B(n1 + 1, θ∗ + n2 + 1)

B(1, θ∗)
,

(5.19)

and the substitution of (5.19) into (5.18) gives the first line of formula (5.15). The second

line can again be obtained by expressing the beta function through the gamma function.

For n1 = 0, formula (5.18) is reduced to

E
[
Xn2

2 (1 − ν̃X1)
]

=
ν̃ B(n2 + 1, θ∗)

B(1, θ∗)
E
[
(1 − ξ1B1)

n2+1
]
, (5.20)

and similarly as before we find

E
[
(1 − ξ1B1)

n2+1
]

= P{ξ1 = 0} + P{ξ1 = 1}E
[
(1 −B1)

n2+1
]

= (1 − ν̃) + ν̃

∫ 1

0

(1 − x)θ∗+n2 dx

= 1 − ν̃ +
ν̃ B(1, θ∗ + n2 + 1)

B(1, θ∗)
.

Together with (5.20) this proves the first line of (5.16), while the second line then follows by

usual manipulations with the beta function. �

5.4. Cycles under lexicographic ordering. The next theorem characterizes the asymptotic

(finite-dimensional) distributions of normalized cycle lengths (Lj) under the lexicographic

ordering introduced in Definition 2.1. Owing to the normalization proportional to N , only

long cycles (i.e., of length comparable to N ) survive in the limit as N → ∞. This result

should be contrasted with Theorem 4.6 that deals with non-normalized cycle lengths, thus

revealing an asymptotic loss of mass in the supercritical regime due to the emergence of long

cycles (see a comment after the proof of Theorem 4.6).

Theorem 5.6. For each m ∈ N,

1

Nν̃
(L1, . . . , Lm)

d−→ (X1, . . . , Xm), N → ∞, (5.21)

where ν̃ > 0 is given by (4.11) and the random variables Xj are as defined in (5.7). In

particular, L1/(Nν̃) converges in distribution to a random variable X1 with atom 1 − ν̃ at

zero and an absolutely continuous component on (0, 1) with density ν̃ θ∗(1 − x)θ∗−1.

For the proof of the theorem, we first need to establish the following lemma.

Lemma 5.7. For each n ∈ N,

lim
N→∞

1

(Nν̃)n
ẼN(Ln

1 ) =
ν̃ n! Γ(θ∗ + 1)

Γ(θ∗ + n+ 1)
. (5.22)

Furthermore, for any n1, n2 ∈ N

lim
N→∞

1

(Nν̃)n1+n2

ẼN

[
Ln1

1 L
n2

2 (1 − L1/N)
]

=
θ∗ ν̃ 2n1!n2! Γ(θ∗ + 1)

Γ(θ∗ + n1 + n2 + 2)
, (5.23)

while for n1 = 0 and any n2 ∈ N

lim
N→∞

1

(Nν̃)n2

ẼN

[
Ln2

2 (1 − L1/N)
]

=
ν̃ {θ∗ + (n2 + 1)(1 − ν̃)}n2! Γ(θ∗ + 1)

Γ(θ∗ + n2 + 2)
. (5.24)
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Remark 5.6. The subtlety of Lemma 5.7 is hidden in the fact that the asymptotics (5.22),

(5.23), (5.24) are invalidated if either of n, n1, n2 takes the value 0; for instance, formula

(5.24) cannot be readily deduced from (5.23) by setting n1 = 0. An explanation lies in the

asymptotic separation of “short” and “long” cycles, leading to the emergence of an atom of

mass 1 − ν̃ at zero in the limiting distribution of (L1/N)n for n > 0.

Proof of Lemma 5.7. Let us first consider ẼN

[
(L1 − 1)n

]
, where (·)n is the Pochhammer

symbol defined in (2.10). Using the distribution of L1 obtained in Lemma 2.5 (see (2.16))

and recalling formulas (2.8) and (3.2), we get for each n ∈ N

ẼN

[
(L1 − 1)n

]
=

1

NHN

∞∑

ℓ=1

(ℓ− 1)n (θℓ +Nκℓ)hN−ℓ(N)

=
1

NHN

∞∑

ℓ=1

(ℓ− 1)n (θℓ +Nκℓ) [zN−ℓ ]
[
eGN (z)

]

=
1

NHN

[zN ]

[ ∞∑

ℓ=1

(ℓ− 1)n (θℓ +Nκℓ)z
ℓ eGN (z)

]

=
1

NHN

[zN ]
[
G

{n+1}
N (z) eGN (z)

]
. (5.25)

In view of the formula ν̃ = 1 − g
{1}
κ (R) (see (4.11)), Theorem 3.5 with function f(z) =

g
{n+1}
θ (z) and β = n+ 1 (see (5.3)) gives

1

NHN

[zN ]
[
g
{n+1}
θ (z) eGN (z)

]
∼ (Nν̃)n θ∗n! Γ(θ∗)

Γ(θ∗ + n+ 1)
ν̃ . (5.26)

Furthermore, using the asymptotic expansions (5.1), (5.2) and applying Theorem 3.5 with

f(z) = g
{n+1}
κ (z) and β = max{0, n+ 1 − s}, we obtain

1

NHN

[zN ]
[
Ng{n+1}

κ (z) eGN (z)}
]

= O(1) +O(Nn+1−s) = o(Nn), (5.27)

due to the conditions s > 1, n > 0. Thus, substituting (5.26) and (5.27) into (5.25) yields

ẼN

[
(L1 − 1)n

]
∼ (Nν̃)n n! Γ(θ∗ + 1)

Γ(θ∗ + n+ 1)
ν̃,

which implies (5.22).

We now turn to (5.24) and (5.23). Using the joint distribution of L1 and L2 (see (2.15)), it

follows by a similar computation as in (5.25) that, for any integers n1 ≥ 0, n2 > 0,

ẼN

[
(L1 − 1)n1

(L2 − 1)n2
(1 − L1/N)

]
=

1

N2HN

[zN ]
[
G

{n1+1}
N (z)G

{n2+1}
N (z) eGN (z)

]
.

(5.28)

As before, we can work out the asymptotics of (5.28) by using Theorem 3.5 with the function

f(z) = G
{n1+1}
N (z)G

{n2+1}
N (z)

= g
{n1+1}
θ (z) g

{n2+1}
θ (z) +Ng{n1+1}

κ (z) g
{n2+1}
θ (z)

+Ng
{n1+1}
θ (z) g{n2+1}

κ (z) +N2g{n1+1}
κ (z) g{n2+1}

κ (z).
(5.29)



CYCLES IN SURROGATE-SPATIAL RANDOM PERMUTATIONS 49

The singularity of each term in (5.29) (and the respective index β, see (3.21)) is specified

from formulas (5.1), (5.2) and (5.3). First of all, using (5.3) we have

g
{n1+1}
θ (z) g

{n2+1}
θ (z) ∼ (θ∗)2n1!n2!

(1 − z/R)n1+n2+2

(i.e., β = n1 + n2 + 2), so formulas (3.22), (3.23) of Theorem 3.5 give

1

N2HN

[zN ]
[
g
{n1+1}
θ (z) g

{n2+1}
θ (z) eGN (z)}

]
∼ θ∗ Γ(θ∗ + 1)n1!n2!

Γ(θ∗ + n1 + n2 + 2)
(Nν̃)n1+n2 , (5.30)

which coincides with the asymptotics (5.23).

For n1 ≥ 1, contributions from other terms in (5.29) are negligible as compared toNn1+n2 .

Indeed, from (5.1) and (5.2) we get

g{n1+1}
κ (z) g{n2+1}

κ (z) = O
(
(1 − z/R)−β

)

with

β = max{0, n1 + 1 − s, n2 + 1 − s, n1 + n2 + 2 − 2s} < n1 + n2,

thanks to the condition s > 1. Hence, by Theorem 3.5 we have

1

N2HN

[zN ]
[
N2g{n1+1}

κ (z) g{n2+1}
κ (z) eGN (z)

]
= o(Nn1+n2). (5.31)

Similarly, using (5.1), (5.2) and (5.3) we get

g
{n1+1}
θ (z) g{n2+1}

κ (z) =
θ∗n1!

(1 − z/R)n1+1

{
O(1) +O

(
(1 − z/R)s−n2−1

)}
,

and Theorem 3.5 with

β = max{n1 + 1, n1 + n2 + 2 − s} < n1 + n2 + 1

again gives
1

N2HN

[zN ]
[
Ng

{n1+1}
θ (z) g{n2+1}

κ (z) eGN (z)
]

= o(Nn1+n2). (5.32)

By symmetry, the same estimate (5.32) holds for the term g
{n1+1}
κ (z) g

{n2+1}
θ (z) with n1 ≥ 1,

n2 ≥ 1. Thus, substituting (5.30), (5.31) and (5.32) into (5.28), we obtain (5.23).

The case n1 = 0 requires more care; here we have (see (5.1) and (5.3))

g{1}κ (z) g
{n2+1}
θ (z) ∼ g

{1}
κ (R) θ∗n2!

(1 − z/R)n2+1
,

and so Theorem 3.5 with β = n2 + 1 yields

1

N2HN

[zN ]
[
Ng{1}κ (z) g

{n2+1}
θ (z) eGN (z)

]
∼ g

{1}
κ (R) Γ(θ∗ + 1)n2!

Γ(θ∗ + n2 + 1)
(Nν̃)n2 , (5.33)

which is of the same order as the right-hand side of (5.30) (with n1 = 0). Hence, adding up

the contributions (5.30) and (5.33) and recalling that g
{1}
κ (R) = 1− ν̃, we obtain (5.24). �

Remark 5.7. As should be clear from the proof, the factor 1 − L1/N = N−1(N − L1) is

included in (5.23) and (5.24) in order to cancel the denominator N − ℓ1 in formula (2.17)

of the two-dimensional distribution of (L1, L2). As suggested by the general formula (2.15)

of Lemma 2.5, an extension of Lemma 5.7 to the m-dimensional case L1, . . . , Lm requires

the inclusion of the product
∏m−1

j=1 (N −L1 − · · · −Lj). The corresponding calculations are

tedious but straightforward, and follow the same pattern as for m = 2. A suitable extension

is also possible for Lemma 5.5.
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Proof of Theorem 5.6. For the sake of clarity, we consider only the case m = 2 (i.e., involv-

ing the joint distribution of L1, L2); computations in the general case require an extension of

Lemmas 5.5 and 5.7 (see Remark 5.7) and can be carried out along the same lines.

By the continuous mapping theorem and according to the definitions (5.5) and (5.7), the

convergence (5.21) with m = 2 is equivalent to

1

Nν̃

(
L1, L2(1 − L1/N)

) d−→
(
X1, X2(1 − ν̃X1)

)
, N → ∞.

By the method of moments, it suffices to show that for any n1, n2 ∈ N0, as N → ∞,

ẼN

[
Ln1

1 L
n2

2 (1 − L1/N)n2

]
∼ (Nν̃)n1+n2 E

[
Xn1

1 X
n2

2 (1 − ν̃X1)
n2

]
. (5.34)

First, for n1 = n2 = 0 the relation (5.34) is trivial, since both sides are reduced to 1. If

n2 = 0 and n1 > 0 then (5.34) readily follows from the relations (5.14) (Lemma 5.5) and

(5.22) (Lemma 5.7).

To cover the case n2 ≥ 1, let us prove a more general asymptotic relation

ẼN

[
Ln1

1 L
n2

2 (1 − L1/N)q
]
∼ (Nν̃)n1+n2 E

[
Xn1

1 X
n2

2 (1 − ν̃X1)
q
]
, (5.35)

valid for all n1 ∈ N0 and n2, q ∈ N. We argue by induction on q. For q = 1, the relation

(5.35) is verified by comparing formulas (5.15) and (5.23) (for n1 ≥ 1) or (5.16) and (5.24)

(for n1 = 0). Now suppose that (5.35) is true for some q ≥ 1. Expanding

(1 − L1/N)q+1 = (1 − L1/N)q −N−1L1(1 − L1/N)q

and using the induction hypothesis (5.35), we get

ẼN

[
Ln1

1 L
n2

2 (1 − L1/N)q+1
]

= ẼN

[
Ln1

1 L
n2

2 (1 − L1/N)q
]
−N−1

ẼN

[
Ln1+1

1 Ln2

2 (1 − L1/N)q
]

∼ (Nν̃)n1+n2

{
E
[
Xn1

1 X
n2

2 (1 − ν̃X1)
q
]
− ν̃ E

[
Xn1+1

1 Xn2

2 (1 − ν̃X1)
q
]}

= (Nν̃)n1+n2 E
[
Xn1

1 X
n2

2 (1 − ν̃X1)
q+1
]
,

which verifies (5.35) for q + 1, and therefore for all q ≥ 1. This completes the proof of

Theorem 5.6. �

5.5. Poisson–Dirichlet distribution for the cycle order statistics. Let us now consider the

cycle lengths without the lexicographic ordering, and arrange them in decreasing order.

Definition 5.1. For a permutation σ ∈ SN , let L(1) = L(1)(σ) be the length of the longest

cycle in σ, L(2) = L(2)(σ) the length of the second longest cycle in σ, etc.

Let us first prove a suitable “cut-off” lemma for lexicographically ordered cycles.

Lemma 5.8. For any ε > 0, we have

lim
n→∞

lim sup
N→∞

P̃N

(
⋃

j>n

{
N−1Lj > ε

}
)

= 0. (5.36)
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Proof of Lemma 5.8. Fix a K ∈ N and note that, for all N ≥ K/ε,

P̃N

(
⋃

j>n

{
N−1Lj > ε

}
)

= P̃N

(
⋃

j>n

{
N−1Lj ✶{Lj>K} > ε

}
)

≤ P̃N

{
1

N

∑

j>n

Lj ✶{Lj>K} > ε

}
. (5.37)

Furthermore, noting that

∑

j>n

Lj ✶{Lj>K} =
∞∑

j=1

Lj ✶{Lj>K} −
n∑

j=1

Lj ✶{Lj>K}, (5.38)

by Theorems 4.3 and 5.6 we have, as N → ∞,

1

N

∞∑

j=1

Lj ✶{Lj>K}
p−→ ν̃K ,

1

N

n∑

j=1

Lj ✶{Lj>K}
d−→ ν̃

n∑

j=1

Xj .

Returning to (5.38), this gives

∑

j>n

Lj ✶{Lj>K}
d−→ ν̃K − ν̃

n∑

j=1

Xj, N → ∞.

Hence, recalling that limK→∞ ν̃K = ν̃ (see (4.9)), from (5.37) we obtain

lim sup
N→∞

P̃N

(
⋃

j>n

{
N−1Lj > ε

}
)

≤ lim inf
K→∞

P

{
ν̃

n∑

j=1

Xj ≤ ν̃K − ε

}

= P

{
n∑

j=1

Xj ≤ 1 − ε/ν̃

}
.

Finally, passing here to the limit as n → ∞ and noting that, by Lemma 5.2,
∑∞

j=1Xj = 1
(a.s.), we arrive at (5.36), as claimed. �

The next theorem is our main result in this subsection. Recall that the parameter θ∗ > 0 is

involved in the assumption (5.3).

Theorem 5.9. In the sense of convergence of finite-dimensional distributions,

1

Nν̃

(
L(1), L(2), . . .

) d−→ PD(θ∗), N → ∞,

where PD(θ∗) denotes the Poisson–Dirichlet distribution with parameter θ∗.

Proof. By virtue of Lemma 5.4, it suffices to show that, for each m ∈ N,

1

Nν̃

(
L(1), . . . , L(m)

) d−→
(
X(1), . . . , X(m)

)
, N → ∞. (5.39)

Let us first verify (5.39) form = 1. Fix an integer n ≥ 1 and observe that, for any x ∈ (0, 1),

P̃N

{
(Nν̃)−1L(1) > x

}
≥ P̃N

{
(Nν̃)−1 max

j≤n
Lj > x

}
.
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Hence, by Theorem 5.6 and the continuous mapping theorem, it follows that

lim inf
N→∞

P̃N

{
(Nν̃)−1L(1) > x

}
≥ lim

n→∞
P

{
max
j≤n

Xj > x
}

≥ P{X(1) > x}, (5.40)

because maxj≤nXj ↑ X(1) as n ↑ ∞. On the other hand, we have an upper bound

P̃N

{
(Nν̃)−1L(1) > x

}
≤ P̃N

{
(Nν̃)−1 max

j≤n
Lj > x

}
+ P̃N

{
N−1 max

j>n
Lj > ν̃x

}
,

and by Theorem 5.6 and Lemma 5.8 this yields (cf. (5.40))

lim sup
N→∞

P̃N

{
(Nν̃)−1L(1) > x

}
≤ lim

n→∞
lim sup

N→∞
P̃N

{
(Nν̃)−1 max

j≤n
Lj > x

}

≤ lim
n→∞

P

{
max
j≤n

Xj > x
}

≤ P
{
X(1) ≥ x

}
. (5.41)

Combining (5.40) and (5.41) and assuming that x ∈ (0, 1) is a point of continuity of the

distribution of X(1) (which is, in fact, automatically true owing to Lemma 5.4), we obtain

lim
N→∞

P̃N

{
(Nν̃)−1L(1) > x

}
= P{X(1) > x},

which proves (5.39) with m = 1.

The general casem ≥ 2 is handled in a similar manner, by using lower and upper estimates

for the m-dimensional probability P̃N

{
(Nν̃)−1L(1) > x1, . . . , (Nν̃)

−1L(m) > xm

}
through

the similar probabilities for the order statistics of the truncated sample L1, . . . , Ln (n ≥ m),

where the “discrepancy” term due to the contribution of the tail part (Lj, j > n) may be

shown to be asymptotically negligible as n→ ∞ by virtue of the cut-off Lemma 5.8. �

Remark 5.8. As already mentioned in Remark 3.4, the requirement imposed in Section 5.1

that the asymptotic expansion (3.47) of gκ(z) holds with a non-integer index s > 1 may be

extended to allow a power-logarithmic term bs(1 − z/R)s log (1 − z/R) (with any s > 1).

With the asymptotic formulas (5.1), (5.2) modified accordingly, the proof of Lemma 5.7 may

be adapted as appropriate, implying that Theorems 5.6 and 5.9 remain true.

5.6. Case θ∗ = 0. Let us now turn to studying the asymptotic behaviour of cycles in the

case θ∗ = 0 (see (3.19)). More precisely, throughout this subsection we suppose that, as in

Theorem 3.6, the generating function gθ(z) is holomorphic in a suitable domain∆0 (see Def-

inition 3.3) and, moreover, is regular at point z = R; in particular, the successive (modified)

derivatives of gθ(z) have Taylor-type asymptotic expansions, as z → R (z ∈ ∆0),

g
{n}
θ (z) ∼

( z
R

)n
∞∑

j=n

(−1)j−ng
{j}
θ (R)

(j − n)!
(1 − z/R)j−n.

We also assume that the generating function gκ(z) admits the asymptotic expansion (3.47) of

Theorem 3.6 (with a non-integer s > 1), which may be differentiated any number of times
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to yield a nested family of expansions (with some δn > 0, n ∈ N0),

g{n}κ (z) =
( z
R

)n
{
∑

n≤j<s

(−1)j−ng
{j}
κ (R)

(j − n)!

(
1 − z

R

)j−n

+
Γ(−s+ n) as

Γ(−s)
(
1 − z

R

)s−n
}

+O

((
1 − z

R

)s−n+δn

)
, (5.42)

where the first sum is understood to vanish if n > s (cf. (5.1), (5.2)).

Let us now revisit the modified stick-breaking process underpinning our argumentation in

the case θ∗ > 0 in Section 5.3. Observe that if θ∗ ↓ 0 then the beta distribution Beta(1, θ∗)
of the random variables Bn converges to Dirac delta measure δ1(dx), since for any x ∈ [0, 1)

P{Bn > x} =

∫ 1

x

θ∗(1 − u)θ∗−1 du = (1 − x)θ∗ → 1, θ∗ → 0.

It is easy to see that, under this limit, equations (5.5) and (5.7) are greatly simplified to

the following. Let (ξn) be a sequence of i.i.d. Bernoulli random variables with success

probability P{ξn = 1} = ν̃ > 0. Let τ1 := min{n : ξn = 1} <∞ (a.s.) be the random time

until first success, with geometric distribution

P{τ1 = k} = (1 − ν̃)k−1 ν̃, k ∈ N. (5.43)

Now, for n ∈ N we set

Xn := ✶{τ1=n} =

{
0, n 6= τ1,

1, n = τ1.
(5.44)

Remark 5.9. Formula (5.44) shows that the modified stick-breaking process (Xn) described

in Remark 5.3 for θ∗ > 0, reduces in the case θ∗ = 0 to removing the entire breakable part

[0, ν̃ ] at once after waiting time τ1.

The following analogue of Lemma 5.5 is formally obtained by substituting θ∗ = 0; its

proof is elementary by using the definition (5.44) and the distribution of τ1 (see (5.43)).

Lemma 5.10. For any n1, n2 ∈ N,

E(Xn1

1 ) = ν̃,

E
[
Xn1

1 X
n2

2 (1 − ν̃X1)
]

= 0,

E
[
Xn2

2 (1 − ν̃X1)
]

= (1 − ν̃)ν̃ .

Next, we prove an analogue of Lemma 5.7, which formally looks as its particular case

with θ∗ = 0 (cf. (5.22), (5.23) and (5.24)).

Lemma 5.11. For any n1, n2 ∈ N,

lim
N→∞

1

(Nν̃)n1

ẼN(Ln1

1 ) = ν̃, (5.45)

lim
N→∞

1

(Nν̃)n1+n2

ẼN

[
Ln1

1 L
n2

2 (1 − L1/N)
]

= 0, (5.46)

lim
N→∞

1

(Nν̃)n2

ẼN

[
Ln2

2 (1 − L1/N)
]

= (1 − ν̃)ν̃ . (5.47)
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Proof. We use similar argumentation as in the proof of Lemma 5.7, but now exploiting The-

orem 3.6. First of all, according to (5.25) we have, for any n1 ∈ N,

ẼN

[
(L1 − 1)n1

]
=

1

NHN

[zN ]
[(
g
{n1+1}
θ (z) +Ng{n1+1}

κ (z)
)
eGN (z)

]
. (5.48)

Applying Theorem 3.6(i) with f(z) = g
{n1+1}
θ (z) and β = ∞ (see (3.49) and (3.52)) gives

1

NHN

[zN ]
[
g
{n+1}
θ (z) eGN (z)

]
∼ 1

N
→ 0, N → ∞. (5.49)

On the other hand, on account of the asymptotic expansion (5.42) (with n = n1), by Theo-

rem 3.6(ii) with f(z) = g
{n1+1}
κ (z) and β = s− n1 − 1 < s− 1 we obtain

1

NHN

[zN ]
[
Ng{n1+1}

κ (z) eGN (z)}
]
∼ (Nν̃)n1 ν̃, N → ∞, (5.50)

recalling that ν̃ = 1− g
{1}
κ (R) (see (4.11)). Hence, substituting (5.49) and (5.50) into (5.48)

yields ẼN

[
(L1 − 1)n1

]
∼ (Nν̃)n1 ν̃, which implies (5.45).

We now turn to (5.46) and (5.47). Again considering the factorial moments, by formula

(5.28) we have, for any integers n1 ≥ 0, n2 ≥ 1,

ẼN

[
(L1 − 1)n1

(L2 − 1)n2
(1 − L1/N)

]
=

1

N2HN

[zN ]
[
G

{n1+1}
N (z)G

{n2+1}
N (z) eGN (z)

]
,

(5.51)

where the product G
{n1+1}
N (z)G

{n2+1}
N (z) is expanded in (5.29). Note that, like in (5.49),

1

N2HN

[zN ]
[
g
{n1+1}
θ (z) g

{n2+1}
θ (z) eGN (z)}

]
= O(N−2), N → ∞. (5.52)

Suppose that n1, n2 ≥ 1. Then, similarly to (5.50), we have as N → ∞
1

N2HN

[zN ]
[
Ng{n2+1}

κ (z) g
{n1+1}
θ (z) eGN (z)}

]
= O(Nn2−1), (5.53)

1

N2HN

[zN ]
[
Ng{n1+1}

κ (z) g
{n2+1}
θ (z) eGN (z)}

]
= O(Nn1−1). (5.54)

Furthermore, applying Theorem 3.6(ii) with f(z) = g
{n1+1}
κ (z) g

{n2+1}
κ (z) and

β = min {s− n1 − 1, s− n2 − 1} < s− 1,

and noting that β ≥ s− n1 − n2 , we obtain

1

N2HN

[zN ]
[
N2g{n1+1}

κ (z) g{n2+1}
κ (z) eGN (z)

]
= O(N s−β−1) = O(Nn1+n2−1). (5.55)

Hence, collecting the estimates (5.52), (5.53), (5.54) and (5.55), we obtain the claim (5.46).

The same proof shows that the estimates (5.52) and (5.53) are valid with n1 = 0; this is

also true for (5.54), which can be proved using Theorem 3.6(iii) with β = s − 1. Finally,

applying Theorem 3.6(ii) with β = s− n2 − 1 < s− 1, the estimate (5.55) is sharpened to

1

N2HN

[zN ]
[
N2g{1}κ (z) g{n2+1}

κ (z) eGN (z)
]
∼ (Nν̃)n2 ν̃,

giving the leading term in the asymptotics of (5.51) (with n1 = 0), which proves (5.47). �

Remark 5.10. Lemmas 5.10 and 5.11 can be extended to the m-dimensional case, that is,

with X1, . . . , Xm and L1, . . . , Lm, respectively (cf. Remark 5.7).

The next theorem is the corresponding version of Theorem 5.6.
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Theorem 5.12. For each m ∈ N,

1

Nν̃
(L1, . . . , Lm)

d−→ (X1, . . . , Xm), N → ∞,

where Xj’s are Bernoulli random variables defined in (5.44).

Proof. The proof is precisely the same as that of Theorem 5.6, now using Lemmas 5.10

and 5.11 in place of Lemmas 5.5 and 5.7, respectively. �

We finally obtain our main result about convergence of ordered cycles in the case θ∗ = 0,

which is in sharp contrast with Theorem 5.9.

Theorem 5.13. In the sense of convergence of finite-dimensional distributions,

1

Nν̃

(
L(1), L(2), . . .

) d−→ (1, 0, 0, . . . ), N → ∞. (5.56)

Proof. From the definition (5.44) it is clear that rearranging the sequence (Xn) in decrasing

order gives (1, 0, 0, . . . ) (cf. the right-hand side of (5.56)). The rest of the proof proceeds

exactly as in Theorem 5.9, again using the general cut-off Lemma 5.8. �

Corollary 5.14. Weak convergence of the first component in (5.56) entails the following law

of large numbers for the longest cycle in the case θ∗ = 0,

L(1)

Nν̃

p−→ 1, N → ∞.

Remark 5.11. The result of Theorem 5.13 means that there is a single giant cycle (of size

about Nν̃) emerging as N → ∞.

Remark 5.12. The condition of regularity of gθ(z) at z = R imposed at the beginning of

Section 5.6 is not essential; in the spirit of Remark 3.4, Lemmas 5.10 and 5.11 (underlying

the proof of Theorem 5.12) may be extended to the case where gθ(z) has a power and pos-

sibly also a power-logarithmic singularity, b̃s1
(1 − z/R)s1 log (1 − z/R), as long as s1 > 0.

Furthermore, again alluding to Remark 3.4 it is not hard to see that all calculations can be

adapted for the asymptotic expansion (3.47) of gκ(z) to include a power-logarithmic term

bs(1 − z/R)s log (1 − z/R), in which case the index s > 1 is permitted to be integer.

Remark 5.13. Ercolani et al. [11, Theorem 7.3], using a different method, have obtained the

limit distribution of fluctuations of L(1) aboutNν̃ (cf. Corollary 5.14) in the particular case of

θj ≡ 0 and for certain concrete sequences (κj); for instance, if κj = j−s and 1 < s < 2 then

(L(1) − Nν̃)/N1/s converges weakly to a stable distribution with characteristic exponent s,

whereas if s > 2 then (L(1) −Nν̃)/
√
N is asymptotically normal as N → ∞.

6. COMPARISON WITH THE SPATIAL MODEL

The aim of this section is to bridge the gap between the surrogate-spatial (P̃N ) and spa-

tial (PN,L) models. First, in Section 6.1 we will explore in some detail the Euler–Maclaurin

type approximation (1.18) of the Riemann sums arising in the definition of the measure PN,L

(see (1.7)). More specifically, the opening general remarks based on the Poisson summation

formula (Section 6.1.1) are followed by an in-depth analysis of three concrete examples in-

cluding the basic Gaussian case (Sections 6.1.2 - 6.1.4), summarized in Section 6.1.5 by a

heuristic discussion of limitations of the surrogate-spatial model and its possible improve-

ments. In Section 6.2 we will show how the concept of the system “density” may be intro-

duced and interpreted in our model. Finally, in Section 6.3 we will compare the asymptotic

results for the cycle statistics obtained in the present paper and by Betz and Ueltschi [6].
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6.1. Asymptotics of the Riemann sums. To justify the ansatz (1.18), which has motivated

the surrogate-spatial model (1.5), we need to look more carefully at the Riemann integral

sums in (1.7). Rather than using Euler–Maclaurin’s summation formula as suggested in

Section 1.3, we take advantage of the link (1.12) between the functions e−ε(s) and e−V (x)

and deploy the powerful Poisson summation formula (see, e.g., [10, §3.12, p. 52] or [14,

§XIX.5, p. 630]) yielding the identity

∑

k∈Z

ϕ(k/λ) = λ
∑

ℓ∈Z

f(λℓ) (λ > 0), (6.1)

where the functions ϕ(s) and f(x) are the reciprocal Fourier transforms,

ϕ(s) =

∫

R

e−2πixs f(x) dx, s ∈ R,

f(x) =

∫

R

e2πixs ϕ(s) ds, x ∈ R,

such that f(x) is a probability density and, moreover, ϕ(s) is absolutely integrable on R.

For simplicity, in higher dimensions we restrict ourselves to isotropic (radially symmetric)

potentials,

V (x) =
d∑

i=1

V0(xi), x = (x1, . . . , xd) ∈ R
d,

leading to the decomposition

ε(s) =
d∑

i=1

ε0(si), s = (s1, . . . , sd) ∈ R
d, (6.2)

with the function ε0(·) defined by

e−ε0(s) =

∫

R

e−2πixsf0(x) dx, f0(x) := e−V0(x). (6.3)

Hence, the d-dimensional sum in (1.7) (with j = 1, . . . , N ) is decomposable as a product,

∑

k∈Zd

e−j ε(k/L) =
d∏

i=1

∑

ki∈Z

e−j ε0(ki/L) =

(
∑

k∈Z

e−j ε0(k/L)

)d

, (6.4)

and likewise

∫

Rd

e−j ε(s) ds =
d∏

i=1

∫

R

e−j ε0(si) dsi =

(∫

R

e−j ε0(s) ds

)d

. (6.5)

Relation (6.3) implies that the function exp{−jε0(s)} is the Fourier transform of the j-
fold convolution f ⋆j

0 (x) = f0 ⋆ · · · ⋆ f0(x) (j ∈ N). Furthermore, from the Fourier inversion

formula for f ⋆j
0 (x) (with x = 0) we get

f ⋆j
0 (0) =

∫

R

e−j ε0(s) ds. (6.6)
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Hence, the Poisson formula (6.1) (with λ = L) together with the product decompositions

(6.4) and (6.5) yields the key representation

∑

k∈Zd

e−j ε(k/L) = Ld

(
∑

ℓ∈Z

f ⋆j
0 (ℓL)

)d

(6.7)

= ρ−1N

∫

Rd

e−j ε(s) ds ·
(

1 +

∑
ℓ6=0 f

⋆j
0 (ℓL)

f ⋆j
0 (0)

)d

, (6.8)

on account of the thermodynamic calibration Ld = ρ−1N (see Section 1.2). On comparison

with the conjectural approximation (1.18), we see that the expression (6.8) may be quite

useful in providing information about the Riemann sums asymptotics.

Let us prove one general result in this direction. Recall that the probability density f0(x)
is always assumed to be symmetric, f0(−x) = f0(x) (x ∈ R). A symmetric function is

called unimodal if it is non-increasing for x ≥ 0.

Lemma 6.1. Assume that f0(x) is unimodal, then for each j ∈ N and any L > 0
∑

ℓ6=0

f ⋆j
0 (ℓL) ≤ 4

L

∫ ∞

L/2

f ⋆j
0 (x) dx. (6.9)

Proof. Observe that the convolutions f ⋆j
0 (x) are also symmetric and unimodal (see [18, The-

orem 2.5.2, p. 67]). Hence, for any ℓ ≥ 1 and y > 0

f ⋆j
0 (ℓy) ≤

∫ ℓ

ℓ−1

f ⋆j
0 (uy) du. (6.10)

On the other hand, inserting extra “mid-terms” into the sum in (6.9) and then using the bound

(6.10) with y = L/2, we obtain

∑

ℓ6=0

f ⋆j
0 (ℓL) = 2

∞∑

ℓ=1

f ⋆j
0 (ℓL) ≤ 2

∞∑

ℓ=2

f ⋆j
0 (ℓL/2)

≤ 2

∫ ∞

1

f ⋆j
0 (uL/2) du =

4

L

∫ ∞

L/2

f ⋆j
0 (x) dx,

and the estimate (6.9) is proved. �

Remark 6.1. The bound (6.9), together with the Poisson formula (6.8), ensures that the Rie-

mann sum on the left-hand side of (6.8) is finite for all L > 0, and so the series convergence

condition (1.14) is automatically satisfied.

By Lemma 6.1, from (6.6) and (6.8) we get for each j ∈ N the asymptotic equivalence

∑

k∈Zd

e−j ε(k/L) ∼ ρ−1N

∫

Rd

e−j ε(s) ds (N → ∞),

with the absolute error

∆
(j)
N :=

∑

k∈Zd

e−j ε(k/L) − ρ−1N

∫

Rd

e−j ε(s) ds

∼ ρ−1Nd
{
f ⋆j

0 (0)
}d−1

∑

ℓ 6=0

f ⋆j
0 (ℓL) = o(N1−1/d), N → ∞.

(6.11)
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Obtaining more accurate asymptotics of ∆
(j)
N (in particular, investigating if it converges to a

constant as suggested by the term θj in (1.18)), as well as treating the case of j growing with

N → ∞, requires more information about the tail of the density f0(x) and its convolutions

f ⋆j
0 (x) as x→ ∞, which will also translate into the bahaviour of the function ε0(s) for s ≈ 0

needed for the asymptotics of the integral in (6.8), according to the Laplace method.

Remark 6.2. Note that the integral in (6.9) can be written as the probability P{Sj ≥ L/2},

where Sj := X1 + · · · + Xj and (Xi) are i.i.d. random variables each with density f0(x);
hence, one can use suitable results from the large deviations theory (see, e.g., [27]) to get

further bounds on (6.9). We will use this idea below to treat the example in Section 6.1.3.

Rather then attempting to develop any further general results, we will illustrate some typi-

cal asymptotic effects by considering a few “exactly solvable” examples classified according

to the type of the probability density f0(x) = e−V0(x): (i) ε0(s) = s2 (Gaussian); (ii)

ε0(s) = |s|γ , 0 < γ < 2 (stable); (iii) f0(x) = µ0 e−|x|γ , 0 < γ < 2 (exponential-power).

In what follows, we write aN ≍ bN if 0 < lim infN→∞ bN/aN ≤ lim supN→∞ bN/aN <∞.

6.1.1. Gaussian case. Here we have ε0(s) = s2, f0(x) =
√
π e−π2x2

, and the convolutions

f ⋆j
0 (j ∈ N) are easily found,

f ⋆j
0 (x) =

√
π

j
e−π2x2j−1

, x ∈ R. (6.12)

Hence, the representation (6.8) specializes to

∑

k∈Zd

e−j ‖k‖2/L2

= ρ−1N

∫

Rd

e−j ‖s‖2

ds ·
(

1 +
∑

ℓ6=0

e−π2ℓ2L2/j

)d

, (6.13)

where N = ρLd and (see (6.6) and (6.12))
∫

Rd

e−j ‖s‖2

ds =

(∫

R

e−js2

ds

)d

=
{
f ⋆j

0 (0)
}d

=

(
π

j

)d/2

. (6.14)

The analysis of the expression (6.13) is straightforward. Recall that the index j ranges

from 1 to N (see (1.7)). As long as jL−2 = o(1) (which is always true in dimension d = 1),

from (6.11) and (6.12) we obtain

∆
(j)
N =

(
L2

j

)d/2

O
(
e−const·L2/j

)
= o(1), N → ∞,

which means that the approximation (1.18), (1.19) is valid in this range of j, with θj ≡ 0.

However, if j ≍ L2 (when d ≥ 2) then the sum on the left-hand side of (6.13) is of order of

a constant; more specifically, if jL−2 → c > 0 then

∑

k∈Zd

e−j ‖k‖2/L2

=

(
∑

k∈Z

e−(j/L2) k2

)d

→
(
∑

k∈Z

e−ck2

)d

, L→ ∞. (6.15)

Note that the integral part in (1.18), (1.19) contributes to the limit (6.15) the amount

Ld

(∫

R

e−j s2

ds

)d

= Ld

(
π

j

)d/2

→
(π
c

)d/2

, (6.16)

whilst the rest of it must come from additional positive constants (see (6.13)), leading ac-

cordingly to the coefficients θj > 0 in (1.18).
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Similarly, if jL−2 → +∞ (which is possible in dimensions d ≥ 3) then

∑

k∈Zd

e−j ‖k‖2/L2

=

(
1 + 2

∞∑

k=1

e−(j/L2) k2

)d

→ 1, L→ ∞. (6.17)

Note that here the integral contribution is asymptotically vanishing (cf. (6.16)), so in this

range of j we must have θj ∼ e−αj , according to (1.18) and (6.17).

6.1.2. Stable case. Here ε0(s) = |s|γ with 0 < γ < 2, which implies that the (symmetric)

density f0(x) is stable (see, e.g., [18, Theorem 2.2.2, p. 43]) and therefore unimodal [18,

Theorem 2.5.3, p. 67]. The particular case γ = 1 corresponds to the Cauchy distribution,

f0(x) = π−1(1 + x2)−1. The convolutions f ⋆j
0 (x) are easily found by rescaling,

f ⋆j
0 (x) = j−1/γf0

(
j−1/γx

)
, x ∈ R.

In particular, note that (cf. (6.6))

f ⋆j
0 (0) = j−1/γf0(0) = j−1/γ

∫

R

e−|s|γ ds =
2Γ(1 + 1/γ)

j1/γ
, j ∈ N. (6.18)

Hence, the representation (6.8) takes the form

∑

k∈Zd

e−j ε(k/L) = ρ−1N

∫

Rd

e−j ε(s) ds ·
(

1 +
1

f0(0)

∑

ℓ6=0

f0(j
−1/γℓL)

)d

,

where (see (6.6) and (6.18))
∫

Rd

e−j ε(s) ds =

(∫

R

e−j |s|γ ds

)d

=
{
f ⋆j

0 (0)
}d

=
{
2Γ(1 + 1/γ)

}d
j−d/γ . (6.19)

Furthermore, the tail asymptotics of the stable density f0(x) are given by (see, e.g., [18,

Theorem 2.4.1, p. 54, for 0 < γ < 1 and Theorem 2.4.2, p. 55, for 1 < γ < 2])

f0(x) ∼
1

π|x|1+γ
Γ(1 + γ) sin

πγ

2
, x→ ∞.

(The case γ = 1 is automatic in view of the explicit form of the Cauchy density f0(x), as

mentioned above.) Therefore, in the range j = o(Lγ) the error term (6.11) is estimated as

∆
(j)
N ≍ Nj−d/γ

∞∑

ℓ=1

j 1+1/γ

ℓ1+γL1+γ
≍
(

L

j1/γ

)d−1−γ

, N → ∞. (6.20)

Since Lj−1/γ → ∞, the right-hand side of (6.20) tends to zero only if d < 1 + γ, which is

always true for d = 1 but false for d ≥ 3 (where in fact ∆
(j)
N → ∞); for d = 2 we have

∆
(j)
N = o(1) if γ > 1, while ∆

(j)
N ≍ 1 if γ = 1 and ∆

(j)
N → ∞ if 0 < γ < 1. More precisely,

if j ≍ Lγ−ǫ (0 < ǫ ≤ γ) then ∆
(j)
N ≍ Lǫ(d−1−γ)/γ , which identifies the scale of ∆

(j)
N in the

“moderate” range from j = 1 (with ∆
(1)
N ≍ Ld−1−γ up to j ≍ Lγ , when (6.20) is formally

reduced to ∆
(j)
N ≍ 1.

On the other hand, if jL−γ → ∞ then, using the product formula (6.4) and the expression

ε0(s) = |s|γ , we see directly that

∑

k∈Zd

e−j ε(k/L) =

(
1 + 2

∞∑

k=1

e−(j/Lγ) kγ

)d

→ 1, L→ ∞. (6.21)
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6.1.3. Exponential-power case. In this example, the density is specified as f0(x) = µ0 e−|x|γ

(x ∈ R), with 0 < γ < 2 and the normalization constant (cf. (6.18))

µ0 ≡ µ0(γ) =

(
2

∫ ∞

0

e−xγ

dx

)−1

=
1

2Γ(1 + 1/γ)
. (6.22)

By the duality, from Section 6.1.2 we see that the Fourier transform of f0(x) is given by

ϕ0(s) = f̃(s)/f̃(0) ≥ 0, where f̃(·) is the (stable) density with Fourier transform e−|s|γ .

Remark 6.3. The case γ = 2, which corresponds to a Gaussian density (see Section 6.1.1),

is easily included in the analysis below.

To estimate the error term (6.11), let us use Lemma 6.1 together with Remark 6.2, giving

∆
(j)
N ≤ Ld

(∫

R

e−j ε0(s) ds

)d
{(

1 +
P{Sj ≥ L/2}
(L/4)f ⋆j

0 (0)

)d

− 1

}
. (6.23)

We have to distinguish two cases, (i) 1 ≤ γ ≤ 2 and (ii) 0 < γ < 1.

(i) Consider the absolute moments of order r ≥ 0 (cf. (6.22))

µr :=

∫

R

|x|rf0(x) dx = 2µ0

∫ ∞

0

xre−xγ

dx =
Γ(1 + (r + 1)/γ)

(r + 1) Γ(1 + 1/γ)
. (6.24)

We will need a simple lemma about the gamma function.

Lemma 6.2. For any γ ∈ [1, 2] and all integers r ≥ 2, the following inequality holds

Γ

(
1 +

r + 1

γ

)
≤ (r + 1)!

6
Γ

(
1 +

3

γ

)
. (6.25)

Proof. We argue by induction in r. For r = 2 the claim (6.25) is obvious (with the equality

sign). Now, assume that (6.25) holds for some r ≥ 2. Note that the gamma function Γ(t) is

convex on (0,∞), because

Γ′′(t) =

∫ ∞

0

(log x)2xt−1 e−x dx > 0, t > 0.

Since Γ(1) = Γ(2) = 1, the convexity implies that Γ(t) is monotone increasing on [2,∞).
On the other hand, it is easy to check that if γ ∈ [1, 2] and r ≥ 2 then

2 ≤ r + 2

γ
≤ 1 +

r + 1

γ
. (6.26)

Hence, by the monotonicity (using (6.26)) and the induction hypothesis we obtain

Γ

(
1 +

r + 2

γ

)
=
r + 2

γ
Γ

(
r + 2

γ

)
≤ (r + 2) Γ

(
1 +

r + 1

γ

)

≤ (r + 2)!

6
Γ

(
1 +

3

γ

)
,

which proves (6.25) for r + 1. Thus, the lemma is valid for all integer r ≥ 2. �

In view of the expressions (6.24), the inequality (6.25) yields the following estimate on

the growth of successive moments in the case 1 ≤ γ ≤ 2,

µr ≤ 1
2
µ2 r! , r ≥ 2.
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Thus, one can apply Bernstein’s inequality (in its enhanced modern form, see [2, Eq. (7),

p. 38]), which gives for all j ∈ N

P{Sj ≥ L/2} ≤ exp

(
− L2/4

2jµ2 + L

)
, L > 0. (6.27)

Noting that 2jµ2 + L ≤ (2µ2 + 1) max{j, L}, from (6.27) we easily deduce a more conve-

nient estimate

P{Sj ≥ L/2} ≤ exp

(
− L2/j

4(2µ2 + 1)

)
+ exp

(
− L

4(2µ2 + 1)

)
. (6.28)

(ii) If 0 < γ < 1, we utilize a different suitable bound from the large deviations theory

(see [27, Eq. (2.32), p. 764]) yielding

P{Sj ≥ L/2} ≤ c

(
exp

(
− L2

80j

)
+ j P{X1 ≥ L/4}

)
, L > 0, (6.29)

where c > 0 is a constant depending only on γ. Integrating by parts it is easy to find

P{X1 ≥ y} = µ0

∫ ∞

y

e−uγ

du ∼ µ0

γ
y1−γe−yγ

, y → +∞.

Hence, for L→ ∞ the bound (6.29) becomes

P{Sj ≥ L/2} = O(1) exp

(
− L2

80j

)
+O(jL1−γ) exp

(
−L

γ

4γ

)
. (6.30)

Returning to (6.23), from the estimates (6.28) and (6.30) we get, for any fixed j ∈ N,

∆
(j)
N = O(Ld−1) exp(−c1L), 1 ≤ γ ≤ 2,

∆
(j)
N = O(Ld−γ) exp(−c2Lγ), 0 < γ < 1,

with some constants c1, c2 > 0. In particular, ∆
(j)
N is (exponentially) small as L→ ∞.

For j → ∞, the asymptotics of f ⋆j
0 (0) represented as the integral (6.6) can be found using

the Laplace method [10, Ch. 4]. Specifically, ε0(0) = 0 is the unique minimum of ε0(s) =
− logϕ0(s); noting that ϕ′

0(0) = 0, ϕ′′
0(0) = −4π2µ2 (see (6.24)), we have ε′′0(0) = 4π2µ2

and hence

f ⋆j
0 (0) =

∫

R

e−j ε0(s) ds ∼
√

2π

j ε′′0(0)
=

1√
2πµ2j

, j → ∞. (6.31)

Consequently, the estimates (6.23), (6.28) and (6.30) give

∆
(j)
N = O

(
(Lj−1/2)d−1

){
exp(−c̃1L2j−1) + exp(−c̃2L)

}
, 1 ≤ γ ≤ 2,

∆
(j)
N = O

(
(Lj−1/2)d−1

){
exp(−c̃3L2j−1) + jL1−γ exp(−c̃4Lγ)

}
, 0 < γ < 1,

(6.32)

where c̃i > 0 are some constants. Again, it is easy to see from (6.32) that in all cases

∆
(j)
N = o(1) as L→ ∞, provided that L2/j → ∞.
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Consider now the opposite case where the index j grows as L2 or faster. If j ≍ L2 then

the Poisson summation formula (6.7), by virtue of Lemma 6.1 and formula (6.31), yields

1 ≤
∞∑

k∈Zd

e−j ε(k/L) ≤ Ld

(
f ⋆j

0 (0) +
4

L

∫ ∞

0

f ⋆j
0 (x) dx

)d

=

(
L

∫

R

e−j ε0(s) ds+ 2

)d

=
{
O(Lj−1/2) + 2

}d
= O(1), (6.33)

that is, ∆
(j)
N ≍ 1 as L→ ∞.

In the remaining case where j/L2 → ∞, observe that the function ε0(s) is strictly in-

creasing in the right neighbourhood of s = 0, and moreover ε0(s) → +∞ as s → ∞. This

implies that 0 < ε0(1/L) ≤ ε0(k/L) for all k ≥ 1 (at least for L large enough). Hence,

∞∑

k=1

e−j ε0(k/L) =
∞∑

k=1

e−(j−L2) ε0(k/L) e−L2ε0(k/L)

≤ e−(j−L2) ε0(1/L)

∞∑

k=1

e−L2ε0(k/L) = e−(j−L2) ε0(1/L) ·O(1), (6.34)

where the O(1)-term appears according to the estimate (6.33) with j = L2. Furthermore,

using the expansion ε0(s) = 4π2s2 + O(s4) as s → 0 and recalling that j/L2 → +∞, we

see that (j−L2) ε0(1/L) ≍ jL−2 → +∞. Hence, the right-hand side of (6.34) tends to zero

and therefore we get (cf. (6.17) and (6.21))

∑

k∈Zd

e−j ε(k/L) =

(
1 + 2

∞∑

k=1

e−j ε0(k/L)

)d

→ 1, L→ ∞.

6.1.4. Behaviour of the function ε(s) at the origin. Betz and Ueltschi [6, p. 1176] work

under the condition that, with some a > 0, δ > 0 and 0 < η < d,

ε(s) ≥ a‖s‖η, ‖s‖ ≤ δ, (6.35)

which guarantees that the critical density (1.17) is finite, ρc <∞.

For the examples considered in Sections 6.1.1 and 6.1.3 we have ε(s) ∼ const ‖s‖2 as

s → 0, and so the condition (6.35) is fulfilled (with η = 2) in dimensions d ≥ 3.

For the “stable” example in Section 6.1.2, the function ε(s) =
∑d

i=1 |si|γ (0 < γ < 2) is

comparable with ‖s‖γ due to the well-known fact that any two norms in R
d are equivalent;

more explicitly, this follows from the elementary inequalities (see [17, Theorem 16, p. 26,

and Theorem 19, p. 28])

‖s‖γ ≤
d∑

i=1

|si|γ ≤ d 1−γ/2 ‖s‖γ, s = (s1, . . . , sd) ∈ R
d.

Thus, here we have η = γ < d unless d = 1, γ ≥ 1.

Under the condition (6.35) it is easy to justify the universal behaviour of the Riemann

sums in (1.7) for large indices j (even without the condition of radial symmetry, see (6.2)).
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Lemma 6.3. Assume that (6.35) is satisfied, and suppose that jL−η → ∞. Then
∑

k∈Zd

e−j ε(k/L) → 1, L→ ∞. (6.36)

Proof. Note that j ≤ N ≍ Ld and, since η < d, the range of j considered in the lemma is

non-empty. Recalling that ε(0) = 0, for the proof of (6.36) it suffices to show that the sum

over k 6= 0 is asymptotically small. With δ > 0 as in the condition (6.35) we have

0 ≤
∑

k6=0

e−j ε(k/L) ≤
∑

0<‖k‖≤δL

e−ja‖k/L‖η

+
∑

‖k‖>δL

e−j ε(k/L). (6.37)

Using (6.35) and the condition j/Lη → +∞, we obtain by dominated convergence

∑

0<‖k‖≤δL

e−ja‖k/L‖η ≤
(
∑

0<k≤δL

e−a(j/Lη) kη

)d

→ 0, L→ ∞, (6.38)

since j ≥ aLη (for L large enough) and
∑∞

k=1 e−akη

<∞.

To estimate the second sum in (6.37), we can assume that ε(s) ≥ c0 > 0 for ‖s‖ > δ,
hence, owing to the bound (1.13),

∑

‖k‖>δL

e−j ε(k/L) ≤ e−(j−1)c0
∑

‖k‖>δL

e−ε(k/L)

≤ e−c0Lη

Ld
∑

‖k‖>δL

e−ε(k/L) L−d

∼ e−c0Lη

Ld

∫

‖s‖>δ

e−ε(s) ds

= O
(
e−c0Lη

Ld
)
→ 0, L→ ∞.

By the estimates (6.38) and (6.38) the right-hand side of (6.37) vanishes as L→ ∞, which

completes the proof. �

6.1.5. Some heuristic conclusions. Empirical evidence provided by the examples in Sec-

tions 6.1.1–6.1.3 suggests that the approximation picture is qualitatively universal in the

class of probability densities f0(x) with fast decaying tails (more precisely, Gaussian as

in Section 6.1.1 or exponential-power as in Section 6.1.3). Namely, here the error ∆
(j)
N is

asymptotically small if j is fixed or growing slower than L2 ≍ N2/d; in the transition zone

j ≍ L2, a bounded correction ∆
(j)
N ≍ 1 emerges (comparable with the contribution of the

“main” integral term Nκj as defined in (1.19), cf. (6.16) and (6.31)), whereas with a faster

growth of j (possible in dimensions d ≥ 3) this is transformed into the flat asymptotics

∆
(j)
N = 1 + o(1) (in accordance with Lemma 6.3), but now with a polynomially small error

arising entirely due to the integral contribution, Nκj ≍ (Lj−1/2)d (see (6.31)).

For polynomially decaying distribution tails as exemplified in Section 6.1.2, the situation

is more complex: here, the range j = o(Lγ) produces an extended scale of the power asymp-

totics ∆
(j)
N ≍ (Lj−1/γ)d−1−γ , which is unbounded in sharp contrast with the ansatz (1.18)

unless d = 1 or d = 2, γ ≥ 1. In the transition zone j ≍ Lγ this is naturally transformed into

∆
(j)
N ≍ 1, and furthermore, if Lj−1/γ = o(1) then we have the universal (distribution-free)

asymptotics ∆N(j) = 1 + o(1), similarly to the exponential tails (and again in line with

Lemma 6.3).
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It should be clear from this discussion that the naı̈ve use of any specific surrogate-spatial

model P̃N as a proxy to the spatial model PN,L cannot be correct in the entire range of the

cycle lengths j = 1, . . . , N . For instance, in the simplest Gaussian case, taking θj ≡ 0
works well for moderate values of j (i.e., asymptotically smaller than N2/d) but fails above

this threshold; on the other hand, choosing θj ≡ e−αj is adequate for cycles of size j above

N2/d but would incorrectly enhance the weighting of shorter cycles.

One might attempt to achieve a better approximation to PN,L by choosing the coefficients

θj in formula (1.18) so as to emulate the different asymptotics of the correction term ∆
(j)
N

(in particular, allowing θj to depend on L). For instance, noting that the Gaussian case

is essentially characterized in terms of the natural order parameter ηj,L := Lj−1/2 (see

Section 6.1.1), the following phenomenological formula may be suggested,

eαj θj,L ∝ Θd−1
j,L exp(−Θ2

j,L), j ∈ N, (6.39)

where

Θj,L :=
1

1 − e−1/ηj,L
, j ∈ N. (6.40)

Similarly, in the stable case (see Section 6.1.2) a plausible approximation is given by

eαj θj,L ∝ Θd−1−γ
j,L , j ∈ N, (6.41)

where the parameter ηj,L in (6.40) is now re-defined as ηj,L := Lj−1/γ (see (6.20)).

The corresponding generating function gθ(t) (see (1.20)) for the coefficients (6.39) or

(6.41) may be too complicated to deal with, but if we opt to ignore the transitional details

in the narrow zone j ≍ L2 or j ≍ Lγ , respectively, then we get much simpler heuristic

formulas

eαj θj,L ∝
{

0, j ≤ L2,

1, j > L2,
and eαj θj,L ∝

{
(Lj−1/γ)d−1−γ, j ≤ Lγ,

1, j ≥ Lγ.

We intend to study such modifications of the surrogate-spatial model in another paper.

6.2. Density dependence in the surrogate-spatial model.

6.2.1. Introducing an analogue of the particle density. Although the surrogate-spatial model

(1.5), (1.6) is defined with no reference to any underlying spatial structure, an analogue of

the density ρ (cf. Section 1.2) can be incorporated in the system using the expression (1.19),

which provides a heuristic link between the surrogate-spatial and spatial models. Namely,

by analogy with formula (1.19), let us write the coefficients κj in the form

κj = ρ̃−1 κ̌j, j ∈ N, (6.42)

where the parameter ρ̃ > 0 is interpreted as “density” and the constants

κ̌j = e−αj

∫

Rd

e−j ε(s) ds, j ∈ N, (6.43)

are treated as the baseline (density-free) coefficients that define a specific subclass of the

models (1.5). For the corresponding generating function this gives

gκ(z) = ρ̃−1

∞∑

j=1

κ̌j

j
zj =: ρ̃−1 ǧκ(z), (6.44)
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hence

g{1}κ (z) = ρ̃−1

∞∑

j=1

κ̌jz
j = ρ̃−1 ǧ{1}κ (z). (6.45)

6.2.2. Critical density. At the singularity point z = R, formula (6.45) specializes to

g{1}κ (R) = ρ̃−1

∞∑

j=1

κ̌jR
j = ρ̃−1 ǧ{1}κ (R). (6.46)

According to Definition 3.2 (see also Section 4), the critical case is determined by the con-

dition g
{1}
κ (R) = 1; therefore, (6.43) and (6.46) imply that the critical density is given by

ρ̃c =
∞∑

j=1

κ̌jR
j =

∞∑

j=1

Rj e−αj

∫

Rd

e−j ε(s) ds. (6.47)

This is consistent with the sub- and supercritical regimes as introduced in Definition 3.2:

g{1}κ (R) > 1 ⇔ ρ̃ < ρ̃c .

Hence, we can express the expected fraction of points in infinite cycles (see (4.11)) as

ν̃ =





0, ρ̃ ≤ ρ̃c ,

1 − ρ̃c

ρ̃
, ρ̃ > ρ̃c ,

which exactly reproduces the formula (1.16) for the spatial model.

Under natural assumptions on the coefficients (αj), the expression (6.47) recovers the

formula for the critical density ρc obtained in [6, Eq. (2.9), p. 1177].

Lemma 6.4. Suppose that the coefficients αj satisfy the bounds

c1j
−δ ≤ e−αj ≤ c2, j ∈ N, (6.48)

with some positive constants δ, c1 and c2. Then R = 1 and formula (6.47) is reduced to

ρ̃c =
∞∑

j=1

e−αj

∫

Rd

e−j ε(s) ds.

Proof. Using the upper bound in (6.48), for any real r ∈ (0, R) we have

ρ̃ gκ(r) ≤ c2

∫

Rd

∞∑

j=1

e−j ε(s)

j
rj ds = −c2

∫

Rd

log
(
1 − re−ε(s)

)
ds. (6.49)

Note that the right-hand side of (6.49) is finite due to the bound (1.13),
∫

Rd

∞∑

j=1

e−j ε(s)

j
rj ds ≤

∫

Rd

e−ε(s) ds

∞∑

j=1

rj

j
<∞.

Since ε(0) = 0, the right-hand side of (6.49) has singularity as r ↑ 1. Therefore, by Prings-

heim’s Theorem (see Lemma 2.1) the estimate (6.49) implies that R ≥ 1.

Similarly, by the lower bound in (6.48) we get

ρ̃ gκ(r) ≥ c1

∫

Rd

∞∑

j=1

e−j ε(s)

j1+δ
rj ds = c1

∫

Rd

Li1+δ

(
re−ε(s)

)
ds. (6.50)
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By the known asymptotics of polylogarithm (see Lemma 3.14) the right-hand side of (6.50)

has singularity at r = 1 and it follows that R ≤ 1. Thus R = 1 and the lemma is proven. �

Remark 6.4. Assumption (6.48) covers the cases considered in [6] (see Section 6.3 below).

6.2.3. Total number of cycles. Ansatz (6.42) also enables us to investigate the ρ̃-dependence

of the asymptotic statistics of cycles. For instance, it is easy to check that the total number of

cycles, TN , stochastically decreases with the growth of the density ρ̃, as one would expect.

Indeed, according to Corollary 4.5 and formula (4.1), TN/N converges to gκ(r1) if g
{1}
κ (R) ≥

1 (i.e., ρ̃ ≤ ρ̃c) or gκ(R) if g
{1}
κ (R) ≤ 1 (i.e., ρ̃ ≥ ρ̃c), and to verify the claim it suffices to

show that the ρ̃-derivative of the limit is negative.

Differentiating with respect to ρ̃ and using the representation (6.44), we readily obtain

∂gκ(R)

∂ρ̃
= −ρ̃−2 ǧκ(R) = −ρ̃−1gκ(R) < 0.

Similarly,

∂gκ(r1)

∂ρ̃
= −ρ̃−1gκ(r1) + g′κ(r1)

∂r1
∂ρ̃

. (6.51)

On the other hand, differentiation of the equation g
{1}
κ (r1) = 1, rewritten for convenience as

r1 ǧ
′
κ(r1) = ρ̃, gives

∂r1
∂ρ̃

ρ̃ g′κ(r1) + r1 ρ̃ g
′′
κ(r1)

∂r1
∂ρ̃

= 1,

whence we find
∂r1
∂ρ̃

=
ρ̃−1

g′κ(r1) + r1g′′κ(r1)
=

ρ̃−1r1

1 + g
{2}
κ (r1)

> 0. (6.52)

Hence, returning to (6.51) and again using the identity r1g
′
κ(r1) = g

{1}
κ (r1) ≡ 1, we get

∂gκ(r1)

∂ρ̃
= −ρ̃−1

(
gκ(r1) −

1

1 + g
{2}
κ (r1)

)
< 0,

where the inequality follows from Lemma 3.1.

6.2.4. Cycle counts. Let us now investigate the asymptotic trend of the individual cycle

counts Cj (for each j ∈ N) with the growth of the density ρ̃. Assuming that all κj > 0, by

Theorem 4.1 and formula (4.1) we know that Cj/N converges to κj r
j
1/j (for ρ̃ ≤ ρ̃c) or

κjR
j/j (for ρ̃ ≥ ρ̃c).

First, consider the supercritical domain, ρ̃ > ρ̃c. Using the representation (6.42) we obtain

∂(κjR
j)

∂ρ̃
= −ρ̃−2 κ̌jR

j = −ρ̃−1κjR
j < 0, j ∈ N,

which means that the asymptotic proportion of cycles of any finite length has the tendency

to decrease with the growth of ρ̃ (whilst the infinite cycle stays infinite).

In the subcritical domain (ρ̃ > ρ̃c), again invoking (6.42) and also using formula (6.52)

for the derivative ∂r1/∂ρ̃, we get

∂(κj r
j
1)

∂ρ̃
= −ρ̃−2κ̌j r

j
1 + κj j r

j−1
1

∂r1
∂ρ̃

= −ρ̃−1κj r
j
1

(
1 − j

1 + g
{2}
κ (r1)

)
.
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Thus, with the growth of the density ρ̃, as long as ρ̃ < ρ̃c, the limiting proportions of short

cycles (with lengths j < 1 + g
{2}
κ (r1)) decrease whereas those of longer cycles (with lengths

j > 1 + g
{2}
κ (r1)) increase.

Note, however, that the threshold 1 + g
{2}
κ (r1) varies itself, and it is natural to expect that

it is increasing with ρ̃, which is corroborated heuristically by the limiting case ρ̃ ↑ ρ̃c, with

r1 ↑ R and g
{2}
κ (r1) ↑ g{2}κ (R) = max0≤r≤R g

{2}
κ (r). More precisely, observing that

∞∑

j=1

κ̌j r
j
1 = ρ̃ g{1}κ (r1) = ρ̃

and

1 + g{2}κ (r1) = g{1}κ (r1) + g{2}κ (r1) = ρ̃−1

∞∑

j=1

j κ̌j r
j
1 =

∑∞
j=1 j κ̌j r

j
1∑∞

j=1 κ̌j r
j
1

, (6.53)

we differentiate the right-hand side of (6.53) to obtain

∂
(
1 + g

{2}
κ (r1)

)

∂ρ̃
= ρ̃−2r−1

1

∂r1
∂ρ̃

·





∞∑

j=1

j2 κ̌j r
j
1

∞∑

j=1

κ̌j r
j
1 −

( ∞∑

j=1

j κ̌j r
j
1

)2


 ≥ 0,

according to (6.52) and the Cauchy–Schwarz inequality (cf. Lemma 3.1).

6.3. Comparison of the asymptotic results for long cycles.

6.3.1. Choosing a suitable surrogate-spatial model. As was stressed in Section 6.1.5, the

surrogate-spatial model P̃N defined by (1.5)–(1.6) cannot approximate correctly the spatial

model PN,L (1.7) in the entire range of the cycle lengths j = 1, . . . , N . However, if we focus

on the asymptotics of long cycles only (i.e., with lengths j ≍ N ), then the discussion in

Section 6.1 suggests the following choice of the coefficients in the surrogate-spatial model,

κj = e−αjκ∗j−s, θj = e−αj , j ∈ N, (6.54)

with some index s > 0. Here we suppress the dependence on the density ρ̃ (cf. (6.42),

(6.43)), which is not essential for the comparison. The expression (6.54) for κj bears on the

asymptotics of the integral (6.5) as j → ∞, exemplified by the Gaussian and the exponential-

power cases (both with s = d/2, see (6.14) and (6.31), respectively) and the stable case (with

s = d/γ, see (6.19)). The expression for θj in (6.54) picks up on the universal behaviour of

the correction term to the integral approximation of the Riemann sum in (1.7) (for j large

enough, see Lemma 6.3).

Remark 6.5. It would be interesting to compare the measures PN,L and P̃N with regard to the

asymptotic statistics of short cycles (say, with fixed lengths j = 1, 2, . . . as in Theorem 4.1).

According to the discussion in Section 6.1, a better match between the two models may be

expected when the expression for θj in (6.54) is replaced by θj ≡ 0. The asymptotics of

the total number of cycles TN is also of significant interest, especially in the critical case

(cf. Theorem 4.4). However, such information is currently not available under the spatial

measure PN,L (see [6] and further references therein).
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6.3.2. Convergence to the Poisson–Dirichlet distribution. For the coefficients αj entering

the definition of the spatial measure PN,L (see (1.7)), Betz and Ueltschi [6, p. 1176] have

considered inter alia the following two classes,

(i) lim
j→∞

αj = α > 0,
∑

j

|αj − α| <∞; (6.55)

(ii) lim
j→∞

αj = α ≤ 0,
∑

j

|αj − α|
j

<∞. (6.56)

With either of these assumptions, they prove for PN,L [6, Theorem 2.1(b), p. 1177] that in the

supercritical regime (i.e., ρ > ρc), the ordered cycle lengthsL(1), L(2), . . . (see Definition 5.1)

converge to the Poisson–Dirichlet distribution with parameter e−α,

1

Nν
(L(1), L(2), . . . )

d−→ PD(e−α), N, L→ ∞. (6.57)

This resonates well with our Theorem 5.9. Indeed, let the coefficients αj have the form

αj = α− log (1 + ξ(j)), j ∈ N, (6.58)

where the function ξ(z) satisfies the analyticity conditions of Section 3.5.3, together with

the estimate ξ(z) = O(z−ǫ) (ǫ > 0). The simplest example is ξ(j) = j−ǫ, leading to

α − αj = log(1 + j−ǫ) ∼ j−ǫ → 0 as j → ∞. Let us stress that, as opposed to (6.55)–

(6.56), the sign of α in (6.58) is not important, and also that the difference αj−α satisfies the

series convergence condition (6.56), but not necessarily (6.55) (which only holds for ǫ > 1).

With (6.58), the coefficients (6.54) take the form

κj = e−ακ∗
1 + ξ(j)

js
, θj = e−α(1 + ξ(j)) , j ∈ N. (6.59)

Let s > 1, which ensures the existence of the supercritical regime (see (3.118)), and suppose

first that s is non-integer, q < s < q + 1 (q ∈ N); without loss of generality (by reducing

ǫ > 0 if necessary) we can assume that s + ǫ < q + 1. Then, using Lemma 3.16 (more

precisely, its part (a) for gκ(z) and part (b) with q = 0 and κ∗ = e−α for gθ(z)), it is not hard

to see that the generating functions gκ(z), gθ(z) satisfy all the conditions of Theorem 3.5,

including the asymptotic formulas (3.19) and (3.20) with θ∗ = e−α > 0. Hence, Theorem 5.9

may be applied, thus replicating the convergence (6.57) for the surrogate-spatial measure P̃N

(of course, with ν̃ in place of ν).

The case of integer s = q > 1 may be handled similarly, using the suitable versions of

Theorems 3.5 and 5.9 as indicated in Remark 5.8.

6.3.3. Emergence of a giant cycle. The third and last specific class of the coefficients αj

considered by Betz and Ueltschi [6, p. 1177] is given by

αj = γ0 log j, j ∈ N, (6.60)

where γ0 > 0. Then it is proven [6, Theorem 2.2(b), p. 1178] that, under the supercritical

spatial measure PN,L , there is asymptotically a single giant cycle,

1

Nν
L(1) d−→ 1, N, L→ ∞. (6.61)
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This is directly analogous to the convergence (5.56) in the statement of Theorem 5.13.

Indeed, substituting the expression (6.60) into (6.54) we get

κj =
κ∗

js+γ0

, θj =
1

jγ0

, j ∈ N, (6.62)

so that the corresponding generating functions are given by

gκ(z) = κ∗ Lis+γ0+1(z), gθ(z) = Liγ0+1(z). (6.63)

Although Theorem 5.13 is not immediately applicable here (because the function gθ(z) has

singularity at z = 1), the result (5.56) is valid for (6.63) in view of Remark 5.12.

Moreover, we can go further and generalize the narrow class (6.60) to

αj = γ0 log j − log (1 + ξ(j)), j ∈ N,

thus replacing (6.62) by (cf. (6.59))

κj = κ∗
1 + ξ(j)

js+γ0

, θj =
1 + ξ(j)

jγ0

, j ∈ N.

Then, using Lemmas 3.15 and 3.16, and deploying Remark 5.12, we see that the convergence

(5.56) holds true.

6.4. Summary of the comparison. To wrap up the discussion in Section 6, we have demon-

strated that, under natural conditions on the coefficients κj and θj , the surrogate-spatial

model successfully reproduces the main features of the spatial model, including the for-

mulas for the critical density and the limiting fraction of points in infinite clusters, as well as

the asymptotic convergence of the descending cycle lengths either to the Poisson–Dirichlet

distribution or to the degenerate distribution (with a single giant cycle), depending on the as-

ymptotic behaviour of the modulating coefficients e−αj (i.e., convergent vs. divergent αj’s);

in our terms, this is translated into the distinction between the type of singularity of the gen-

erating function gθ(z) (i.e., purely logarithmic or power-logarithmic, respectively). Overall,

our analysis shows that the surrogate-spatial model, being of significant interest in its own

right, proves to be a flexible and efficient approximation of the spatial model, providing at

the same time a much greater analytical tractability thus making it a useful exploratory tool.
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rial Enumeration of Groups, Graphs, and Chemical Compounds. Springer, New York, 1987, pp. 1–95.

MR0884155
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