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We have investigated shallow water flows through a channel with a contraction by experimental
and theoretical means. The horizontal channel consists of a sluice gate and an upstream channel
of constant width b0 ending in a linear contraction of minimum width bc. Experimentally, we
observe upstream steady and moving bores/shocks, and oblique waves in the contraction, as single
and multiple (steady) states, as well as a steady reservoir with a complex hydraulic jump in the
contraction occurring in a small section of the bc/b0 and Froude number parameter plane. One-
dimensional hydraulic theory provides a comprehensive leading-order approximation, in which a
turbulent frictional parameterization is used to achieve quantitative agreement. An analytical and
numerical analysis is given for two-dimensional supercritical shallow water flows. It shows that the
one-dimensional hydraulic analysis for inviscid flows away from hydraulic jumps holds surprisingly
well, even though the two-dimensional oblique hydraulic jump patterns can show large variations
across the contraction channel.

PACS numbers: Valid PACS appear here

I. INTRODUCTION

We will consider shallow water flows through a con-
traction, experimentally, analytically and numerically.
In shallow flows in natural or man-made channels, a
contraction geometry is not uncommon. It consists of
a more or less uniform channel followed by a contrac-
tion of the channel into a nozzle where the width is
minimal before the channel suddenly or gradually fans
out again. Large variations in water flow discharges
through such contracting channels may lead to dramatic
changes in the flow state, including stowage effects with
upstream moving surges. Such phenomena do occur
when rivers overflow and the water is funneled under-
neath constricting bridges or through ravines. More be-
nign flows with one or two oblique hydraulic jumps occur
for smaller discharges, e.g., at underpasses for roadside
streams (Fig. 1(a)) or through gates of the Dutch Oost-
erschelde storm surge barrier (Fig. 1(b)). Similar situ-
ations also occur in downslope water-laden debris flows,
when oversaturated mountain slopes collapse, for exam-
ple. In this paper, however, we limit ourselves to study
the states of water flow through an idealized experimen-
tal set-up with a uniform channel and linear contraction
as an archetype for the above-mentioned more complex
flow geometries.

More specifically, this work is inspired by two recent
papers in (granular) hydraulics. First, Vreman et al. [1]
investigate the hydraulic behavior of dry granular matter
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on an inclined chute with a linear contraction. They ob-
serve upstream (moving) bores or shocks, a deep reservoir
with a structure akin to a Mach stem in the contraction,
and oblique hydraulic jumps or shocks in the contrac-
tion for one value of the Froude number and increasing
values of the scaled nozzle width Bc. The latter is de-
fined by the ratio of the upstream channel width b0 and
nozzle width bc. (We denote hydraulic jumps as steady
“shocks”, and bores as “shocks” interchangeably.) The
inclination of the chute was chosen such that the average
inter-particle and particle-wall forces matched the down-
stream force of gravity to yield a uniform flow in the
absence of a contraction. Shallow granular flows are of-
ten assumed to be incompressible and modeled with the
depth-averaged shallow water equations and a medium-
specific, combined theoretically and experimentally de-
termined friction law [2–4]. It is therefore of interest
to contrast these “hydraulic” results for granular flows
with those for water flows. Second, Baines and White-
head [5] considered flows over an obstacle uniform across
the channel and up an inclined plane in a uniform chan-
nel. Using one-dimensional (1D) hydraulic theory, they
found a third steady state besides the upstream (moving)
shocks and sub- or supercritical flows, and considered its
stability. This also motivated us to investigate 1D shal-
low water flow through a linearly contracting channel.
The most intriguing experimental flow regime we found
consists of three stable, co-existing steady states for cer-
tain Froude numbers F0 and contraction widths Bc. Here
F0 is the upstream Froude number based on the con-
stant depth just downstream of the sluice gate and the
steady-state water discharge. Two of these states, the
upstream (moving) bores and supercritical flows (with
weak oblique waves), are well known [6–8]. In addition
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FIG. 1: Examples of (a) one oblique hydraulic jump in a
roadside stream flowing into an underpass (picture courtesy
Valerie Zwart), top view and flow from right to left; and, (b)
two oblique hydraulic jumps in the tidal flow rushing out of
one of the sluices in the Oosterschelde storm surge barrier in
The Netherlands, side view and flow from left to right. Black
lines indicate the hydraulic jumps.

we find a stable reservoir state with a jump structure akin
to a Mach stem in gas dynamics [7, 8] in the contraction.
It is similar in nature to the intermediate state found for
flow over an obstacle within the context of a 1D, aver-
aged hydraulic approach used in [5]. But it is different
in that the observed turbulent laboratory flow is three-
dimensional in our case with a distinct depth-averaged
two-dimensional (2D) flow pattern, while the intermedi-
ate three-dimensional state in [5] has a depth-averaged

nearly 1D flow pattern.
Nevertheless, 1D hydraulic theory provides a compre-

hensive albeit approximate overview of the (observed)
flow states. It is based on cross-sectionally averaging of
the flow equations while using hydrostatic balance and in-
cluding turbulent friction. We first present this approx-
imate theory extending the general, classical hydraulic
approach in [6] applied to our specific frictional case in
section II.

Subsequently, we introduce the experimental set-up
and results in section III, and identify the differences with
the 1D hydraulic theory. Particular attention is paid to
the regime with co-existing states and the stable reser-
voir state with a “Mach stem”. However, 1D theory only
provides an approximate description of the supercritical
oblique waves and the reservoir state.

Two-dimensional horizontal effects are therefore inves-
tigated in section IV. We consider the shallow-water
equations (semi-)analytically for supercritical flows and
numerically through some probing simulations for 2D
flows inviscid away from the shocks. Hence, we aim
to validate 1D hydraulic theory. In addition, we set
these calculations using approximate frictional behavior
against laboratory experiments with oblique waves in the
contraction. Finally, we conclude and present a last ex-
periment concerning the reservoir regime with the three
states, in section V.

II. MULTIPLE STEADY STATES IN SHALLOW

WATER FLOWS: 1D THEORY

In this section, approximate one-dimensional (1D) hy-
draulic analysis is employed to obtain an overview of the
flow states observed in the laboratory. We therefore aver-
age the flow quantities over the cross section of a channel
slowly varying in width. Fluctuations of the mean are
ignored except in a very crude turbulent parameteriza-
tion because we anticipate large Reynolds numbers in the
experimental results presented later. The hydraulic anal-
ysis includes this turbulent friction in extension of the in-
viscid analysis by [5, 9–12]. Higher order non-hydrostatic
effects are largely neglected as well, where the order is de-
termined by the aspect ratio between vertical and down-
stream scales. The non-hydrostatic three-dimensional
turbulence in breaking surface waves is treated in a stan-
dard approximate fashion through hydraulic jumps and
bores (cf. [11]).

The resulting 1D model equations comprise conser-
vation of mass and momentum for water of depth h =
h(x, t) and velocity u = u(x, t) in a contraction of width
b = b(x) with x the streamwise, horizontal direction and
t the time. That is, after averaging we obtain

(hb)t + (hbu)x = 0 (1a)

(hbu)t + (hbu2)x +
1

2
g b (h2)x = −C⋆

d b |u|u, (1b)

where subscripts with respect to t and x denote the re-



spective partial derivatives, g is the acceleration due to
gravity, and C⋆

d an experimentally determined drag co-
efficient. C⋆

d is usually on the order of 10−3 [11]; Pratt
notes a measured value of C⋆

d = 4.4 × 10−3 [13]. We
consider a uniform channel of width b0 with a localized
contraction where b(x) < b0 is monotonically decreasing
to a minimum nozzle width b(xc) = bc from x = 0 to
x = xc. In all experiments this nozzle width occurs at
the end of the channel and the contractions are linear.

We scale (1) as follows

t =(ul/b0) t′, x = b0 x′, u = ul u
′,

h =hl h
′, b = b0 b′, and Cd = C⋆

d b0/hl
(2)

using values ul, b0, hl upstream of the contraction at x =
−xl < 0 and an upstream Froude number Fl = ul/

√
g hl.

The length xc of the contraction then determines the (av-
erage) slope α = (b0− bc)/xc. The parameters appearing
in the 1D dynamics are thus xc, xl, α, Cd, g, ul, hl, b0 and
bc. The following dimensionless form of (1) emerges after
dropping the primes

ut + u ux + hx/F 2
l = −Cd u2/h (3a)

(bh)t + (buh)x = 0. (3b)

We define the non-dimensional Froude number

F = Fl u/
√

h. (4)

Either Fl = F0 for values u0, b0 and h0 far upstream at a
location x = −xl = −x0 near the sluice gate, or Fl = Fm

for values um, b0 and hm at the entrance x = −xl = 0 of
the contraction. After rescaling the following parameters
remain: Fl, Bc = bc/b0 as well as the scaled Cd, α, and
dimensionless xc and xl.

First, consider steady-state solutions of (3). Hence,
from (3a) and (4), one finds

d
(

(1 + F 2/2)h
)

dx
= −Cd F 2. (5)

Since for steady flow b u h = Q from (3b) with the dis-
charge Q as integration constant and Q = 1 for our scal-
ing, we derive

h =
(Q Fl

F b

)2/3
and

dh

dx
= −2

3

h

F

dF

dx
− 2

3

h

b

db

dx
. (6)

Combining (5) and (6) gives

dF

dx
=

1

2

(2 + F 2)F

F 2 − 1

d ln b

dx
− 3

2

Cd b2/3

(Q Fl)2/3

F 11/3

F 2 − 1
. (7)

At least for the separate cases (i) Cd = 0 and b = b(x),
and (ii) Cd > 0 and b = b0(= 1), (7) can be solved
analytically. We obtain for the inviscid case (i) Cd =
0, b = b(x) the solution:

Fl

F

(

2 + F 2

2 + F 2
l

)3/2

= b/b0 (8)

and for constant-width case (ii) Cd > 0, b = b0:

3

2

(

1

F
2/3
l

− 1

F 2/3

)

+

3

8

(

1

F 8/3
− 1

F
8/3
l

)

= −3

2

Cd b
2/3
0

(Q Fl)2/3
(x + xl)

(9)

with Fl the Froude number and b0 the upstream width
at x = −xl. Either xl = x0 or xl = 0 and likewise
for Fl = F0 or Fl = Fm; Fm being the Froude number at
the contraction entrance. Smooth averaged, 1D solutions
exist as long as the flow is subcritical with F < 1, or
supercritical with F > 1. In the inviscid case the solution
with F = 1 at x = xc and Fl = F0, for x ≤ 0 in (8),

F0

(

3

2 + F 2
0

)3/2

= Bc, (10)

demarcates the smooth sub- and supercritical flows in
the F0–Bc parameter plane with Bc = bc/b0 the scaled
critical nozzle width; it is the thin solid line in Fig. 2.
The Froude number is then constant in the channel up-
stream of the contraction whence Fl = F0 = Fm. For
the well known critical condition F = 1 at the nozzle,
the flow is ’sonic’ or ’critical’ at the nozzle [12] such that

the flow speed u equals the speed
√

h/Fl of gravity waves
(dimensionally u then equals

√
g h). This condition can

be thought of as playing the role of a boundary condi-
tion in this system. It has been justified and analyzed by
Vanden-Broeck and Keller [14] based on nonhydrostatic
potential flow.

Our approach is as follows when friction is nonzero
Cd > 0 for a localized (linear) contraction. Say the
Froude number Fl and depth hl are known at a distance
xl + xc upstream of the nozzle, where xc is the length
of the contraction along the channel. Either we take
Fl = F0 the upstream Froude number, or Fl = Fm the
Froude number at the contraction with xl = 0. We inte-
grate the ordinary differential equation (restating (7))

dx

dF
=

2 (F 2 − 1)

(2 + F 2)F d ln b
dx − 3 F 11/3 Cd b2/3/(Q Fl)2/3

(11)

with a fourth-order Runge Kutta scheme, either start-
ing from x = −xl given Fl or from x = xc at the con-
traction exit with F = limǫ↓0 1 ± ǫ given Bc and then
the slope α, the width b = b(x) and the length xc of
the contraction. Note that given the fixed length of a
contraction paddle L we find xc = L cos θc with angle
θc = asin ((b0 − bc)/(2 L)). For given sufficiently large
Fl > 1 or sufficiently small Fl < 1 at x = −xl, pro-
files of F, h and u versus x can be calculated for sub-
and supercritical flows by integrating from a point up-
stream of the contraction into the downstream direction.
For flows with hydraulic jumps the critical condition at
the nozzle is F = 1 and we calculate upstream starting
at the nozzle and imposing the jump condition, where



the downstream and upstream profiles match, see be-
low. To obtain the critical curve between smooth super-
and subcritical flows and flows with jumps, we start with
F = limǫ↓0 1 ± ǫ, respectively, and integrate (11) up-
stream from the nozzle to x = −xl to find a new esti-
mate F ∗

l . However, we do not know the scaling Fl in
(11) beforehand as it is part of the solution. The solu-
tion is therefore found iteratively. One can start with
the inviscid Fl = F0 as function of Bc using (10) and
then proceeds with the newly obtained F ∗

l till conver-
gence is reached. While the boundary demarcation of
smooth sub- and supercritical 1D solutions (10) is inde-
pendent of the precise geometry of the contraction, this
is no longer valid when friction is present.

For upstream moving shock solutions we use a similar
procedure, but instead of coupling the upstream condi-
tions with the nozzle, we must couple the depth hu and
velocity uu upstream of the shock to the values u1 and h1

just downstream of a shock moving at speed s (positive
when moving upstream), and the depth hc and velocity
uc at the nozzle. For a continuous width b, the weak for-
mulation of (1) arises directly from the shock relations
for (1) across the bore [8, 12]

(uu + s)hu = (u1 + s)h1 (12a)

(uu + s)2 =
h1

2 F 2
l

(1 +
h1

hu
). (12b)

In the inviscid case, we combine these with the
Bernoulli and mass continuity equations in the contrac-
tion and the criticality condition (12e) to find

1

2
u2

1 + h1/F 2
l =

1

2
u2

c + hc/F 2
l (12c)

u1h1b1 = uchcbc (12d)

u2
c = hc/F 2

l . (12e)

If we scale by introducing Fu = uu Fl/
√

hu, S =
s Fl/

√
hu, B1 = bc/b1, and H1 = h1/hu (12) reduces

after some manipulation to

1

2
(Fu + (1 − H1)S)

2
=

3

2
H2

1

(

Fu + (1 − H1)S

B1

)2/3

− H3
1

(13a)

(Fu + S)2 =
1

2
H1 (1 + H1). (13b)

When H1 = 1, the limit when the jump in the depth is
zero, (13) reduces to (10) for Fu ≤ 1 and B1 = Bc. In the
other limit, the shock has zero speed S = 0 and arrests
at the start of the contraction: it is the dashed thin line
with Fu > 0 and B1 = Bc in Fig. 2. The thin solid line
for F0 < 1 and upper thin dashed line for F0 > 1 demar-
cate a region in the F0, Bc-plane where moving shock and
smooth solutions co-exist, i.e., the region i/iii/iv, while
in region iii only upstream moving shocks exist.

In the frictional case, the shocks eventually become
steady. We therefore take shock speed s = 0. The

Bernoulli relations valid in the inviscid case have to be
replaced by (11) from the shock position to the nozzle.
We calculate the shock arrested at the entrance of the
contraction, analogous to the inviscid case. The expres-
sion (11) is integrated upstream from the nozzle with F =
limǫ↓0 1−ǫ to the entrance point of the contraction x = 0
where a hydraulic jump occurs. The flow in between is
subcritical. Denote the Froude number just downstream
of x = 0 as F = F1 and upstream as Fm. Given the shock
relations (12a)–(12b) with hu = hm, uu = um, Fu = Fm

we deduce that h1/hm = (−1 +
√

(1 + 8 F 2
m))/2. Note

that in our scaling Q = 1 = h1 u1 = hu uu. Hence,

Fm =
√

8F1/(−1 +
√

(1 + 8 F 2
1 ))3/2 > 1. (14)

We then integrate (11) further upstream from F = Fm >
1 at x = 0 to find our next estimate of F ∗

l at x = −xl.
Generally, F ∗

l 6= Fl with Fl the scaling used in (11).
Hence, continue till convergence is reached and com-
mence with the following, inviscid result Fl = F0(Bc)
as function of Bc. In the inviscid case, use of (8)
with Fl = F1 at the entrance of the contraction and
Fm = F0 > 1 to find F1 =

√
8F0/(−1 +

√

(1 + 8 F 2
0 ))3/2

from (14) immediately gives

F1

(

3

2 + F 2
1

)3/2

= Bc; (15)

it is the dashed thin line in Fig. 2.
For fixed Cd the parameter plane is formed by the

existence or co-existence regions of four flow states: i)
supercritical smooth flows, ii) subcritical smooth flows,
iii) steady shocks or ones moving upstream in the in-
viscid limit, and iv) steady shocks in the contraction.
The inviscid and frictional flows are summarized in the
parameter space Fm, Bc, Cd or F0, Bc, Cd. The former
holds for the scaling with values such as Fl = Fm at the
entrance of the contraction and the latter for a scaling
with values Fl = F0 further upstream (near the sluice
gate). Note that the scaled Cd’s have a different inter-
pretation: in the former scaling Cd = C⋆

d b0/hm is used
and in the latter one Cd = C⋆

d b0/h0. We present both
parameter planes Fm, Bc and F0, Bc for the same dimen-
sional value of C⋆

d but adjusted dimensionless Cd with the
choice hm = 1.185 h0 in Fig. 2; this choice corresponds
to the case with F0 = 3.3. The advantage of using Fm

is that it excludes shifts due to frictional effects in the
uniform channel, while using F0 matches better the ex-
periments with F0 measured at a fixed upstream point
and nearly constant h0. In Fig. 2 for F > 1, solid thin
lines or thick lines demarcate the region iii with steady
shocks, and upstream moving shocks for the inviscid case.
Solid and dashed thin and thick lines demarcate the re-
gion i/iii/iv with upstream moving/steady shocks and
supercritical flows as well as a third reservoir shock state
in the contraction, also for the inviscid case. Subcrit-
ical flows exist in a region ii below the thin and thick
solid line for Fm < 1 or F0 < 1. Supercritical flows ex-
ist in region i. Finally, friction leads to a new region iv



with the third reservoir shock state in the contraction and
neither supercritical flows nor upstream moving/steady
shocks. Flow profiles of the four flow states are displayed
in Fig. 3. They correspond with the points marked by
crosses in the parameter planes of Fig. 2.

A. Steady shock state in contraction

Baines and Whitehead’s work [5] motivated us to
search for an averaged steady reservoir state with a shock
in the contraction. Consider the case with Cd = 0. The
depth h1 and velocity u1 at the upstream limit of a shock
within the contraction are not the same as upstream
depth h0 and velocity u0, and must be coupled to the
values u2 and h2 at the downstream limit of the shock
which, in turn, are connected to the conditions uc and hc

at the nozzle exit. For steady shocks, the shock speed is
zero. Instead, the location xs of the steady shock or the
width of the channel bs = b(xs) has become a new un-
known. The seven equations for u1, h1, bs, u2, h2, uc, and
hc consist of mass conservation, Bernoulli conditions, the
shock relation and the critical condition:

u0h0b0 = u1h1bs = u2h2bs = uchcbc (16a)

1

2
u2

0 + h0/F 2
0 =

1

2
u2

1 + h1/F 2
0 (16b)

1

2
u2

2 + h2/F 2
0 =

1

2
u2

c + hc/F 2
0 (16c)

u2
1 =

h2

2 F 2
0

(1 +
h2

h1
) (16d)

u2
c = hc/F 2

0 . (16e)

We solve this system and check the limits where the shock
vanishes such that h1 = h2, and where the shock is at the
mouth of the contraction such that bs = b0 and h1 = h0.
Steady shocks are then found to exist in region i/iii/iv of
the Fm, Bc– and F0, Bc–planes demarcated by the thin
solid and dashed lines in Fig. 2. In region i/iii/iv moving
shocks and smooth flows co-exist.

Next we investigate the stability of the (inviscid) solu-
tion to (16) with the method used in Baines and White-
head [5]. They considered a particular perturbation of
the depths and velocities. Again we label the upstream
and downstream limit of the velocity and depth at the
shock as u1, h1 and u2, h2. The system is then linearized
and solved for the dependence of shock speed s (positive
when moving upstream) on the displaced shock position
bs + bǫ with perturbations denoted by superscript ǫ. If
the signs of bǫ and s are the same in a contracting chan-
nel, then the shock moves away from its previous location
and is linearly unstable, see Fig. 4, and vice versa. First,
the perturbed flow balances mass and momentum over
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FIG. 2: (a) The Fm, Bc-plane and (b) the F0, Bc-plane di-
vided into regions of different (steady) flows. Region iii, up-
stream moving/steady shocks only. Region i/iii/iv, steady
shocks in the contraction, upstream moving/steady shocks
and oblique waves or averaged smooth flows. Region ii, sub-
critical smooth flows distinguished from flows in region iii by
the absence of an upstream moving shock in the transient
stage. Region i, analysis predicts supercritical smooth flows,
as the cross-sectional averages of the experimentally observed
oblique waves. The solid lines demarcate the existence region
of sub- and supercritical flows for inviscid and frictional flows
(thin and thick lines). The dashed lines demarcate the ex-
tent of moving/steady upstream shocks also for inviscid and
frictional flows (thin and thick dashed lines). The thick solid
and dashed lines are for (a) C⋆

d = 0.0037, h0 = 0.0143m, xl =
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FIG. 3: Profiles of Froude number F = F (x) and depth
h = h(x) as a function of downstream coordinate x for the
four flow states: (i) supercritical flows with F > 1; (ii) sub-
critical flows with F < 1; (iii) upstream (steady) shocks; and,
(iv) reservoir with shock in the contraction. These profiles
correspond with the crosses in Fig. 2. The extent of the con-
traction is indicated by a thick line on the x-axis.

the shock

(u1 + uǫ
1 + s)(h1 + hǫ

1) = (u2 + uǫ
2 + s)(h2 + hǫ

2) (17a)

(u1 + uǫ
1 + s)2(h1 + hǫ

1) +
(h1+hǫ

1
)2

2 F 2

0

=

(u2 + uǫ
2 + s)2(h2 + hǫ

2) +
(h2+hǫ

2
)2

2 F 2

0

. (17b)

Second, steady mass conservation holds upstream of the
jump and thus

(u1 + uǫ
1)(b + bǫ)(h1 + hǫ

1) = Q. (18)

Third, the perturbation does not affect the far field mo-
mentum upstream E1 or downstream E2, so the Bernoulli
constants are unchanged

1

2
(u1 + uǫ

1)
2 +

(h1 + hǫ
1)

F 2
0

= E1 = 1
2u2

1 + h1

F 2

0

(19a)

1

2
(u2 + uǫ

2)
2 +

(h2 + hǫ
2)

F 2
0

= E2 = 1
2u2

2 + h2

F 2

0

. (19b)

We are considering only small perturbation terms so
terms with superscript ǫ and s are of O(ǫ). Lineariz-
ing (17)–(19) gives a system of six unknowns and five
equations

uǫ
1h1b + u1h1b

ǫ + u1bh
ǫ
1 = 0 (20a)

uǫ
1h1 + sh1 + u1h

ǫ
1 = uǫ

2h2 + sh2 + u2h
ǫ
2 (20b)

u1u
ǫ
1 + hǫ

1/F 2
0 = 0 (20c)

u2u
ǫ
2 + hǫ

2/F 2
0 = 0 (20d)

2h1u1(u
ǫ
1 + s) + hǫ

1u
2
1 + h1 hǫ

1/F 2
0 =

2h2u2(u
ǫ
2 + s) + hǫ

2u
2
2 + h2 hǫ

2/F 2
0 . (20e)

After some algebra we obtain the relationship

S =
F1(1 − u1/u2)

(1 − h2/h1)
Bǫ, (21)

where S = s F0/
√

h1, F1 = u1 F0/
√

h1, and Bǫ = bǫ/b.
For any shock the depth must increase going downstream,
i.e. h1 < h2, conservation of mass then gives u1 > u2,
thus (21) yields that the sign of S equals that of Bǫ.
In conclusion, steady shocks in the contraction region
are unstable. An extended stability calculation with the
same outcome is found in Appendix B.
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FIG. 4: Top view of the contraction. The speed of a bore will
depend on the geometry of the channel at the unperturbed
jump. A steady jump is unstable when for upstream displace-
ments the resulting jump has an upstream velocity, and sim-
ilarly for downstream displacements the resulting jump has a
downstream velocity.



III. EXPERIMENTS

Equations (1) are derived assuming the fluid velocity
and depth to be functions only of the distance x down
the channel and time t. Dependence on the cross-channel
coordinate y has thus been averaged out. This is a large
simplification since the contraction geometry enforces the
depth-averaged velocity to be two-dimensional. In addi-
tion, the velocity profile will vary in depth. When the
velocity normal to the channel walls is small relative to
the downstream one, then we expect the 1D model pre-
sented to be asymptotically valid.

To assess the results of the 1D model, especially the
presence of stable reservoir state, a series of experiments
was conducted in a horizontal flume. The flume was
b0 = 0.198m wide and about 1.10m long. Water entered
one side of the flume via an adjustable sluice gate and
dropped freely in a container at the other end. Linear
contractions were made by two plexiglass paddles held in
place by tape. The water near the upstream sluice gate
of the channel had a characteristic depth varying around
h0 = 0.013 to 0.016m. The pumps used to recirculate
the water after it left the downstream end of the flume
could pump up to 0.005m3/s, but most experiments were
conducted with discharges closer to 0.0003m3/s (giving
u0 = 0.1 to 1.6m/s). Foam pads at the upstream side of
the sluice gate were used to reduce turbulence generated
by the pumps. For each experiment plexiglass paddles of
length 0.3065, 0.32 or 0.465m were inserted at the down-
stream end of the flume to form a linear contraction.
Water discharge Q = h0 u0 b0 and water depth h0 near
the sluice gate were varied via valves and adjustment of
the gate height.

In model (1) we have neglected the effect of surface
tension and viscosity, and parameterized turbulent fric-
tion. These seem reasonable assumptions given the esti-
mated Reynolds numbers, Re = u0 h0/ν = F0

√
gh0 h0/ν

with viscosity ν = 10−6m2/s, between 1, 000 and 25, 000;
and, Weber numbers, We = (ρu2

0h0)/σ = ρgF 2
0 h2

0/σ
with gravitational acceleration g = 9.81m/s2 and sur-
face tension σ = 735dyne/cm= 0.0735N/m, between 1.8
and 560.

By adjusting the angle θc of the paddles forming the
linear contraction at the downstream end of the flume,
and restricting the flow rate at the upstream end, we
could vary F0 between 0.2 and 4 and Bc between 0.6 and
1.

In the experiments, we observed upstream moving
shocks —as expected. In the supercritical flow regime
where the 1D model predicts smooth flows, we see oblique
waves with a smooth cross-sectional average. Although
the 1D model considered so far is indeed a smooth cross
sectional-average of a 2D flow, it still has some predic-
tive value. At the transition between moving and oblique
waves also steady upstream shocks emerged, steadied due
to turbulent drag. Smooth subcritical flows were also ob-
served. The one-dimensional analysis yields an averaged
solution in the contraction. Beyond the contraction the
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FIG. 5: Profiles and measurements of Froude number F =
F (x) and depth h = h(x) as a function of downstream coor-
dinate x in regime i/iii/iv for several flow states and paddle
configurations: 1. Lt = xc + x0 = 0.916m, L = 0.324m,
h0 = 0.015m, F0 = 3.47, Bc = 0.697, C⋆

d = 0.0037;
2. Lt = 1.06m, L = 0.465m, h0 = 0.016m, F0 = 2.74,
Bc = 0.798, C⋆

d = 0.0037; 3. Lt = 0.916m, L = 0.324m,
h0 = 0.016m, F0 = 2.487, Bc = 0.798, C⋆

d = 0.0037; and, 4.
Lt = 1.06m, L = 0.465m, h0 = 0.014m, F0 = 3.3, Bc = 0.697,
C⋆

d = 0.0037. These profiles correspond with data in Fig. 6.
The extent of the contraction is indicated by the thick line
and the location of the upstream shock by a very thick line,
on the x-axis. The values of h0 and F0 have been adjusted
within their ranges of uncertainty to make the best fit of the
calculated and measured shock positions. Measurements of
the oblique waves (circles) and the shock state (crosses) have
been made in unison. Hence, we show both solution branches
in one graph.
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FIG. 6: The different regions i to iv in the a) Fm, Bc– and
b) F0, Bc–parameter planes superimposed on the observa-
tions using unscaled a) C⋆

d = 0.0037, hm = 0.017m; and,
b) C⋆

d = 0.0037, h0 = 0.014m. In a) the observations with
Froude numbers F0 < 0.5 and F0 > 1.4 have been adjusted
to the respective Froude numbers Fm at the contraction en-
trance using the measured F0 and h0 at the upstream location
where the depth was measured. Observed flows: plus signs
are smooth flows, squares upstream moving shocks, diamonds
steady shocks, and circles oblique waves. The solid stars con-
cern the flows as in Fig. 8 with three possible states for differ-
ent configurations and paddle lengths. Some indicative error
bars have been displayed.

flow accelerates in a free jet and (8) suggests that there
may be a smaller nozzle width in the jet where the flow
becomes critical. Consequently, this subcritical flow does
not need to be critical at the minimum contraction width.

A comparison between measurements and 1D calcu-
lations is made in Fig. 5. Four different configurations
have been considered in some detail within the region
i/iii/iv with multiple steady states. Whereas the com-
parison between theory and measurements for the state

iii with oblique waves is good, the agreement between the
calculated upstream shocks and the measurements is less
good. We used a best fit with one value C⋆

d = 0.0037 and
adjusted h0 and F0 for each configuration in a best fit
to the observed and measured shock position. The latter
fails only for the case in Fig. 5.1. Reasons for the im-
perfect match are hypothesized to be the difficulty in the
determination of C⋆

d in combination with the simplicity
of the quadratic friction law as model for the turbulence,
and the two-dimensional nature of the flow in relation to
the form of the critical condition at the nozzle. Following
classical approaches for flow in a channel, the friction fac-
tor becomes weakly dependent on the Reynolds number
as C⋆

d ≈ (3/64) 0.316 Re−0.25 for smooth channel walls
[15]. Hence, C⋆

d ≈ 0.0012 in the four cases of Fig. 5 and
the variations caused by depth changes are only about
30%. Roughness effects of the channel bottom and side
walls likely attribute to larger values of C⋆

d such as the
value C⋆

d = 0.0037 we have adopted. An overview of
the observed flows is given in the parameter planes in
Fig. 6. The agreement between the experimental data
and the 1D calculations is fairly good even though the
adopted single value of C⋆

d = 0.0037 and single value of
h0 has its shortcomings. Furthermore, in the calcula-
tion for Fig. 6 we use one configuration for certain L and
Lt = xc + x0 while the data concern four configurations
with some variations in L and Lt. To wit, by inspec-
tion of Fig. 6, the squares for upstream shocks fall nearly
all in region iii; the circles for oblique waves in region i;
the plus signs for subcritical flows in region ii; and, the
diamonds, circles and stars in region i/iii/iv.

However, the main purpose of the experiments was to
investigate the existence and stability of steady shocks
in the contraction region. If we solve system (13) for the
shock speed, we see that increasing the upstream flow
rate decreases the speed of a shock. This was observed
experimentally. It allowed us to adjust the flow rate to
arrest a moving shock by increasing the upstream flow
rate. With this procedure it was easy to find steady
shocks at any point upstream of the contraction. In the
contraction the flow is sensitive to small adjustments in
flow rate, yet by inserting a paddle into the flow and
pushing the shock in the appropriate direction we were
able to balance shocks in the contraction region. These
shocks differ from the steady ones observed upstream of
the contraction, in that they have a distinct 2D horizon-
tal structure, see Fig. 7, and oscillate somewhat in both
shape and position. They are analogous to Mach stems
in gas dynamics [8].

In the flow regime where these Mach stem-like shocks
in the contraction region exist (region i/iii/iv in Fig. 6),
we also observed steady shocks just upstream of the con-
traction entrance, and oblique waves in the contraction.
For certain, fixed flow rates, the three flow states co-exist.
This regime with three stable states was observed exper-
imentally for several geometries and flow rates, indicated
by five stars in Fig. 6. We confirmed the existence of
the middle reservoir state for three sizes of paddles, and



for the longest pair of paddles this state persevered in a
one-paddle set-up with the same Bc = 0.798. It seems
to only occupy part of region i/iii/iv as the two stable
flow states with upstream shocks and oblique waves per-
sist for more parameter values. The set-up and measure-
ments used were not accurate enough to determine the
existence region beyond measurement errors. Neverthe-
less, the reservoir state would persist for a small range of
flow rates adjusted by opening and closing valves and ac-
companying shifts of the Mach stem; also hysteresis was
observed. We could perturb the flow from one state to
another. A first temporary restriction of the flow allowed
us to perturb from oblique waves to the Mach-stem like
shock, and via a second restriction to an upstream steady
shock. Vice versa, by temporarily and locally accelerat-
ing the flow it perturbed an upstream shock into steady
flow with a hydraulic jump in the contraction, and then
again to steady flow with oblique waves. The accelera-
tion or restriction mentioned here was imposed simply by
either manually placing a large plexiglass paddle in the
flow or pushing water in the appropriate direction, see
the results in Fig. 8.

FIG. 7: The structure of the 2D hydraulic jump in the con-
traction is akin to a Mach stem in a nozzle in gas dynamics.
Top view. Oblique waves originate at the beginning of the
contraction, and are joined by a “stem” roughly perpendicular
to the channel walls. Here F0 = 3.07, Bc = 0.7 corresponding
to a star in Fig 6.

A. Discussion

The observations are superimposed in Fig. 6 over the
regions of different flow type as predicted by the 1D
hydraulic model using turbulent friction C⋆

d = 0.0037.
There are three phenomena of significant interest ob-
served experimentally that were not predicted well by
the 1D model. First, instead of 1D smooth supercritical
flows oblique waves exist. These are quintessential 2D
phenomena and cannot be captured by the 1D model.

FIG. 8: Multiple states appear for F0 = 3.07 and Bc = 0.7,
marked by a star in Figure 6. From left to right these
states are: an upstream steady shock, the reservoir state,
and oblique waves. Each transition is induced by blocking or
pushing the flow with a small paddle.

Yet they can be considered as the smooth 1D average
of the 2D supercritical flow. Even though the governing
equations for the cross-sectionally averaged height and
velocity are different from the 2D ones, the 1D analysis
matched the data well.

Second, there is a notable shift in the boundaries of
the different flow types by the inclusion of turbulent fric-
tion, especially in Fig. 6b). Due to the effect of friction,
also steady upstream shocks were observed in multiple
experiments. The matching of the 1D model with the
experimental data appears best for C⋆

d = 0.0037 and
h0 = 0.014m and hm = 0.017m in the Fm, Bc– and
F0, Bc–parameter planes, see Fig. 6. Presentation of the
results in these parameter planes is problematic as the
friction parameter Cd generally varies per measurement
as h0 and hm vary. The latter is clear from Table I, where
we have tabulated the measurements and calculated sev-
eral parameters.

Finally, the most notable difference between the pre-
dicted flow types and the observed flow types concerns
the existence and nature of the stable reservoir state with
a Mach stem. While the 1D analysis for Cd = 0 predicts
the existence of an averaged unstable shock, it does nei-
ther explain its complex two-dimensional nor its small
region of stability within the larger region where states
i and iii co-exist. We therefore conclude that the 1D
frictional analysis leads only to an approximate corre-
spondence with the observations. Improvements are re-
quired by including a better frictional model and two-
dimensional effects.

IV. TWO-DIMENSIONAL EFFECTS

The supercritical flows observed consisted of steady
oblique hydraulic jumps angled to the channel walls, as
we saw in the rightmost image of Fig. 8. These oblique
waves are not captured by the 1D hydraulic theory pre-
sented. We therefore will first give a theoretical anal-
ysis of two-dimensional supercritical flows and compare
these with the 1D hydraulic predictions and numerical



Q h0 Lt L Bc F0 case year
(0.001m3) (0.01m) (m) (m)
0.26–3.39 1.3 1.10 0.3065 0.6–0.88 0.28–3.65 38× ’05

4.0 1.4 0.92 0.324 0.7 3.86 1. ’07
3.2 1.6 0.92 0.324 0.8 2.55 3. ’07
3.1 1.4 1.06 0.465 0.7 2.95 4. ’07
3.0 1.6 1.06 0.465 0.8 2.46 2. ’07

TABLE I: Summary of several observations, especially in the
regime with three stable flow states. The measurements in
Fig. 5 constitute cases 1. to 4.

flow simulations. All these flows are taken inviscid ex-
cept for local energy dissipation in bores and hydraulic
jumps. Subsequently, predictions of oblique jumps start-
ing from the onset of the contraction are compared with
measurements.

A. Existence of 2D oblique hydraulic jumps

Our aim is to determine for which values of upstream
Froude number F0 a regular pattern of oblique and inter-
secting hydraulic jumps exist in a channel with linearly
contracting walls and a nozzle of width Bc.

The inviscid flow upstream of the contraction is uni-
form with constant Froude number F0, depth h0 and
speed v = U0 (1, 0). Collision of this uniform channel flow
with the contraction walls leads to two oblique hydraulic
jumps. For low enough Froude number these oblique
jumps meet symmetrically at the center of the channel to
generate two new oblique jumps, which can reflect again
against the contraction walls, and so forth. A pattern
of triangles and quadrilaterals results beyond the first
oblique jumps in which the flow is alternately parallel
to a contraction wall or parallel to the channel center-
line. In each polygon the flow is uniform with a constant
Froude number, decreasing in value to the next polygon
downstream. The angles of the oblique jumps with the
contraction walls relative to the channel walls are num-
bered oddly, θ2m+1, and the angles of the oblique jumps
at the centerline evenly, θ2m+2, with integer m ≥ 0, see
the sketch in Fig. 9. The angle of the contraction is de-
noted by θc.

Consider parallel shallow water channel flow with con-
stant depth h2m, velocity v = U2m (1, 0) and Froude
number F2m, colliding with two oblique walls under an-
gles ±θc, see Fig. 9. For supercritical flow water piles up
against the walls in a symmetric fashion relative to the
channel center line behind two oblique hydraulic jumps.
The oblique hydraulic jump has an angle θ2m+1 rela-
tive to the parallel flow; downstream of this jump depth
h2m+1, velocity v2m+1 = U2m+1(cos θc,− sin θc), and
Froude number F2m+1 are constant. Classical 2D the-
ory for oblique hydraulic jumps or shocks immediately
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FIG. 9: Sketch of the oblique hydraulic jumps (thin solid
lines) within the contraction and the definition of some of the
variables involved. The centerline of the channel is dashed.
Channel walls are thick lines.

yields the desired relations for the odd shocks

h2m+1

h2m
= − 1

2
+

1

2

√

1 + 8 F 2
2m sin2 θ2m+1

=
tan θ2m+1

tan(θ2m+1 − θc)
(22a)

U2m+1

U2m
=

cos θ2m+1

cos (θ2m+1 − θc)
(22b)

F 2
2m+1 =F 2

2m

cos3 θ2m+1 sin (θ2m+1 − θc)

cos3 (θ2m+1 − θc) sin θ2m+1
, (22c)

cf. Ippen and Dawson [7], Shapiro [8], and also [1]. Like-
wise, for even shocks one finds

h2m+2

h2m+1
= − 1

2
+

1

2

√

1 + 8 F 2
2m+1 sin2 (θ2m+2 + θc)

=
tan(θ2m+2 + θc)

tan θ2m+2
(23a)

U2m+2

U2m+1
=

cos (θ2m+2 + θc)

cos θ2m+2
(23b)

F 2
2m+2 =F 2

2m+1

cos3 (θ2m+2 + θc) sin θ2m+2

cos3 θ2m+2 sin(θ2m+2 + θc)
. (23c)

Note that (23) equals (22) by replacing θ2m+2 + θc with
θ2m+1, and subsequent shifting of other indices.

Given the contraction angle θc, there are relations be-
tween Froude numbers F2m in (22a) and F2m+1 in (23a),
and angles θ2m+1 and θ2m+2, respectively. These have
been displayed in Fig. 10 as solid and dashed lines, re-
spectively for various values of contraction angle θc. It
is important to notice that below certain values of the
Froude number no oblique jump can exist; these mini-
mum Froude numbers larger than unity have been indi-
cated by the dashed-dotted and dotted lines, respectively.

While in 1D hydraulic theory the demarcation of the
supercritical flow region was given by the criticality of
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FIG. 10: Given various fixed angles θc = 0.01, 0.0486, . . . , 0.35
(going from left to right) of the contraction walls, the odd
θ2m+1 and even θ2m+2 angles of the associated oblique jumps
have been calculated as function of Froude numbers F2m (solid
lines) and F2m+1 (dashed lines), respectively.

the Froude number at the nozzle, the situation is more
complex in the 2D setting:

• Either a pattern of oblique hydraulic jumps fails
to exist within the contraction below a critical F0

when no solutions exist for θ2m+1 in (22a) or θ2m+2

in (23a).

• Or it fails to exist when the Froude number of the
last polygon entirely fitting within the contraction
just falls below one. Hence, only the Froude num-
ber of the last cut-off polygon of the pattern is
allowed to be less than one for supercritical flow
patterns to exist. The last polygon is cut-off as no
new polygon piece with the above oblique hydraulic
jumps can enter the contraction anymore, for a sub-
critical Froude number. The transition from su-
percritical to subcritical flow could then only occur
across the last pair of oblique hydraulic jumps.

See Fig. 11 for a few oblique-wave profiles at this transi-
tion. As in the 1D setting, we heuristically assume that
no flow information from beyond the nozzle can travel
upstream. This is the case in our experiments where the
flow after the nozzle becomes a free falling jet and in
the probing 2D simulations below in which the channel
widens again after the nozzle to freely exit thereafter.
However, it is not the case when obstacles further down-
stream, or walls in a closed basin, block the downstream
flow, and (eventually) lead to information traveling up-
stream of the contraction nozzle.

For the minimum value of upstream Froude number
F0 > 1, it turns out that either a whole number of poly-
gon patterns fits within the contraction, or that the last
polygon pattern only partly fits within the contraction

with a small last and cut-off polygon where the Froude
number is subcritical. A series of numerical simulations
of the 2D shallow water equations revealed these con-
ditions. In both cases supercritical flow patterns exist
for a minimum Froude number F0, which do not allow
information to flow further upstream than the last set
of oblique jumps either completely or partly filling the
contraction near the nozzle. These 2D numerical simu-
lations are based on space and space-time discontinuous
Galerkin finite element methods, second-order in space
and time. The algorithms and codes used have been ver-
ified against rotating and non-rotating exact solutions,
and validated against experiments and bore-vortex in-
teractions in [16–19]. We predominantly used grids of
175 × 40 elements and ran a few cases with double reso-
lution as verification. Our scaled computational domain
with x ∈ [0, 3.5] and y ∈ [−0.5, 0.5] consisted of a small
inflow channel before the contraction, the contraction,
and then a diverging channel with outflow boundary con-
ditions based on the nonlinear characteristics.

In a semi-analytical way, we obtained the minimum
Froude number F0 with supercritical flow patterns for
given θc using a fast shooting method in combination
with the above-mentioned critical conditions and the fol-
lowing algorithm to calculate the jump angles. Using the
information displayed in Fig. 10 we either know for which
Froude numbers the angles cease to exist and must stop,
or we must stop when the calculated Froude number in
the next downstream polygon falls below unity.

The algorithm to find the jump angles within the con-
traction starts with an upstream F0 and the known half-
channel width y1 = b0/2(= 1/2). Given F2m+1 > 1 and
half-width y2m+1 > Bc/2 midway, we find θ2m+1 from
(22a). Geometric considerations, using Fig. 9, then yield
the length of the polygon along the centerline to the in-
tersection point of the pair of oblique jumps

L2m+1 = y2m+1/ tan θ2m+1, (24)

while the next Froude number F2m+1 follows from (22c).
The half-width at that intersection point is

y2m+2 = L2m+1 (tan θ2m+1 − tan θc). (25)

Likewise, given F2m+1 > 1 and half-width y2m+2 > Bc/2
midway, we find θ2m+2 from (23a). Furthermore,

L2m+2 =y2m+2/(tan θ2m+2 + tan θc), (26)

y2m+3 =L2m+2 tan θ2m+2, (27)

and F2m+2 follows from (23c).
The shooting method is as follows. We choose a value

of Bc. The first or “left” guess is an upstream Froude
number F0 based on the 1D inviscid case. This value is
too low: the resulting pattern will not reach the end of
the contraction either because no new pair oblique wave
eventually exists, or because the Froude number drops
below one. The next or “right” guess of F0 is chosen
such that the oblique wave pattern extends beyond the



nozzle, in which case we stop. Subsequently, we iterate
based on linear estimates between “left” and “right” val-
ues of F0 such that the pattern either does not reach the
nozzle or passes it. Due to the two stopping criteria for
existence of the oblique wave pattern, the above itera-
tion converges but often not to the minimal value of F0

as it may fail to approach the minimal F0 from below.
We therefore start the iteration again with the inviscid
1D estimate of F0 as “left” value of F0, as before, and
as “right” value the outcome of the previous iteration
minus a small number, F0 − ǫ with 0 < ǫ ≪ 1. This
iteration set-up either converges to the value of F0 − ǫ,
essentially the value obtained in the first iteration, or
a smaller value of F0. The above analytical expressions
are used and derivatives thereof, in combination with nu-
merical routines for finding the required angles for which
various expressions become zero.

Results have been obtained for two of our fixed paddles
with L = 0.3065m and 0.465m, implying that the con-
traction lengths change a bit for varying angles θc. For
some contraction angles we show the oblique hydraulic
jump patterns for the minimum Froude number for which
they exist, in Fig. 11. These patterns show that while the
contraction is long compared to the channel walls with
a small aspect ratio, the oblique jumps have sharper an-
gles with aspect ratios even bigger than unity. 2D effects
therefore become more important in the determination
of the supercritical flow region. Nevertheless, in Fig. 12
the demarcation (thick and thickest solid curves) based
on these 2D calculations in the F0, Bc–parameter plane
lie very close to the thin demarcation curve given by
the asymptotic 1D hydraulic theory (from (10)). When
the aspect ratio between the channel width and paddle
length lies above unity the departure between the 1D
and 2D theory becomes of course (more) distinct, as ex-
pected. The numerical simulations indicated by circles
for supercritical flows with oblique jumps, and squares for
upstream moving bores confirm these new calculations.
The combination of two requirements, either existence of
the oblique angles or F > 1 except beyond the last pair
of oblique hydraulic jumps, introduce the wavy charac-
ter in the demarcation curves as one requirement takes
over from the other. The curves are slightly different due
to the alteration in paddle length. The above existence
criterion is somewhat heuristic and not mathematically
rigorous, but has been verified against numerical simula-
tions and the notion that these supercritical patterns can
only exist for certain Froude numbers. In addition, the
above calculations hold for the linear contraction only,
even though the generic outcome is expected to be ro-
bust, at least for nearly linear contraction channels.

B. Observed oblique jump angles

The angle θs between the wall and the oblique waves is
plotted, in Fig. 13, against the Froude number F0 at the
sluice gate or a dissipation corrected Froude number Fm
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FIG. 11: Oblique jump patterns within the contraction for
several values of Bc and minimal value of F0, and L =
0.3065m in scaled coordinates. The thick outer lines denote
the contraction walls; the thin lines the oblique jumps. Val-
ues of the Froude numbers have been displayed within each
polygon.
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FIG. 12: The demarcation between supercritical (smooth)
solutions and upstream moving jumps is determined with 1D
hydraulic theory, 2D theory for oblique hydraulic jumps, and
by numerical simulations. A comparison is made between 1D
theory (thin line), 2D theory for paddle lengths L = 0.305m
(thicker line) and L = 0.465m (thickest line), and numerical
simulations for L = 0.305m (open circles and squares) and
L = 0.465m (open circles and squares with dot in the center).
Simulations are largely done in a scaled domain x ∈ [0, 3.5]
with 175 × 40 elements, and thus scaled paddle lengths L/b0

(for b0 = 0.198m). Indeed, the curves and symbols are close
together, well within the error bars associated with the labo-
ratory measurements.

at the entrance of the contraction at x0 = 0.8m down-
stream of this gate. The Froude number Fm is obtained
analytically using relation (9) for C⋆

d = 0.0037. Both
the experimental results of θs (solid lines) versus the up-
stream Froude number F0 and a dissipation corrected
Froude number F at the entrance of the contraction are
given, as well as predictions (dashed and dashed-dotted
lines) based on (22a) for m = 0. While the inviscid pre-
dictions seem reasonable, the friction corrected results
are not. Only for very small values of C⋆

d = 0.00012
are the results reasonable, cf. numerical calculations by
Ambati and Bokhove [16]. The latter value of friction
seems too small. A careful examination of (all snap-
shots containing) these oblique waves show no sign of
local wave breaking at the surface so characteristic in
hydraulic jumps. Additional movies of the experiments
often show capillary surface ripples, sometimes preced-
ing the main oblique waves. It seems to indicate that
surface tension may play a secondary role in these small-
amplitude waves. However, three-dimensional turbulent
effects may also be important as deviations from the
depth-averaged variables may cause changes. Further
investigation is required to explain these oblique waves
better, e.g., by adding some three-dimensional effects [20]
and surface tension.
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FIG. 13: The angle θs between the wall and the oblique wave
is plotted against Froude number F0 at the sluice gate or a
dissipation corrected Froude number Fm at the entrance of
the contraction 0.8m further downstream. Solid lines: data;
with circles for F0 and with crosses for Fm < F0. Dashed(-
dotted) lines: theoretical calculation of θs given F0 (circles)
or Fm (crosses) based on (22a).

V. SUMMARIZING REMARKS

We presented an analytical and experimental study
of hydraulic shallow water flow through a linearly con-
tracting channel. Analytically, a new steady state was
found in a one-dimensional (1D) cross-sectional averaged
model. As in Baines and Whitehead [5], who found an
unstable steady jump on the upstream side of an obsta-
cle, the 1D steady jump in the contracting region was
shown to be linearly unstable for flows inviscid except at
hydraulic jumps.

An experimental apparatus consisting of a horizontal
channel with a sluice gate at its beginning and a lin-
ear contraction at its end was constructed to investigate
our new 1D hydraulic theory with bulk friction. Steady
upstream jumps, supercritical weak oblique waves and
subcritical smooth flows were observed. Turbulent drag
was a necessary addition to obtain fairly good agree-
ment between observations and predictions of the 1D hy-
draulic model. In addition to oblique two-dimensional
(2D) waves, corresponding to the averaged supercritical
state in the 1D analysis, we observed a steady 2D bore
akin to a Mach stem in gas dynamics. The latter led to
the formation of a reservoir in the contraction. This ap-
parently novel state, see Fig. 7, was experimentally stable
for certain F0, bc values and appeared to correspond to
the averaged steady 1D hydraulic jump; this 1D jump
was theoretically found to be unstable in the absence of
bulk (turbulent) friction.

It seemed therefore less likely that the reservoir state
would be observed in the parameter regime where three
steady states could formally exist. This was indeed the



case experimentally, because steady flows with a Mach-
stem reservoir in the contraction were never the preferred
steady state emerging in the experiment. In order to
observe such flows with a Mach stem, it was necessary
to find the appropriate flow regime and then to force
the flow artificially to hop to this meta-stable state. In
practice this was done by inserting a paddle in the flow
and sweeping water downstream away from the upstream
steady shock until it moved to the steady flow with a
Mach stem. The 1D analysis predicts a region with three
co-existing (stable) states, but also a small region with
only the reservoir state around F ≈ 1, Bc ≈ 1 (akin to
a region in [21]). In the experiments, the reservoir state
oscillates slightly around a stable equilibrium, and has
a 2D horizontal structure; it also only occupies part of
the region of the parameter plane where the other two
states co-exist. More research is required to explain and
understand these experimental findings.

FIG. 14: Snapshots of the flow after perturbing it from the
oblique wave state (top left) to an upstream steady shock state
(bottom right) due to an upstream avalanche of polystyrene
beads (just inserted in the top middle frame). One second
elapses between each frame. The density of the beads is about
900 kg/m3, F0 = 3.07 and Bc = 0.7; indicated by a star in
Fig. 6.

The idea of perturbing the flow around an unstable
state motivated both our analysis and experiments. We
were able to perturb a state with Mach stem to states
with steady upstream jumps and oblique waves. We cre-
ated these perturbations both artificially, with a plexi-
glass paddle, and more geophysically, by an avalanche
of buoyant beads. In Fig. 14, we used an upstream
avalanche of polystyrene beads and the resulting deceler-
ation of the flow was sufficient to perturb the flow from
a state with oblique waves to one with upstream steady
shocks. It is a finite amplitude perturbation. The anal-

ysis and experiments shown here and in [1] form a basis
for further experimental and theoretical work on the hy-
draulics of multiphase flows for slurries with water and
floating particles. The multiphase system proposed by
Pitman and Le [22] may be a good candidate to study
the 1D and 2D hydraulics of such slurries.

Finally, the supercritical oblique waves observed in the
experiment appear to be influenced by other effects such
as surface tension, because the small-scale wave break-
ing in bores characterized by bubble inclusion was ab-
sent. Surprisingly, 2D hydraulic theory in conjunction
with numerical simulations does match the 1D analysis
well for supercritical shallow flows in the absence of bulk
(turbulent) friction. Further (theoretical and numeri-
cal) research is required to include nonhydrostatic effects
due to the combined actions of (averaged) two- and three
dimensional effects such as turbulence, and surface ten-
sion.
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APPENDIX A: OBLIQUE-WAVE DATA

h0 h1 H1 F0 Ls Ly Bc θs ± 2o wedge shape
1.3 2.5 1.9231 2.79 30.5 5 0.75 26.7 asymmetric
1.3 2 1.5385 2.94 30.5 1.9 0.81 26.7 symmetric
1.3 2.2 1.6923 3.13 30.5 5 0.75 27.1 asymmetric
1.3 2 1.5385 3.23 30.5 1.9 0.81 21.6 symmetric
1.3 2 1.5385 3.37 30.5 3 0.7 22.1 symmetric
1.3 2.5 1.9231 3.47 30.5 4 0.8 25.4 asymmetric
1.3 2.2 1.6923 3.56 30.5 5 0.75 20.1 asymmetric
1.3 2.3 1.7692 3.65 30.5 3 0.7 25.2 symmetric

TABLE II: The experimental data for oblique shocks are pre-
sented: depth h0 near the sluice gate and h1 after the oblique
shocks with ratio H1 = h1/h0, Ls =

p

(L2
x + L2

y) is the length
of the paddle and Ly its farthest distance form the channel
wall, Bc is the scaled width at the nozzle, θs the observed
shock angle, and the shape is either symmetric with two per-
spex pieces or asymmetric with only one piece forming the
contraction.



We have tabulated the measurement data for the
oblique jumps, used in Fig. 13, in Table II.

APPENDIX B: STABILITY

Stability of the steady solution in the reservoir is in-
vestigated by consideration of an approximate time de-
pendent solution. This approximate solution consists of
a moving shock in the reservoir starting in the neighbor-
hood of the steady shock. It satisfies the following condi-
tions. Upstream of the shock the flow is supercritical and
is therefore the same as the steady solution. The location
of the shock will move in time, however. Downstream of
the shock the solution is subcritical and set in part by
the criticality condition at the nozzle. The dynamics of
the moving shock imply that the flow downstream of the
shock is time dependent. The simplifying assumption is
that the flow there is assumed to be quasi-static. It im-
plies that explicit variations in time are ignored except
to obtain the speed of the shock. We assume an instan-
taneous adjustment of the downstream flow to the slow
movement of the shock, which in reality will be a fast but
finite time process.

The above-mentioned solution can in principle be an-
alyzed by solving the shock relations, mass continuity
and the Bernoulli relations up- and downstream of the
shock, coupled to the criticality condition at the nozzle.
Linear stability can be investigated after linearizing the
system around the steady shock solution. A system of
seven equations for eight variables results. A relation be-
tween the shock speed and the geometry then establishes
whether the shock moves back to its original steady state
location, in the stable case, or not, in the unstable case.

Under the quasi-static assumption only the reduced
system of five equations is

u1 h1 b1 =1 = u0 h0 b0 (B1a)

h1 (u1 + s) =h2 (u2 + s) (B1b)

h1 (u1 + s)2 +
1

2
h2

1/F 2
0 =h2 (u2 + s)2 +

1

2
h2

2/F 2
0 (B1c)

u2
1/2 + h1/F 2

0 =1/2 + 1/F 2
0 (B1d)

u2
2/2 + h2/F 2

0 =
1

2
u2

c + hc/F 2
0

=
3

2 F 2
0

(u2 h2 F0 b1/bc)
2/3

, (B1e)

where we have immediately used mass continuity and
criticality at the nozzle to eliminate hc and uc

u2
c =hc/F 2

0 , uc hc bc = u2 h2 b1

→ hc =(u2 h2 F0 b1/bc)
2/3

.
(B1f)

The six remaining unknowns in (B1) are u1, h1, u2, h2, s
and b1. In contrast, [5] also uses a linearization of (B1a)–
(B1d) and the relation

u2
2/2 + h2/F 2

0 =
1

2
u2

c + hc/F 2
0 =

3

2
hc/F 2

0 (B2)

for fixed steady state value hc, instead of (B1e).
By combining and rewriting (B1a) and (B1d), (B1e),

(B1b) and (B1c), and (B1b), we find the following four
equations

(F1 b1/F0)
2/3 =(2 + F 2

1 )/(2 + F 2
0 ) (B3a)

z (2 + F 2
2 ) =3 (F2 b1/bc)

2/3 z (B3b)

z2 + z − 2 (F1 + S1)
2 = 0 (B3c)

F1 + S1 =z (F2

√
z + S1) (B3d)

for the remaining five variables

F1 =u1 F0/
√

h1, F2 = u2 F0/
√

h2,

z =h2/h1, S1 = s F0/
√

h1, and b1.
(B4)

The next step is to linearize (B3) around F̄1, F̄2, b̄1, z̄ and
S1 = 0. We then find

b′1
b̄1

=
2 (F̄ 2

1 − 1)

(2 + F̄ 2
1 )

F ′
1

F̄1
(B5a)

b′1
b̄1

=
2 (F̄ 2

2 − 1)

(2 + F̄ 2
2 )

F ′
2

F̄2
(B5b)

(2 z̄ + 1) z′ =4 F̄1 (F ′
1 + S1) (B5c)

F ′
1

F̄1
=(z̄ − 1)

S1

F̄1
+

F ′
2

F̄2
+

3

2

z′

z̄
. (B5d)

Note from (B3) that 2 F̄ 2
1 = z̄ (z̄ + 1) and F̄1 = z̄3/2 F̄2.

After some algebra, one finds

3 z̄

(

(2 z̄ + 1) (F̄ 2
1 − F̄ 2

2 )

(2 + F̄ 2
1 ) (1 − F̄ 2

2 )
− (z̄ + 1))

)

b′1
b̄1

=

2
(F̄ 2

1 − 1)

(2 + F̄ 2
1 )

(

z̄ (2 z̄ + 1) (z̄ − 1) + 6 F̄ 2
1

) S1

F̄1
.

(B6)

The signs of the terms on the right-hand-side are positive,
since F̄1 > 1, z̄ > 1. The sign of the term on the
left-hand-side is investigated graphically; it is always a
positive function of F̄ 2

1 > 1, once we have substituted
the steady-state relations. Hence, when S1 > 0 then
b′1 > 0 and vice versa; the implication is that the steady
shock is linearly unstable in the absence of additional
bulk friction. We conclude that the extra assumption
used in [5] and (21) was unnecessary yet the result of our
extended analysis is the same.
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